Rocket Issues force SpaceX and NASA to Postpone Falcon 9 Rocket Launch to January 2015

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER, FL – Due to technical problems encountered during a hot fire test of the first stage engines this week with the SpaceX Falcon 9 rocket, the planned Dec. 19 launch of the commercial rocket and NASA contracted Dragon cargo freighter to the International Space Station (ISS) on a critical resupply mission has been postponed a few weeks into the new year to Jan. 6 at the earliest “out of an abundance of caution,” SpaceX officials told Universe Today.

Prior to every launch, SpaceX performs an internally required full countdown dress rehearsal and hot fire test of the first stage propulsion systems.

The hot fire test attempted on Tuesday “did not run for its full duration” of about three seconds, SpaceX spokesman John Taylor confirmed to me.

Therefore SpaceX and NASA managers decided to postpone the launch in order to run another static fire test.

“We are opting to execute a second static fire test prior to launch,” Taylor said.

In light of the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter, everything must be done to ensure a launch success.

Due to the large amount of work required to test and analyze all rocket systems and the impending Christmas holidays, the earliest opportunity to launch is Jan. 6.

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida.  Credit: SpaceX/Elon Musk
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch now reset for Jan. 6, 2015, from Cape Canaveral, Florida. Credit: SpaceX/Elon Musk

The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter had been slated to liftoff on its next unmanned cargo run dubbed CRS-5 to the ISS under NASA’s Commercial Resupply Services (CRS) contract.

Here is the full update from SpaceX.

“While the recent static fire test accomplished nearly all of our goals, the test did not run the full duration. The data suggests we could push forward without a second attempt, but out of an abundance of caution, we are opting to execute a second static fire test prior to launch.”

“Given the extra time needed for data review and testing, coupled with the limited launch date availability due to the holidays and other restrictions, our earliest launch opportunity is now Jan. 6 with Jan. 7 as a backup.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

“The ISS orbits through a high beta angle period a few times a year. This is where the angle between the ISS orbital plane and the sun is high, resulting in the ISS’ being in almost constant sunlight for a 10 day period.

“During this time, there are thermal and operational constraints that prohibit Dragon from being allowed to berth with the ISS. This high beta period runs from 12/28/14-1/7/15”

“Note that for a launch on 1/6 , Dragon berths on 1/8.”

“Both Falcon 9 and Dragon remain in good health, and our teams are looking forward to launch just after the New Year.”

Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 Rocket to Attempt Daring Ocean Platform Landing with Next Launch

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida. Credit: SpaceX/Elon Musk

KENNEDY SPACE CENTER, FL – In a key test of rocket reusability, SpaceX will attempt a daring landing of their Falcon 9 first stage rocket on an ocean platform known as the “autonomous spaceport drone ship” following the planned Friday, Dec. 19, blastoff on a high stakes mission to the International Space Station (ISS).

The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter is slated to liftoff on its next unmanned cargo run, dubbed CRS-5, to the ISS under NASA’s Commercial Resupply Services (CRS) contract. In a late development, there is a possibility the launch could be postponed to January 2015.

The instantaneous launch window for the Falcon 9/Dragon is slated for 1:20 p.m from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

As the Dragon proceeds to orbit, SpaceX engineers will attempt to recover the Falcon 9 first stage via a precision landing for the first time “on a custom-built ocean platform known as the autonomous spaceport drone ship,” according to a SpaceX statement.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

“While SpaceX has already demonstrated two successful soft water landings, executing a precision landing on an unanchored ocean platform is significantly more challenging.”

SpaceX rates the chances of success at “perhaps 50% at best.”

Of course since this has never been attempted before, tons of planning is involved and lots can go wrong.

But this is space exploration, and it’s not for the meek and mild.

It’s time to go boldly where no one has gone before and expand the envelope if we hope to achieve great things.

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40  awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com
A SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 prior to launch on Sept 20, 2014, on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

The 14 story Falcon 9 will be zooming upwards at 1300 m/s (nearly 1 mi/s). Engineers will then relight the Merlin 1D first stage engines to stabilize and lower the rocket.

Four hypersonic grid fins had been added to the first stage and placed in an X-wing configuration. They will be deployed only during the reentry attempt and will be used to roll, pitch, and yaw the rocket in concert with gimballing of the engines.

