Antares Maiden Soar Pierces Virginia Sky and delivers NASA SmartPhone Pioneer Nanosats to Orbit

Antares maiden blastoff on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace

The privately developed Antares rocket built by Orbital Sciences Corp. successfully blasted off on its maiden test flight from the shores of Virginia on April 21 at 5 p.m. EDT from Mid-Atlantic Regional Spaceport (MARS) Pad-0A at NASA Wallops – thereby inaugurating the new commercial space race and delivered a pioneering trio of low cost NASA Smartphone nanosatellites dubbed PhoneSat to orbit.

The 13 story Antares rocket pierced the chilly but cloudless clear blue Virginia skies as “the biggest, loudest and brightest rocket ever to launch from NASA’s Wallops Flight Facility,” said former station astronaut and now Orbital Sciences manager Frank Culbertson.

Antares picture perfect liftoff marked the first step in a public/private collaboration between NASA and Orbital Sciences to restart cargo delivery services to the International Space Station (ISS) that were lost following the forced retirement of NASA’s space shuttle orbiters in 2011.

“Today’s successful test marks another significant milestone in NASA’s plan to rely on American companies to launch supplies and astronauts to the International Space Station, bringing this important work back to the United States where it belongs,” said NASA Administrator Charles Bolden.

Antares accelerates to orbit on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace
Antares accelerates to orbit on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace

The test flight was dubbed the A-One Test Launch Mission and also signified the first launch from Americas newest space port at Pad-0A.

The primary goal of this test flight – dubbed the A-One mission – was to test the fully integrated Antares rocket and boost a simulated version of the Cygnus cargo carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares also lofted the trio of off-the-shelf-smartphone “PhoneSats” to orbit. The three picture taking satellites are named Alexander, Graham and Bell and could be the lowest-cost satellites ever flown in space.

“The Phonesats cost about $3500 each,” said Andrew Petro, NASA Small Satellite Program executive, to Universe Today. “They are deployed after separation.”

Andrew Petro, NASA Small Satellite Program executive, holds NASA Smartphone Phonesat replica launched on Antares test flight on April 21, 2013. Credit: Ken Kremer (kenkremer.com)
Andrew Petro, NASA Small Satellite Program executive, holds NASA Smartphone Phonesat replica launched on Antares test flight on April 21, 2013. Credit: Ken Kremer (kenkremer.com)

The goal of NASA’s PhoneSat mission is to determine whether a consumer-grade smartphone can be used as the main flight avionics of a capable satellite but at a fraction of the cost.

NASA reports that all three lithium battery powered nanosats are functioning and transmitting data to multiple ground stations.

Two of the cubesats are PhoneSat version 1.0 while the other is the more advanced PhoneSat version 2.0. They were developed by engineers at NASA’s Ames Research Center in Calif.

Each square shaped smartphone measures about 4 inches (10 cm) per side, weighs about 4 pounds and is the size of a coffee mug. The smartphone serves as the cubesats onboard computer – see my photos.

NASA Smartphone Phonesat replica. Credit: Ken Kremer (kenkremer.com)
NASA Smartphone Phonesat replica. Credit: Ken Kremer (kenkremer.com)

The cameras will be used for Earth photography. Imaging data will be transmitted in chunks and then stitched together later.

The third time was the charm for Antares following a pair of launch scrubs due to a technical glitch in the final minutes of the initial countdown attempt on Wednesday, April 17 and unacceptable winds on Saturday, April 20.

The rocket flew on a southeasterly trajectory and was visible for about 4 minutes.

This test flight was inserted into the manifest to reduce risk and build confidence for the follow on missions which will fly the fully outfitted Cygnus resupply spacecraft that will dock at the ISS, starting as early as this summer.

The two stage Antares is a medium class rocket similar to the Delta II and SpaceX Falcon 9.

The dummy Cygnus payload was outfitted with instrumentation to collect aerodynamic data until separation from the 2nd stage. That marked the successful conclusion of the A-One mission and the end of all data transmissions.

