After a two day chase through space, a commercial SpaceX Dragon cargo capsule completed its orbital ballet and arrived at the International Space Station (ISS) today, Sept. 23, packed with some 2.5 tons of ground breaking science experiments and supplies for the human crew.
The Dragon CRS-4 resupply freighter rendezvoused with the station early this morning following a carefully choreographed series of thruster firings that brought the vessel to within a capture distance of some 10 meters (32 feet) beneath the massive orbiting outpost.
Expedition 41 crewmember and European Space Agency astronaut Alexander Gerst then maneuvered the station’s 58-foot Canadian built robotic arm. He deftly captured the Dragon at 6:52 a.m. EDT while working at the controls of the robotics workstation in the Cupola module and as the station soared some 260 miles above the Pacific Ocean.
NASA TV live coverage of the rendezvous and grappling process began at 5:00 a.m. EDT with berthing coverage concluding about 9:30 a.m. – http://www.nasa.gov/ntv
NASA astronaut Reid Wiseman assisted Gerst in operating the Canadarm2 from inside the domed, seven windowed Cupola.
Approximately two hours later at 9 a.m. EST, the private SpaceX Dragon was berthed at the Earth-facing port on the stations Harmony module.
See the Dragon’s location on ISS graphic below.
The SpaceX Dragon CRS-4 cargo mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida at 1:52 a.m. EDT Sunday, Sept. 21, just hours after a deluge of widespread rain showers inundated central Florida. Story here.
CRS-4 marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
Eight more Dragon cargo missions to the ISS are slated through 2016.
The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
This mission opens a new era in Earth science for the ISS. Tucked inside the Dragon’s unpressurized trunk section at the rear is the ISS-Rapid Scatterometer.
RapidScat is NASA’s first research payload aimed at conducting Earth science from the station’s exterior. The station’s robot arm will pluck RapidScat out of the trunk and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.
The remote sensing instrument will use radar pulses to observe the speed and direction of winds over the ocean for the improvement of weather forecasting.
Dragon also carries the first 3-D printer to space for the first such space based studies ever attempted by the astronaut crews. The printer will remain at the station for at least the next two years.
Also aboard are 20 mice housed in a special rodent habitat, as well as fruit flies.
Dragon will remain docked to the ISS for about a month. Then it will return to Earth via a parachute assisted Pacific Ocean landing off the coast of Baja California. On the return trip, the capsule will be packed with nearly 3,300 pounds (1,486 kg) of cargo, science samples, and computer and vehicle hardware for engineering checks.
The next SpaceX unmanned resupply mission is set to launch in early December on the CRS-5 flight.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – A SpaceX Falcon 9 rocket blazed aloft on a spectacular middle of the night blastoff that turned night into day along the Florida Space coast today, Sept. 21, 2014, boosting a commercial cargo ship for NASA and loaded with 2.5 tons of ground breaking science experiments, 20 ‘mousetronauts’ and critical supplies for the human crew residing aboard the International Space Station (ISS).
The SpaceX Dragon cargo vessel on the CRS-4 mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida at 1:52 a.m. EDT Sunday, Sept. 21, just hours after a deluge of widespread rain showers inundated central Florida.
Notably, the Space CRS-4 mission is carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.
“There’s nothing like a good launch, it’s just fantastic,” said Hans Koenigsman, vice president of Mission Assurance for SpaceX at the post launch briefing. “From what I can tell, everything went perfectly.”
“We worked very hard yesterday and weather wasn’t quite playing along and today everything was beautiful.”
CRS-4 marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing, and supplies for the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
“This launch kicks off a very busy time for the space station,” said NASA’s Sam Scimemi, director of the International Space Station, noting upcoming launches of a Soyuz carrying the next three person international crew of the station and launches of other cargo spacecraft including the Orbital Sciences Antares/Cygnus around mid- October.
Today’s Falcon 9 launch had already been postponed 24 hours by continuing terrible weather all week long at Cape Canaveral which had also forced a more than two hour delay to the target liftoff of a United Launch Alliance Atlas V rocket from the Cape just four days earlier. Read my Atlas V launch story involving the completely clandestine CLIO satellite – here.