Here’s a description from SpaceX:

“To help stabilize the stage and to reduce its speed, SpaceX relights the engines for a series of three burns. The first burn—the boostback burn—adjusts the impact point of the vehicle and is followed by the supersonic retro propulsion burn that, along with the drag of the atmosphere, slows the vehicle’s speed from 1300 m/s to about 250 m/s. The final burn is the landing burn, during which the legs deploy and the vehicle’s speed is further.”

“To complicate matters further, the landing site is limited in size and not entirely stationary. The autonomous spaceport drone ship is 300 by 100 feet, with wings that extend its width to 170 feet. While that may sound huge at first, to a Falcon 9 first stage coming from space, it seems very small. The legspan of the Falcon 9 first stage is about 70 feet and while the ship is equipped with powerful thrusters to help it stay in place, it is not actually anchored, so finding the bullseye becomes particularly tricky. During previous attempts, we could only expect a landing accuracy of within 10km. For this attempt, we’re targeting a landing accuracy of within 10 meters.”

Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Orion, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec 18: “SpaceX CRS-5, Orion EFT-1, Antares Orb-3 launch, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA and SpaceX targeting Dec. 19 for next Space Station Launch

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

NASA and SpaceX are now targeting Dec. 19 as the launch date for the next unmanned cargo run to the International Space Station (ISS) under NASA’s Commercial Resupply Services contract.

The fifth SpaceX cargo mission was postponed from Dec. 16 to Dec. 19 to “allow SpaceX to take extra time to ensure they do everything possible on the ground to prepare for a successful launch,” according to a statement from NASA.

The Dragon spacecraft will launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Both the Falcon 9 rocket and its Dragon spacecraft are in good health, according to NASA.

The mission dubbed SpaceX CRS-5 is slated for liftoff at 1:20 p.m.

An on time liftoff will result in a rendezvous with the ISS on Sunday. The crew would grapple the Dragon with the stations 57 foot long robotic arm at about 6 a.m.

The SpaceX Dragon capsule is snared by the International Space Station's Canadarm 2. Credit: NASA
The SpaceX Dragon capsule is snared by the International Space Station’s Canadarm 2. Credit: NASA

US astronaut and station commander Barry Wilmore will operate the Canadarm2 to capture the SpaceX Dragon when it arrives Sunday morning. ESA astronaut Samantha Cristoforetti will assist Wilmore working at a robotics workstation inside the domed Cupola module during the commercial craft’s approach and rendezvous.

The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.

The SpaceX CRS-4 mission to the ISS concluded with a successful splashdown on Oct 25 after a month long stay.

The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.

With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.

Orbital Sciences has now contracted United Launch Alliance (ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.

Orbital Sciences Selects ULA’s Atlas V to Launch Next Cygnus Cargo Ship to Station

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

A United Launch Alliance Altas V 401 rocket like that shown here will launch the next Orbital Sciences Cygnus cargo ship to the space station in place of the Antares rocket. NASA’s Mars-bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
More photos added[/caption]

Following the catastrophic Oct. 28 failure of an Orbital Sciences Corporation Antares rocket on a critical resupply mission to the space station for NASA, the company is seeking to quickly make up the loss to NASA by announcing the selection of the venerable Atlas V rocket built by United Launch Alliance to launch Orbital’s next Cygnus cargo ship to the orbital science lab.

Orbital and ULA signed a contract to launch at least one, and up to two, Cygnus cargo missions to the International Space Station (ISS) under NASA’s Commercial Resupply Services (CRS) program.

The first Cygnus mission would liftoff sometime late in the fourth quarter of 2015 aboard an Atlas V 401 vehicle from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Force Station in Florida.

Given that ULA’s full launch manifest was fairly full for the next 18 months, Orbital is fortunate to have arranged one or two available launch slots so quickly in the wake of the Antares launch disaster.

“Orbital is pleased to partner with ULA for these important cargo missions to the International Space Station,” said Frank Culbertson, Orbital executive vice president and general manager of its Advanced Programs Group.

“ULA’s ability to integrate and launch missions on relatively short notice demonstrates ULA’s manifest flexibility and responsiveness to customer launch needs.”

Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares’ doomed descent to incendiary destruction after the first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Orbital also stated that there will be “no cost increase to the space agency” by utilizing the Atlas V as an interim launcher.

If necessary, a second Cygnus would be launched by the Atlas V in 2016.

The 401 version of the Atlas uses a 4 meter diameter payload fairing, no solid rocket boosters strapped on to the first stage, and a single-engine Centaur upper stage.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

Orbital had been evaluating at least three different potential launch providers.

Observers speculated that in addition to ULA, the other possibilities included a SpaceX Falcon 9 or a rocket from the European Space Agency at the Guiana Space Center.

“We could not be more honored that Orbital selected ULA to launch its Cygnus spacecraft,” said Jim Sponnick, vice president, Atlas and Delta Programs.

“This mission was awarded in a highly competitive environment, and we look forward to continuing ULA’s long history of providing reliable, cost-effective launch services for customers.”

The Orbital-3, or Orb-3, mission that ended in disaster on Oct. 28 was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

The highly anticipated launch of the Antares rocket on Oct 28 suddenly went awry when one of the Soviet-era first stage engines unexpectedly exploded and cascaded into a spectacular aerial fireball just above the launch pad at NASA’s Wallops Flight Facility on the Orb-3 mission to the ISS.

Read my earlier eyewitness accounts at Universe Today.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital was awarded a $1.9 Billion contract with NASA under the CRS program to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

In choosing the Atlas V with a greater lift capacity compared to Antares, Orbital will also be able to significantly increase the cargo mass loaded inside the Cygnus by about 35%.

This may allow Orbital to meet its overall space station payload obligation to NASA in 7 total flights vs. the originally planned 8.

The venerable Atlas V rocket is one of the most reliable and well built rockets in the world.

NASA’s Mars bound MAVEN spacecraft atop Atlas V booster rolls out to Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 16, 2013. Credit: Ken Kremer/kenkremer.com
The next Orbital Sciences Cygnus cargo ship to the space station will launch inside a 4m diameter payload firing, as shown here, on a United Launch Alliance Altas V 401 rocket used for NASA’s MAVEN. NASA’s Mars-bound MAVEN spacecraft atop Atlas V booster rolls out to Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 16, 2013. Credit: Ken Kremer/kenkremer.com

Indeed the Atlas V has been entrusted to launch many high value missions for NASA and the Defense Department – such as MAVEN, Curiosity, JUNO, TDRSS, and the X-37 B.

MAVEN launched on a similar 401 configuration being planned for Cygnus.

The two-stage Atlas rocket is also being man-rated right now to launch humans to low Earth orbit in the near future.

Orbital is still in the process of deciding on a new first stage propulsion system for Antares’ return to flight planned for perhaps sometime in 2016.

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Antares Orb-3 Rocket Explosion and Frightening Incineration Captured by Up Close Launch Pad Videos/Photos: Pt. 2

Antares destruction after the first stage propulsion system at the base of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Video Caption: This up close launch pad camera view is a time lapse sequence of images showing the sudden catastrophic explosion of Orbital Sciences Antares Orb 3 rocket seconds after blastoff and destructive incineration as it plummets into a hellish inferno at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com/Universe Today/AmericaSpace/Zero-G News.
Story and images expanded

NASA WALLOPS FLIGHT FACILITY, VA – Moments after a seemingly glorious liftoff on Oct. 28, 2014, the Orbital Sciences Corp. commercial Antares rocket suffered a catastrophic failure as one of the Soviet-era first stage engines exploded and cascaded into a spectacular aerial fireball just above the launch pad at NASA’s Wallops Flight Facility on the doomed Orb-3 mission to the International Space Station (ISS).

Although I witnessed and photographed the launch failure from the media viewing area on site at NASA Wallops from a distance of about 1.8 miles away, myself and a small group of space journalists working together from Universe Today, AmericaSpace, and Zero-G News had also placed sound activated cameras directly at the launch pad to capture the most spectacular up close views for what we all expected to be a “nominal” launch. Our imagery had been impounded by accident investigators – until being released to us now.

Now in part 2 of this exclusive series of video and photos our team can show you the terrible fate suffered by Antares after its destructive descent and frightening incineration as it was consumed by a hellish inferno.