It will fly in earth orbit for about two weeks or so until atmospheric friction causes the orbit to decay and a fiery reentry.

Frank Culbertson post launch media interview.  Credit: Brent Houston
Frank Culbertson post launch media interview. Credit: Brent Houston

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 750,000 lbs – original built in the Soviet Union as NK-33 model engines.

The upper stage features an ATK Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO. The 2nd stage will be upgraded starting with the 4th flight.

Antares rocket erect at the Eastern shore of Virginia slated for maiden liftoff on April 17.  Only a few hundred feet of beach sand and a miniscule sea wall separate the Wallops Island pad from the Atlantic Ocean waves and Mother Nature.  Credit: Ken Kremer (kenkremer.com)
Antares rocket erect at the Eastern shore of Virginia slated for maiden liftoff on April 17. Only a few hundred feet of beach sand and a miniscule sea wall separate the Wallops Island pad from the Atlantic Ocean waves and Mother Nature. Credit: Ken Kremer (kenkremer.com)

The Antares/Cygnus system was developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle fleet.

Orbital’s Antares/Cygnus system is similar in scope to the SpaceX Falcon 9/Dragon system. Both firms won lucrative NASA contracts to deliver approximately 20,000 kilograms each of supplies and science equipment to the ISS.

The goal of NASA’s COTS initiative is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).
Orbital will launch at least eight Antares/Cygnus resupply missions to the ISS at a cost of $1.9 Billion

Up Close with Antares beautifully decaled nose NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)
Up Close with Antares beautifully decaled nose NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)

Ken Kremer
…………….

Learn more about Antares, Orion, SpaceX, Curiosity and NASA robotic and human spaceflight missions at Ken’s upcoming lecture presentations:

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

Antares accelerates to orbit on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace
Antares accelerates to orbit on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace
Antares at MARS Launch Pad 0A at NASA Wallops Flight Facility, Virginia . Credit: Ken Kremer (kenkremer.com)
Antares at MARS Launch Pad 0A at NASA Wallops Flight Facility, Virginia . Credit: Ken Kremer (kenkremer.com)

Incredible Astrophoto: Space Station Flies Over Stonehenge

International Space Station pass over Stonehenge, Wiltshire UK. Credit and copyright: Tim Burgess. Used by permission.

In a gorgeous mix of archeology and space exploration, photographer Tim Burgess captured a stunning view of the International Space Station passing over the historic and iconic Stonehenge on April 20, 2013. Tim said this composite image is composed of 11 shots, 10 sec, f2.8, 400 ISO. As one person commented on Flickr, “An amazing feat of human engineering passing over an amazing feat of human engineering, captured by an amazing feat of human engineering.”

Thanks to Tim for allowing us to post this image on UT; keep track of Tim’s photography on Flickr and Twitter.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

How Micrometeoroid Impacts Pose a Danger for Today’s Spacewalk

Astronauts perform an EVA outside of the ISS during STS-110. (Credt: NASA).



Video streaming by Ustream

Our very own International Space Station is in the cosmic crosshairs.

As cosmonauts are to begin Extra Vehicular Activity (EVA) this morning to perform routine maintenance, an article reminding us of the hazards of such activity came to us via NASA’s Orbital Debris Quarterly Newsletter.

The problem is Micrometeoroid and Orbital Debris (MMOD) impacts. These are nothing new. Pits and tiny cratering has been observed during post-flight inspections of space shuttle orbiters. But this is the first time we’d seen talk of damage caused by tiny impacts on the exterior of the International Space Station.

The handrails are a particularly sensitive area of concern.

The study examined damage incurred on handrails exposed to the environment of space for years on end. These present a hazard to spacewalking astronauts who rely on the handles to move about. These craters often become spalled, presenting a sharp metal rim raised from the surface of the handle.

Close-up of a micro-meteoroid impact on a handrail. (Credit: NASA/JSC Image & Science Analysis Group).
Close-up of a micro-meteoroid impact on a handrail. (Credit: NASA/JSC Image & Science Analysis Group).