Rather amazingly given the awful recent weather, Falcon 9 streaked to orbit under a beautifully star filled nighttime sky.
Sunday’s launch brilliantly affirmed the ability of SpaceX to fire off their Falcon 9 rockets at a rapid pace since it was the second launch in less than two weeks, and the fourth over the past ten weeks. The prior Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite from the Cape on Sept. 7 – detailed here.
The CRS-4 missions marks the birth of a new era in Earth science aboard the massive million pound orbiting space station. The trunk of the Dragon is loaded with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.
RapidScat is NASA’s first research payload aimed at conducting Earth science from the station’s exterior. The station’s robot arm will pluck RapidScat out of the trunk and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.
Dragon also carries the first 3-D printer to space for studies by the astronaut crews over at least the next two years.
The science experiments and technology demonstrations alone amount to over 1644 pounds (746 kg) of the Dragon’s cargo and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.
After a two day orbital chase, Dragon will rendezvous with the station on Tuesday morning, Sept. 23. It will be grappled at 7:04 a.m. by Expedition 41 Flight Engineer Alexander Gerst of the European Space Agency, using the space station’s robotic arm and then berthed at an Earth-facing port on the station’s Harmony module. NASA astronaut Reid Wiseman will support Gerst.
NASA TV is expected to provide live coverage of Dragon’s arrival, grappling, and station berthing.
Dragon was launched aboard the newest, more powerful version of the Falcon 9, dubbed v1.1, powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines’ 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.
The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
The maiden launch of the Falcon 9 v1.1 took place in December 2013.
The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.
Overall it’s been a great week for SpaceX. The firm was also awarded one of two NASA contracts to build a manned version of the Dragon, dubbed V2, that will ferry astronaut crews to the ISS starting as soon as 2017. Read my story – here.
The second ‘space taxi’ contract was awarded Boeing to develop the CST-100 crew transporter to end the nation’s sole source reliance on Russia for astronaut launches in 2017.
Dragon V2 will launch on the same version of the Falcon 9 launching today’s CRS-4 cargo Dragon.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more Earth and Planetary science and human spaceflight news.
SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission.
Credit: Ken Kremer – kenkremer.com
Story/launch date/headline updated[/caption]
KENNEDY SPACE CENTER, FL – SpaceX is on the cusp of launching the company’s fourth commercial resupply Dragon spacecraft mission to the International Space Station (ISS) shortly after midnight, Saturday, Sept. 20, 2014, continuing a rapid fire launch pace and carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.
Final preparations for the launch are underway right now at the Cape Canaveral launch pad with the stowage of sensitive late load items including a specially designed rodent habitat housing 20 mice.
Update 20 Sept: Poor weather scrubs launch to Sept. 21 at 1:52 a.m.
Fueling of the two stage rocket with liquid oxygen and kerosene propellants commences in the evening prior to launch.
If all goes well, Saturday’s launch of a SpaceX Falcon 9 rocket would be the second in less than two weeks, and the fourth over the past ten weeks. The last Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite on Sept. 7 – detailed here.
“We are ready to go,” said Hans Koenigsmann, SpaceX vice president of mission assurance, at a media briefing at the Kennedy Space Center today, Sept. 19.
Liftoff of the SpaceX Falcon 9 rocket on the CRS-4 mission bound for the ISS is targeted for an instantaneous window at 2:14 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at the moment Earth’s rotation puts Cape Canaveral in the flight path of the ISS.
You can watch NASA’s live countdown coverage which begins at 1 a.m. on NASA Television and NASA’s Launch Blog: http://www.nasa.gov/multimedia/nasatv/
The weather forecast is marginal at 50/50 with rain showers and thick clouds as the primary concerns currently impacting the launch site.
The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
The CRS-4 missions marks the start of a new era in Earth science. The truck of the Dragon is loaded Dragon with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.
RapidScat is NASA’s first research payload aimed at conducting Earth science from the stations exterior. The stations robot arm will pluck RapidScat out of the truck and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.