My time lapse video above clearly shows the explosion and incendiary descent of Antares into a mammoth fireball.

As I reported in Part 1, all of our team’s cameras and image cards were impounded for nearly a month by Orbital’s official and independent Accident Investigation Board (AIB) that was assembled quickly in the aftermath of the Antares launch failure disaster and charged with determining the root cause of the launch failure.

The videos and photos captured on our image cards were used as evidence and scrutinized by the investigators searching for clues as to the cause and have only just been returned to us in the past few days.

One image clearly shows that the south side engine nozzle of the AJ26 first stage engine was intact and had shut down after the initial explosion and during the plummet. Therefore it was the north side engine that blew up and led to the launch failure. See my up close AJ26 engine photo below.

Video Caption: AmericaSpace and Zero-G News video compilation of four cameras surrounding the launch pad to capture liftoff. The video runs through each at full speed before slowing down to give viewers a slow motion replay of the explosion. One of the cameras was right in the middle of the fireball, with chunks of broken rocket showering down around. CREDITS: Mike Barrett / Jeff Seibert / Matthew Travis / Elliot Severn / Peter Greenwood for www.ZeroGNews.com and www.AmericaSpace.com

Similar launch pad photos taken by NASA and Orbital Sciences cameras have not been publicly released and may not be released for some time to come.

The videos and images collected here are the work of my colleagues Matthew Travis, Elliot Severn, Alex Polimeni, Charles Twine, Jeff Seibert, Mike Barrett, and myself, and show exquisite, heretofore unreleased, views of the explosion, fireball, and wreckage from various positions all around the launch pad.

Our remote cameras were placed all around the Antares pad OA at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, VA, and somehow miraculously survived the rocket’s destruction as it plunged to the ground very near and just north of the seaside launch pad.

A turbopump failure in one of the rocket’s Soviet-era first stage engines has been identified as the most likely cause of the Antares’ destruction according to official statements from David Thompson, Orbital’s Chairman and Chief Executive Officer.

The AJ26 engines were originally manufactured some 40 years ago in the then Soviet Union as the NK-33.

They were refurbished and “Americanized” by Aerojet Rocketdyne.

“While still preliminary and subject to change, current evidence strongly suggests that one of the two AJ26 main engines that powered Antares’ first stage failed about 15 seconds after ignition. At this time, we believe the failure likely originated in, or directly affected, the turbopump machinery of this engine, but I want to stress that more analysis will be required to confirm that this finding is correct,” said Thompson.

Antares loses thrust after rocket explosion and begins falling back  after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares loses thrust after rocket explosion and begins falling back after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Close up view of Antares descent into hellish inferno shows south side first stage engine intact after north side engine at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Close up view of Antares’ descent into a hellish inferno shows the south side first stage engine intact after the north side engine at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Overall this was the 5th Antares launch using the AJ26 engines.

Antares was carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

IMG_1127_3a_Antares Orb 3_Ken Kremer

It was the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo was loaded on board compared to earlier flights. That was enabled by using the more powerful ATK CASTOR 30XL engine to power the second stage for the first time.

The astronauts and cosmonauts depend on a regular supply train from the ISS partners to kept it afloat and productive on a 24/7 basis.

IMG_6400_lzn

IMG_6454_lzn

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

Examine the video and photo gallery herein.

Orbital Sciences Antares rocket explodes into a fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into a fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