Of course, these razor sharp rims present a problem, especially to space suit gloves. One 34.8 centimeter long handrail returned on the final Space Shuttle mission STS-135 had six impact craters along its length. The handrail had been in service and exposed to the vacuum of space for 8.7 years.

Craters as large as 1.85 millimetres (mm) in diameter with raised lips of 0.33mm have been observed on post-inspection. In studies conducted by NASA engineers, craters with lip heights as little as 0.25mm have been sufficient to snag and tear spacesuit gloves.

There have also been reported incidents of glove tears during EVAs conducted from the ISS over the years. For example, the report cites a tear noticed by astronaut Rick Mastracchio during STS-118 that cut the EVA short.

Analysis of an impact seen on STS-122. (Credit: NASA
Analysis of an impact seen on STS-122. (Credit: NASA/JSC Image & Science Analysis Group).

To protect astronauts and cosmonauts during EVAs, the following measures have been instituted:

–          Toughening space suit gloves by adding reinforcement to areas exposed to potential MMOD damage.

–          Monitoring and analyzing MMOD impacts along handrails and maintaining a database of problem areas.

–          Equipping spacewalkers with the ability to cover and/or repair hazardous MMOD areas during spacewalks.

The studies were carried out by the Johnson Space Center Hypervelocity Impact Technology Group in conjunction with a test facility at White Sands, New Mexico. Astronaut Rick Mastracchio can also be seen talking about the hazards of spacewalking on this video.

Today’s 6 hour EVA by cosmonauts Vinogradov & Romanenko begins at 14:06 UT 10:06AM EDT.

This will be the 32nd Russian EVA from the International Space Station and will use the Pirs hatch on Zvezda.

Tasks include retrieving and installing experiment packages and replacing a defective retro-reflector device on the station’s exterior.  The device is a navigational aid necessary for the Albert Einstein ATV-4 mission headed to the ISS on June 5th.

Progress 51P is also scheduled to launch towards the ISS next week on April 24 for docking on April 26th.

Debris in Low Earth Orbit is becoming an increasing concern. The Chinese anti-satellite test in 2007 and the collision of Kosmos 2251 and Iridium 33 in 2009 have increased hazards to the ISS. Many fear that a tipping point, known as an ablation cascade, could eventually occur with one collision showering LEO with debris that in turn trigger many more. The ISS was only finished in 2011, and it would be a tragic loss to see it abandoned due to a catastrophic collision only years after completion.

More than once, ISS crew members have sat out a debris conjunction that was too close to call in their Soyuz life boats, ready to evacuate the station if necessary. DAMs (Debris Avoidance Maneuvers) are now common for the ISS throughout the year.

Several ideas have been proposed to deal with space debris. In the past year, NanoSail-2D demonstrated the ability to deploy a solar sail from a satellite for reentry at the end of a spacecraft’s life span. Such technology may be standard equipment on future satellites.

Expect reentries to increase as we near the solar maximum for cycle #24 in late 2013 & early 2014. This occurs because the exosphere of Earth “puffs out” due to increased solar activity and increases drag on satellites in low Earth orbit.

All food for thought as we watch today’s EVA… space travel is never routine!

The April 2013 edition of the Orbital Debris Quarterly News is available for free online.

 

Astrophoto: Space Station Flies Through the Moon!

The orbital path of the International Space Station appears to take it through the Moon, as seen from the UK on April 16, 2013. Credit and copyright: Dave Walker.

What a great image! Astrophotographer Dave Walker combined seven 30-second shots of the ISS as it cuts through the sky, and it appears to slice right through the Moon! Dave used a a Canon 600D, Samyang 8mm fish-eye lens, and Vixen Polarie.

Now through the end of April provides some great sighting opportunities in the northern hemisphere for seeing the International Space Station as it flies overhead — and over your backyard! Some evenings there are even two passes. See below for another great panorama of an ISS pass, as well as information on how to find out when you can see it. It’s always an amazing sight!