Dragon will also carry the first 3-D printer to space for studies by the astronaut crews over at least two years.
The science experiments and technology demonstrations alone amount too over 1644 pounds (746 kg) and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.
“This flight shows the breadth of ISS as a research platform, and we’re seeing the maturity of ISS for that,” NASA Chief Scientist Ellen Stofan said during a prelaunch news conference held today, Friday, Sept. 19 at NASA’s Kennedy Space Center.
After a two day chase, Dragon will be grappled and berth at an Earth-facing port on the stations Harmony module.
The Space CRS-4 mission marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
This week, SpaceX was also awarded a NASA contact to build a manned version of the Dragon dubbed V2 that will ferry astronauts crews to the ISS starting as soon as 2017.
NASA also awarded a second contact to Boeing to develop the CST-100 astronaut ‘space taxi’ to end the nation’s sole source reliance on Russia for astronaut launches in 2017.
Dragon V2 will launch on the same version of the Falcon 9 launching this cargo Dragon
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
In the ‘new race to space’ to restore our capability to launch Americans to orbit from American soil with an American-built commercial ‘space taxi’ as rapidly and efficiently as possible, Boeing has moved to the front of the pack with their CST-100 spaceship by completing all their assigned NASA milestones on time and on budget in the current phase of the agency’s Commercial Crew Program (CCP).
Boeing is the first, and thus far only one of the three competitors (including Sierra Nevada Corp. and SpaceX) to complete all their assigned milestone task requirements under NASA’s Commercial Crew Integrated Capability (CCiCap) initiative funded under the auspices of the agency’s Commercial Crew Program.
The CST-100 is a privately built, man rated capsule being developed with funding from NASA via the commercial crew initiative in a public/private partnership between NASA and private industry.
The overriding goal is restart America’s capability to reliably launch our astronauts from US territory to low-Earth orbit (LEO) and the International Space Station (ISS) by 2017.
Private space taxis are the fastest and cheapest way to accomplish that and end the gap in indigenous US human spaceflight launches.
Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.
Boeing announced that NASA approved the completion of the final two commercial crew milestones contracted to Boeing for the CST-100 development.
These last two milestones are the Phase Two Spacecraft Safety Review of its Crew Space Transportation (CST)-100 spacecraft and the Critical Design Review (CDR) of its integrated systems.
The CDR milestone was completed in July and comprised 44 individual CDRs including propulsion, software, avionics, landing, power and docking systems.
The Phase Two Spacecraft Safety Review included an overall hazard analysis of the spacecraft, identifying life-threatening situations and ensuring that the current design mitigated any safety risks, according to Boeing.
“The challenge of a CDR is to ensure all the pieces and sub-systems are working together,” said John Mulholland, Boeing Commercial Crew program manager, in a statement.
“Integration of these systems is key. Now we look forward to bringing the CST-100 to life.”
Passing the CDR and completing all the NASA milestone requirements is a significant step leading to the final integrated design for the CST-100 space taxi, ground systems and Atlas V launcher that will boost it to Earth orbit from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.
All three American aerospace firms vying for the multibillion dollar NASA contract to build an American ‘space taxi’ to ferry US astronauts to the International Space Station and back as soon as 2017.
NASA’s Commercial Crew Program office is expected to announce the winner(s) of the high stakes, multibillion dollar contract to build America’s next crew vehicles in the next program phase, known as Commercial Crew Transportation Capability (CCtCap), “sometime around the end of August/September,” NASA News spokesman Allard Beutel confirmed to me.
“We don’t have a scheduled date for the commercial crew award(s).”
There will be 1 or more CCtCAP winners.
On June 9, 2014, Boeing revealed the design of their CST-100 astronaut spaceliner by unveiling a full scale mockup of their commercial ‘space taxi’ at the new home of its future manufacturing site at the Kennedy Space Center (KSC) located inside a refurbished facility that most recently was used to prepare NASA’s space shuttle orbiters for assembly missions to the ISS.