_7SC1510C

Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA's Wallops Flight Facility launch pad on Oct 26 - 2 days before the ??Orb-3? launch failure on Oct 28, 2014.  Credit: Ken Kremer - kenkremer.com
Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA’s Wallops Flight Facility launch pad on Oct 26 – 2 days before the Orb-3 launch failure on Oct 28, 2014. Credit: Ken Kremer – kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
Remote cameras set up around launch pad 0A at the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia captured incredible up-close views of an Orbital Sciences Corporation Antares rocket exploding seconds after liftoff several weeks ago. The mission was to deliver the company’s Orb-3 Cygnus spacecraft to deliver supplies and experiments to the orbiting International Space Station. Photo Credits: Elliot Severn / Matthew Travis / Mike Barrett / Jeff Seibert for Zero-G News and AmericaSpace
Remote cameras set up around launch pad 0A at the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia captured incredible up-close views of an Orbital Sciences Corporation Antares rocket exploding seconds after liftoff several weeks ago. The mission was to deliver the company’s Orb-3 Cygnus spacecraft to deliver supplies and experiments to the orbiting International Space Station. Photo Credits: Elliot Severn / Matthew Travis / Mike Barrett / Jeff Seibert for Zero-G News and AmericaSpace
Up Close Launch Pad remote camera photographers during prelaunch setup for Orb-3 mission at NASA Wallops launch pad. Credit: Ken Kremer - kenkremer.com Antares priuor to
Up Close Launch Pad remote camera photographers during prelaunch setup for Orb-3 mission at NASA Wallops launch pad. Credit: Ken Kremer – kenkremer.com

Antares’ Doomed Descent into Hellish Inferno – Up Close Launch Pad Photo Exclusive: Pt. 1

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Up close launch pad camera view as Antares descended into a hellish inferno after the first stage propulsion system at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. The south side engine nozzle is clearly intact in this image. Credit: Ken Kremer – kenkremer.com
Story and photos expanded[/caption]

NASA WALLOPS FLIGHT FACILITY, VA – All was calm, the air was crisp with hope, and the skies were clear as far as the eye could see as the clock ticked down to T MINUS Zero for the Oct. 28, 2014, blastoff of an Orbital Sciences commercial Antares rocket from NASA’s Wallops Flight Facility, VA, on a mission of critical importance bound for the International Space Station and stocked with science and life support supplies for the six humans living and working aboard.

Tragically it was not to be – as I reported live from the NASA Wallops press site on that fateful October day. The 133 foot tall rocket’s base exploded violently and unexpectedly just seconds after a beautiful evening liftoff due to the failure of one of the refurbished AJ26 first stage “Americanized” Soviet-era engines built four decades ago.

And now for the first time, I can show you precisely what the terrible incendiary view was like through exclusive, up close launch pad photos and videos from myself and a group of space journalists working together from Universe Today, AmericaSpace, and Zero-G news.

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares descended to doom after the first stage propulsion system at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

I was an eyewitness to the awful devastation suffered by the Antares/Cygnus Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away from the launch complex.

Our remote cameras were placed directly adjacent to the Antares pad OA at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, VA, and miraculously survived the rocket’s destruction as it plunged to the ground very near and just north of the seaside launch pad.

Matt 4

All of our team’s cameras and image cards were impounded by Orbital’s Accident Investigation Board (AIB) that was assembled quickly in the aftermath of the disaster and charged with determining the root cause of the launch failure.

The photos captured on our image cards were used as evidence and scrutinized by the investigators searching for clues as to the cause, and have only just been returned to us in the past two days. Similar NASA and Orbital Sciences photos have not been publicly released.

Collected here in Part 1 is a gallery of images from our combined journalist team of Universe Today, AmericaSpace, and Zero-G news. Part 2 will follow shortly and focus on our up close launch pad videos.

Close up view of Antares descent into hellish inferno shows south side first stage engine intact after north side engine at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Close up view of Antares’ destruction shows the south side first stage engine intact after the north side engine at the base of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares descended into a hellish inferno after the first stage propulsion system at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

My lead image shows Antares’ descent into a hellish inferno. And more below clearly show that the south side engine nozzle was intact after the explosion. Thus it was the north side engine that blew up. See my up close AJ26 engine photo below.

Images from my colleagues Matthew Travis, Elliot Severn, Alex Polimeni, Charles Twine, and Jeff Seibert also show exquisite views of the explosion, fireball, and wreckage from various positions around the launch pad.

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares destruction after the first stage propulsion system at the base of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

 

Close up view of Antares descent into hellish inferno shows south side first stage engine intact after north side engine at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Close up view of Antares’ destructive fall shows the south side first stage engine intact after the north side engine at the base of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Moments after liftoff, the highly anticipated Antares launch suddenly devolved into utter catastrophe and a doomed descent into a hellish inferno of bloodcurdling terror – falling as a flaming incinerating carcass of unspeakable horror that ended in a mammoth deafening explosion as the pitiful wreckage smashed into the ground and blew back upwards as a raging fireball and hurtling debris that was visible across a wide swath of the sky.