A view of the International Space Station over St. Pölten, Austria on April 15, 2013. A panorama of 13 single shots, each with 25 sec. exposure-time. Credit and copyright: Ma Brau via Flickr.
A view of the International Space Station over St. Pölten, Austria on April 15, 2013. A panorama of 13 single shots, each with 25 sec. exposure-time. Credit and copyright: Ma Brau via Flickr.

NASA has a Skywatch page where you can find your specific city to look for satellite sighting info.

Spaceweather.com, has a Satellite Tracker Tool. Just put in your zip code (good for the US and Canada) to find out what satellites will be flying over your house.

Heaven’s Above also has a city search, but also you can input your exact latitude and longitude for exact sighting information, helpful if you live out in the country.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

How to Spot the Antares Launch from NASA Wallops on Wednesday

Sighting prospects for the US Eastern Seaboard during the ascent of Antares. (Credit: The Orbital Sciences Corporation).

A space launch marking a new era is departing from the Virginia coast this Wednesday evening, and if you live anywhere along a wide area of the US Eastern seaboard, you’ll have a great opportunity to witness the launch with your own eyes. Here’s all the information you’ll need to see it, plus some tips for capturing it with your camera.

Orbital Sciences’ Antares rocket will launch from Pad 0A at NASA’s Mid-Atlantic Regional Spaceport based on Wallops Island, Virginia. This will mark not only the first launch of Antares, but the first orbital launch of a liquid-fueled rocket from Wallops. The launch window runs from 5:00 to 8:00 PM EDT (21:00-24:00 UT).

There were some concerns when a technical anomaly shutdown a “Wet Dress Rehearsal” test this weekend at T-16 minutes, but Orbital Sciences has stated that the problems have been resolved and the launch is pressing ahead as planned.

Space shots are a familiar sight to the residents of the Florida Space Coast, but will provide a unique show for residents of the U.S. central Atlantic region. The launch of Antares from Wallops will be visible for hundreds of miles and be over 10° above the horizon for an arc spanning from Wilmington, North Carolina to Washington D.C. and north to the New York City tri-state area as it heads off to the southeast. Antares is a two stage rocket with a 1st stage liquid fueled engine and a solid-fueled 2nd stage. The primary mission for Wednesday’s Antares A-One flight will be to demonstrate the ability for the Antares rocket to place a payload into orbit. If all goes well, Orbital Sciences will join SpaceX this summer in the select club of private companies with the ability provide cargo delivery access to the International Space Station in Low Earth Orbit.

Antares heads to orbit. Artist's concept. (Credit: Orbital Sciences Corperation).
Antares heads to orbit. Artist’s concept. (Credit: Orbital Sciences Corporation).

Antares will deploy a dummy mass simulating the Cygnus module. Also onboard are the Phonesat-1a, -1b, and -1c micro-cubesats and the Dove 1 satellite.

Be sure to watch for the launch of Antares if you live in the region. Find a spot with a low uncluttered eastern horizon and watch from an elevated rooftop or hilltop location if possible. I live a hundred miles west of Cape Canaveral and I’ve followed launches all the way through Main Engine Cutoff and first stage separation with binoculars.

Be sure to also follow the launch broadcast live for any last minute delays via NASA TV or Universe Today will have a live feed as well. Antares is aiming to put the Cygnus test mass in a 250 x 300 kilometre orbit with a 51.6° inclination. This is similar to what will be necessary to head to the ISS, but this week’s launch will not be trailing the ISS in its path. This also means that the launch window can be extended over three hours rather than having to be instantaneous.

If the launch goes at the beginning of the window, the local sun angle over the launch facility will be 30° to the west. Sunset at Wallops on the evening of April 17th occurs at 7:41PM EDT, meaning we could be in for a photogenic dusk launch of Antares if it stretches to the end of the target window.