The CST-100 crew transporter was unveiled at the invitation only ceremony and media event held inside the gleaming white and completely renovated NASA processing hangar known as Orbiter Processing Facility-3 (OPF-3) – and attended by Universe Today.
The huge 64,000 square foot facility has sat dormant since the shuttles were retired following their final flight (STS-135) in July 2011 and which was commanded by Chris Ferguson, who now serves as director of Boeing’s Crew and Mission Operations.
Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.
Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.
Boeing’s philosophy is to make the CST-100 a commercial endeavor, as simple and cost effective as possible in order to quickly kick start US human spaceflight efforts. It’s based on proven technologies drawing on Boeing’s 100 year heritage in aviation and space.
“The CST-100, it’s a simple ride up to and back from space,” Ferguson told me. “So it doesn’t need to be luxurious. It’s an ascent and reentry vehicle – and that’s all!”
So the CST-100 is basically a taxi up and a taxi down from LEO. NASA’s complementary human space flight program involving the Orion crew vehicle is designed for deep space exploration.
The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.
The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.
The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.
“The first unmanned orbital test flight is planned in January 2017… and may go to the station,” Ferguson told me during our exclusive interview about Boeing’s CST-100 plans.
Since 2010, NASA has spent over $1.5 billion on the commercial crew effort.
Boeing has received the largest share of funding in the current CCiCAP phase amounting to about $480 million. SpaceX received $460 million for the Dragon V2 and Sierra Nevada Corp. (SNC) has received a half award of $227.5 million for the Dream Chasermini-shuttle.
SNC will be the next company to complete all of NASA’s milestones this Fall, SNC VP Mark Sirangelo told me in an exclusive interview. SpaceX will be the final company finishing its milestones sometime in 2015.
Stay tuned here for Ken’s continuing Boeing, Sierra Nevada, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Or perhaps I should say “eine grosse Aurora!” ESA astronaut Alexander Gerst made this time-lapse of a “massive aurora” as seen from the Space Station on August 24. The entire video is beautiful, showing not just a view of the ghostly green aurora but also plenty of stars, airglow, the graceful rotation of the ISS’ solar arrays, and finally the blooming light of dawn – one of sixteen the crew of the Station get to witness every day.
Then again, I’m now wondering: what is the mass of an aurora? Hmm…
“Bangkok is the bright city. The green lights outside the city? No idea…” This was the description accompanying the photo above, perplexingly Tweeted by Expedition 40/41 astronaut Reid Wiseman on Aug. 18, 2014. And while we’ve all seen fascinating photos of our planet shared by ISS crew members over the years this one is quite interesting, to say the least. Yes, there’s the bright illumination of Bangkok’s city lights, along with some stars, moonlit cloud cover extending northeast and the fine line of airglow over the horizon, but what are those acid-green blotches scattered throughout the darkness of the Gulf of Thailand? Bioluminescent algal blooms? Secret gamma-ray test labs? Underwater alien bases?
The answer, it turns out, actually is quite fishy.
The offshore illumination comes from fishing boats, which use enormous arrays of bright green LED lights to attract squid and plankton to the surface.
According to an an Oct. 2013 article on NASA’s Earth Observatory site by Michael Carlowicz, “…fishermen from South America and Southeastern Asia light up the ocean with powerful lamps that attract the plankton and fish species that the squid feed on. The squid follow their prey toward the surface, where they are easier for fishermen to catch with jigging lines. Squid boats can carry more than a hundred of these lamps, generating as much as 300 kilowatts of light per boat.”
Seen from orbit, the lights from squid fishing fleets rival the glow of the big cities! What might this look like from sea level? According to photos shared by one travel blogger in 2013, this.
Watch a video time-lapse from an ISS pass over the same region on Jan. 30, 2014.
A Twitter HT to Reid Wiseman and Peter Caltner for the photo and information on the cause, respectively.
Update 8/20/14: This article and image have been mentioned on NASA’s Earth Observatory site in a new post by Michael Carlowicz.
Cygnus reentry [17 Aug 2014]. In 84 days Reid, Max and I will ride home inside such an amazing fireball! Credit: NASA/ESA/Alexander Gerst
Story updated[/caption]
Farewell Cygnus!