The awful scene was seen by hordes of expectant spectators for miles around the Wallops area.

matt 2

The disaster’s cause has almost certainly been traced to a turbopump failure in one of the rocket’s Soviet-era first stage engines, according to official statements from David Thompson, Orbital’s Chairman and Chief Executive Officer.

The AJ26 engines were originally manufactured some 40 years ago in the then Soviet Union as the NK-33.
They were refurbished and “Americanized” by Aerojet Rocketdyne.

“While still preliminary and subject to change, current evidence strongly suggests that one of the two AJ26 main engines that powered Antares first stage failed about 15 seconds after ignition. At this time, we believe the failure likely originated in or directly affected the turbopump machinery of this engine, but I want to stress that more analysis will be required to confirm that this finding is correct,” said Thompson.

Overall this was the 5th Antares launch using the AJ26 engines.

The 14 story Antares rocket is a two stage vehicle.

The liquid fueled first stage is filled with about 550,000 pounds (250,000 kg) of Liquid Oxygen and Refined Petroleum (LOX/RP) and powered by a pair of AJ26 engines that generate a combined 734,000 pounds (3,265kN) of sea level thrust.

The Oct. 28 launch disaster was just the latest in a string of serious problems with the AJ-26/NK-33 engines.

Earlier this year an AJ26 engine failed and exploded during pre launch acceptance testing on a test stand on May 22, 2014 at NASA’s Stennis Space Center in Mississippi.

Besides completely destroying the AJ26 engine, the explosion during engine testing also severely damaged the Stennis test stand. It has taken months of hard work to rebuild and restore the test stand and place it back into service.

Matt 5

Antares was carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

It was the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo was loaded on board compared to earlier flights. That was enabled by using the more powerful ATK CASTOR 30XL engine to power the second stage for the first time.

Ellio 3
The astronauts and cosmonauts depend on a regular supply train from the ISS partners to kept it afloat and productive on a 24/7 basis.

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

Enjoy the photo gallery herein.

And watch for Part 2 shortly with exquisite videos, more photos, and personal reflections from our team.

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares descended into a hellish inferno after the first stage propulsion system at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Antares rocket stand erect, reflecting off the calm waters the night before the planned first night launch from NASA’s Wallops Flight Facility, VA, that ended in tragic failure on Oct. 28. Credit: Ken Kremer – kenkremer.com

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Elliot 2

Elliot 4

_MG_3036_lzn

_MG_3019

_7SC1506C

Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallops. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia, bound for the ISS. Credit: Ken Kremer – kenkremer.com
Up Close Launch Pad remote camera photographers during prelaunch setup for Orb-3 mission at NASA Wallops launch pad. Credit: Ken Kremer - kenkremer.com
Up Close Launch Pad remote camera photographers during prelaunch setup for Orb-3 mission at NASA Wallops launch pad. Credit: Ken Kremer – kenkremer.com

Iconic Kennedy Space Center Countdown Clock Retires

STS-135: Last launch using RS-25 engines that will now power NASA’s SLS deep space exploration rocket. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

Iconic Kennedy Space Center Countdown Clock seen here retires
NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
Story updated and more photos[/caption]

In another sign of dramatically changing times since the end of NASA’s Space Shuttle program, the world famous Countdown Clock that ticked down to numerous blastoffs at the Kennedy Space Center Press Site and was ever present to billions of television viewers worldwide, has been retired.

Years of poor weather and decades of unforgiving time have visibly taken their toll on the iconic Countdown Clock beloved by space enthusiasts across the globe – as I have personally witnessed over years of reporting on launches from the KSC Press Site.

It was designed in the 1960s and has been counting down launches both manned and unmanned since the Apollo 12 moon landing mission in November 1969. And it continued through the final shuttle mission liftoff in July 2011 and a variety of unmanned NASA launches since then.

The countdown clock’s last use came just two months ago in September 2014 during the SpaceX CRS-4 launch to the ISS, which I attended along with the STS-135 launch.

The clock is located just a short walk away from another iconic NASA symbol – the Vehicle Assembly Building (VAB) – which assembled the Apollo/Saturn and Space Shuttle stacks for which it ticked down to blastoff. See photo below.

A new clock should be in place for NASA’s momentous upcoming launch of the Orion crew capsule on its inaugural unmanned test flight on Dec. 4, 2014.

Space Shuttle Endeavour blasts off on her 25th and final mission from Pad 39 A on May 16, 2011 at 8:56 a.m. View from the world famous countdown clock at T Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com
Space Shuttle Endeavour blasts off on her 25th and final mission from Pad 39 A on May 16, 2011 at 8:56 a.m. View from the world famous countdown clock at T Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com

Because of its age, it has become harder to replace broken pieces.

“Maintaining the clock was becoming problematic,” NASA Press spokesman Allard Beutel told Universe Today.

It displays only time in big bold digits. But of course in this new modern digital era it will be replaced by one with a modern multimedia display, similar to the screens seen at sporting venues.

“The new clock will not only be a timepiece, but be more versatile with what we can show on the digital display,” Beutel told me.

The countdown clock is a must see for journalists, dignitaries and assorted visitors alike. Absolutely everyone, and I mean everyone !! – wants a selfie or group shot with it in some amusing or charming way to remember good times throughout the ages.

And of course, nothing beats including the countdown clock and the adjacent US flag in launch pictures in some dramatic way.

Indeed the clock and flag are officially called “The Press Site: Clock and Flag Pole” and are were listed in the National Register of Historic Places on Jan. 21, 2000.

The clock was officially powered down for the last time at 3:45 p.m. EDT on Nov. 19, 2014.

Famous KSC Press Site Countdown Clock and US Flag with VAB during SpaceX CRS-5 launch in September 2014. Credit: Ken Kremer – kenkremer.com
Famous KSC Press Site Countdown Clock and US Flag with VAB during SpaceX CRS-4 launch in September 2014. Credit: Ken Kremer – kenkremer.com

“The countdown clock at Kennedy’s Press Site is considered one of the most-watched timepieces in the world and may only be second in popularity to Big Ben’s Great Clock in London, England. It also has been the backdrop for a few Hollywood movies,” noted a NASA press release announcing the impending shutdown of the iconic clock.

“It is so absolutely unique — the one and only — built for the world to watch the countdown and launch,” said Timothy M. Wright, IMCS Timing, Countdown and Photo Services. “From a historical aspect, it has been very faithful to serve its mission requirements.”

The famous landmark stands nearly 6 feet (70 inches) high, 26 feet (315 inches) wide is 3 feet deep and sits on a triangular concrete and aluminum base.

Each numerical digit (six in all) is about 4 feet high and 2 feet wide. Each digit uses 56 40-watt light bulbs, the same ones found at the local hardware store. There are 349 total light bulbs in the clock, including the +/- sign (nine) and pair of colons (four), according to a NASA statement.

The new clock will be about the same size.

Fortunately for space fans, there is some good news!

The Countdown Clock will be moved to the nearby Kennedy Space Center Visitor Complex (KSCVC) and placed on permanent display for public viewing.

Details soon!

Space Shuttle Discovery awaits blast off on her final mission from Pad 39 A on the STS-133 mission, its 39th and final flight to space on February 24, 2011.  Prelaunch twilight view from the countdown clock at the KSC Press Site. Credit: Ken Kremer – kenkremer.com
Space Shuttle Discovery awaits blast off on her final mission from Pad 39 A on the STS-133 mission, its 39th and final flight to space on February 24, 2011. Prelaunch twilight view from the countdown clock at the KSC Press Site. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA’s RapidScat Ocean Wind Watcher Starts Earth Science Operations at Space Station

ISS-RapidScat data on a North Atlantic extratropical cyclone, as seen by the National Centers for Environmental Prediction Advanced Weather Interactive Processing System used by weather forecasters at the National Oceanic and Atmospheric Administration's Ocean Prediction Center. Image Credit: NASA/JPL-Caltech/NOAA

Barely two months after being launched to the International Space Station (ISS), NASA’s first science payload aimed at conducting Earth science from the station’s exterior has started its ocean wind monitoring operations two months ahead of schedule.

Data from the ISS Rapid Scatterometer, or ISS-RapidScat, payload is now available to the world’s weather and marine forecasting agencies following the successful completion of check out and calibration activities by the mission team.