The flight of the Orbital Sciences’ Cygnus commercial cargo carrier concluded this morning, Sunday Aug. 17, in a spectacular fireball as planned upon reentry into Earth’s atmosphere at approximately 9:15 a.m. (EDT). And the fireworks were captured for posterity in a series of amazing photos taken by the Expedition 40 crew aboard the International Space Station (ISS). See astronaut photos above and below.
ESA astronaut Alexander Gerst and Russian Cosmonaut Maxim Suraev documented the breakup and disintegration of Cygnus over the Pacific Ocean east of New Zealand today following precise thruster firings commanded earlier by Orbital Sciences mission control in Dulles, VA, that slowed the craft and sent it on a preplanned destructive reentry trajectory.
Gerst was truly moved by the spectacle of what he saw as a portent for his voyage home inside a Soyuz capsule barely three months from now, with crew mates Maxim Suraev and NASA astronaut Reid Wiseman.
“In 84 days Reid, Max and I will ride home inside such an amazing fireball! In 84 Tagen werden Reid, Max & ich in solch einem Feuerball nach Hause fliegen!” – Gerst wrote from the station today in his social media accounts with the fireball photos.
Cygnus was loaded with no longer needed trash and fell harmlessly over an uninhabited area of the South Pacific Ocean.
Today’s spectacular reentry fireworks concluded the hugely successful flight of the Cygnus resupply ship named in honor of astronaut Janice Voss on the Orb-2 mission.
The astronaut photos may be helpful to engineers planning the mechanics of the eventual deorbiting of the ISS at some point in the hopefully distant future.
Cygnus finished it’s month-long resupply mission two days ago when it was unberthed from the International Space Station (ISS) on Friday, Aug. 15, and station astronaut Alex Gerst released the vessel from the snares of the Canadarm2 robotic arm at 6:40 a.m. EDT.
“From start to finish, we are very pleased with the results of this mission. Our team is proud to be providing essential supplies to the ISS crew so they can carry out their vital work in space,” said Mr. Frank Culbertson, Executive Vice President and General Manager of Orbital’s Advanced Programs Group, in a statement.
Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.
It arrived at the station after a three day chase and was captured with the 58-foot (17-meter) long Canadian robotic arm on July 16, 2014 by Station Commander Steve Swanson working at a robotics workstation in the cupola.
Cygnus arrival at the ISS took place on the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission by Neil Armstrong, Buzz Aldrin and Michael Collins.
The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.
This mission dubbed Orbital-2, or Orb-2, marks the second of at least eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.
The next resupply launch of the private Cygnus Orb-3 craft atop the Orbital Sciences’ Antares rocket is currently scheduled for October 2014 from NASA’s Wallops Flight Facility, VA.
Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.
“With three fully successful cargo delivery missions now complete, it is clear our public-private partnership with NASA is proving to be a positive asset to the productivity of the ISS. We are looking forward to the next Antares launch and the Cygnus cargo delivery mission that is coming up in about two months,” said Culbertson.
Stay tuned here for Ken’s continuing ISS, Rosetta, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.
The Cygnus commercial cargo ship ‘Janice Voss’ built by Orbital Sciences finished it’s month-long resupply mission and bid farewell to the International Space Station (ISS) this morning, Friday, Aug. 15, after station astronauts released the vessel from the snares of the Canadarm2 robotic arm at 6:40 a.m. EDT.
The on time release and departure took place as the massive orbiting lab complex was soaring 260 miles (400 km) above the west coast of Africa over the coastline of Namibia.
Expedition 40 Flight Engineer and ESA astronaut Alexander Gerst was in charge of commanding the vessels actual release from the snares on the end effector firmly grasping Cygnus at the terminus of the 58-foot (17-meter) long Canadian robotic arm.
Gerst was working at the robotics work station inside the seven windowed cupola, backed by fellow station crew member and NASA astronaut Reid Wiseman.
About two minutes later, Cygnus fired its thrusters to depart the million pound station and head toward a destructive fiery reentry into the Earth’s atmosphere over the Pacific Ocean on Sunday, Aug. 17.
Ground controllers at Mission Control, Houston had paved the way for Cygnus release earlier this morning when they unberthed the cargo ship from the Earth-facing port of the Harmony module at about 5:14 a.m. EDT.
This mission dubbed Orbital-2, or Orb-2, marks the second of at least eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.
The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.
Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.
The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.
The supplies are critical to keep the station flying and humming with research investigations.
The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.
The “Dove” flock of nanosatellites will be deployed from the Kibo laboratory module’s airlock beginning next week. “They will collect continuous Earth imagery documenting natural and man-made conditions of the environment to improve disaster relief and increase agricultural yields” says NASA.
Cygnus arrived at the station after a three day chase. It was captured in open space on July 16, 2014 at 6:36 a.m. EDT by Commander Steve Swanson working at a robotics workstation in the cupola.
The by the book arrival coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission by Neil Armstrong, Buzz Aldrin and Michael Collins.
Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.
Stay tuned here for Ken’s continuing ISS, Rosetta, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.
The winged Dream Chaser mini-shuttle under development by Sierra Nevada Corp. (SNC) has successfully completed a series of risk reduction milestone tests on key flight hardware systems thereby moving the private reusable spacecraft closer to its critical design review (CDR) and first flight under NASA’s Commercial Crew Program aimed at restoring America’s indigenous human spaceflight access to low Earth orbit and the space station.
SNC announced that it passed NASA’s Milestones 9 and 9a involving numerous Risk Reduction and Technology Readiness Level (TRL) advancement tests of critical Dream Chaser® systems under its Commercial Crew Integrated Capability (CCiCap) agreement with the agency.
Seven specific hardware systems underwent extensive testing and passed a major comprehensive review with NASA including; the Main Propulsion System, Reaction Control System, Crew Systems, Environmental Control and Life Support Systems (ECLSS), Structures, Thermal Control (TCS) and Thermal Protection Systems (TPS).
The tests are among the milestones SNC must complete to receive continued funding from the Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.
Over 3,500 tests were involved in completing the Risk Reduction and TRL advancement tests on the seven hardware systems whose purpose is to significantly retire overall program risk enable a continued maturation of the Dream Chaser’s design.
Dream Chaser is a reusable lifting-body design spaceship that will carry a mix of cargo and up to a seven crewmembers to the ISS. It will also be able to land on commercial runways anywhere in the world, according to SNC.
“By thoroughly assessing and mitigating each of the previously identified design risks, SNC is continuing to prove that Dream Chaser is a safe, robust, and reliable spacecraft,” said Mark N. Sirangelo, corporate vice president of SNC’s Space Systems, in a statement.
“These crucial validations are vital steps in our Critical Design Review and in showing that we have a very advanced and capable spacecraft. This will allow us to quickly and confidently move forward in restoring cutting-edge transportation to low-Earth orbit from the U.S.”
The Dream Chaser is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.
The SpaceXDragon and BoeingCST-100 ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around August/September 2014.
“Our partners are making great progress as they refine their systems for safe, reliable and cost-effective spaceflight,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.
“It is extremely impressive to hear and see the interchange between the company and NASA engineering teams as they delve into the very details of the systems that help assure the safety of passengers.”
After completing milestones 9 and 9a, SNC has now received 92% of its total CCiCAP Phase 1 NASA award of $227.5 million.
“We are on schedule to launch our first orbital flight in November of 2016, which will mark the beginning of the restoration of U.S. crew capability to low-Earth orbit,” says Sirangelo.
Dream Chaser measures about 29 feet long with a 23 foot wide wing span and is about one third the size of NASA’s space shuttle orbiters.
It will launch atop a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Launch Complex 41 in Florida.
Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.
The Dream Chaser design builds on the experience gained from NASA Langley’s earlier exploratory engineering work with the HL-20 manned lifting-body vehicle.
Read my prior story detailing the wind tunnel testing milestone – here.
Stay tuned here for Ken’s continuing Sierra Nevada, Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.