Indeed it was already producing high quality, usable data following its power-on and activation at the station in late September and has monitored recent tropical cyclones in the Atlantic and Pacific Oceans prior to the end of the current hurricane season.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring for a minimum mission duration of two years.

“RapidScat is a short mission by NASA standards,” said RapidScat Project Scientist Ernesto Rodriguez of JPL.

“Its data will be ready to help support U.S. weather forecasting needs during the tail end of the 2014 hurricane season. The dissemination of these data to the international operational weather and marine forecasting communities ensures that RapidScat’s benefits will be felt throughout the world.”

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module.  It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.
ISS-RapidScat instrument, shown in this artist’s rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014, and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

The 1280 pound (580kilogram) experimental instrument was developed by NASA’s Jet Propulsion Laboratory. It’s a cost-effective replacement to NASA’s former QuikScat satellite.

The $26 million remote sensing instrument uses radar pulses reflected from the ocean’s surface at different angles to calculate the speed and direction of winds over the ocean for the improvement of weather and marine forecasting and hurricane monitoring.

The RapidScat, payload was hauled up to the station as part of the science cargo launched aboard the commercial SpaceX Dragon CRS-4 cargo resupply mission that thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

ISS-RapidScat is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

ISS-RapidScat viewed the winds within post-tropical cyclone Nuri as it moved parallel to Japan on Nov. 6, 2014 05:30 UTC. Image Credit: NASA/JPL-Caltech
ISS-RapidScat viewed the winds within post-tropical cyclone Nuri as it moved parallel to Japan on Nov. 6, 2014, 05:30 UTC. Image Credit: NASA/JPL-Caltech

It was robotically assembled and attached to the exterior of the station’s Columbus module using the station’s robotic arm and DEXTRE manipulator over a two day period on Sept 29 and 30.

Ground controllers at Johnson Space Center intricately maneuvered DEXTRE to pluck RapidScat and its nadir adapter from the unpressurized trunk section of the Dragon cargo ship and attached it to a vacant external mounting platform on the Columbus module holding mechanical and electrical connections.

The nadir adapter orients the instrument to point its antennae at Earth.

The couch sized instrument and adapter together measure about 49 x 46 x 83 inches (124 x 117 x 211 centimeters).

“The initial quality of the RapidScat wind data and the timely availability of products so soon after launch are remarkable,” said Paul Chang, ocean vector winds science team lead at NOAA’s National Environmental Satellite, Data and Information Service (NESDIS)/Center for Satellite Applications and Research (STAR), Silver Spring, Maryland.

“NOAA is looking forward to using RapidScat data to help support marine wind and wave forecasting and warning, and to exploring the unique sampling of the ocean wind fields provided by the space station’s orbit.”

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

This has been a banner year for NASA’s Earth science missions. At least five missions will be launched to space within a 12 month period, the most new Earth-observing mission launches in one year in more than a decade.

ISS-RapidScat is the third of five NASA Earth science missions scheduled to launch over a year.

NASA has already launched the of the Global Precipitation Measurement (GPM) Core Observatory, a joint mission with the Japan Aerospace Exploration Agency, in February and the Orbiting Carbon Observatory-2 (OCO-2) carbon observatory in July 2014.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

See What Astronauts See In This Stunning ISS Timelapse

My favorite part of the video is the Cygnus release. What's yours?


Yes, it’s another time-lapse video made from photos taken by astronauts aboard the ISS. Yes, it’s been digitally remastered, smoothed-over, and set to a dramatic technopop soundtrack. But no, it’s still not boring because our planet is beautiful and spaceflight is and always will be absolutely fascinating.

There. I said it.

The video above “Astronaut – a Journey to Space” is everything that I just mentioned and was compiled and edited by photographer and video artist Guillaume Juin. The original images were gathered from Johnson Space Center’s Gateway to Astronaut Photography of Earth site, and were captured during ISS missions from 2011 to 2014. Aforementioned dramatic technopop music is by Vincent Tone. Watch it above, or for maximum impact watch it full-screen. (I strongly advise the latter.) Enjoy!

HT to Sploid and fellow EFT-1 NASA Social participant Ailyn Marie for bringing this to my attention.