And speaking of which, a pre-sunset launch means short daytime exposure settings for photography. Be prepared to switch over for dusk conditions if the launch extends into the end of the window. Conditions during twilight can change almost moment-to-moment. One of the most memorable launches we witnessed was the pre-dawn liftoff of STS-131 on April 5th, 2010:

The predawn launch of STS-131 as seen from 100 miles west. (Photo by author).
The predawn launch of STS-131 as seen from 100 miles west. (Photo by author).

Once in orbit, the launch of Antares should generate four visible objects; the test mass payload, the two clam-shell fairings, and the stage two booster. This configuration is similar to a Falcon 9/Dragon launch, minus the solar panel covers. These objects should be visible to the naked eye at magnitudes +3 to +5. The cubesat payloads are tiny and below the threshold of naked eye visibility.

Preliminary visibility for the objects will favor latitudes 0-30° north at dusk to 10-40° at dawn. Keep in mind these predictions could change as the launch window evolves. The next NORAD tracking ID in the queue is 2013-015A. Yesterday’s launch of Anik G1 from Baikonur was just cataloged today as 2013-014A plus associated hardware. The weather is forecast to be 45% “go” for tomorrow’s launch. In the event of a scrub, the next launch window for Antares is April 18-21st.

First orbit of the Cygnus test mass; shadow orientation of the Earth assumes a nominal launch at 22:00UT on April 17th. (Created by the author using Orbitron. TLEs courtesy of (name)
First orbit of the Cygnus test mass; shadow orientation of the Earth assumes a nominal launch at 22:00 UT on April 17th. (Created by the author using Orbitron. Two-Line Elements courtesy of Henry Hallam).

It’ll be exciting to follow this first flight of Antares and its first scheduled mission to the International Space Station this summer. Also watch for the first ever lunar mission to depart Wallops on August 12 with the launch of the Lunar Atmosphere and Dust Environment Explorer (LADEE).

Finally, if you’ve got a pass of the International Space Station this week, keep an eye out for Progress M-17M currently about 10 minutes ahead of the station in its orbit. The unmanned Progress vehicle just undocked yesterday from the station and will be conducting a series of experiments monitoring the interactions of its thrusters with the ionosphere before burning up on reentry over the South Pacific on April 21st.

A pass of the ISS over UK tonite (April 16th) with Progress leading at 20:30UT. (Created by the author in Orbitron).
A pass of the ISS over UK tonite (April 16th) with Progress leading at 20:30UT. (Created by the author in Orbitron).

The ISS and more can be tracked using Heavens-Above. Also, we’ll be tweeting all of the updates and orbital action as it evolves as @Astroguyz. Let us know of those launch sightings both near and far. It’ll be interesting to see what, if any, impact launches visible to a large portion of the U.S. population will have on the public’s perception of spaceflight. Be sure to look up tomorrow night!

ATV-4 Albert Einstein Says ‘Fill ‘er Up!’

Europe's ATV 4 Albert Einstein prepares for its cargo-carrying mission to the International Space Station. Credit: ESA

The next European cargo mission to the International Space Station is preparing for launch, and in this new image, a fuelling operator at Europe’s Spaceport in French Guiana inspects the ATV-4 Albert Einstein as it is filled with propellant. Launch is currently scheduled for June 5, 2013 on an Ariane 5ES rocket to bring about 7 tons of cargo the ISS, including fuel to give the space station an orbital re-boost.


These Automated Transfer Vehicles (ATVs) bring other supplies such as equipment, experiments, water, air, nitrogen, oxygen and fuel.

As the ISS circles Earth, it slowly loses altitude, and occasionally needs a boost to keep it in the proper orbit. ATVs, Progress resupply ships and the thrusters on the Zvezda service module are used to re-boost the station; Soyuz spacecraft are also used “in a pinch” said Johnson Space Center News Chief Kelly Humphries, but they mainly want to save the Soyuz fuel for the departing crew heading back to Earth.

Watch this video as astronaut Jeff Williams demonstrates the acceleration experienced inside the cabin during a reboost on January 24, 2010 (the acceleration starts about 3:50 in the video):

Spooky Experiment on ISS Could Pioneer New Quantum Communications Network

The cameras mounted in the ISS's cupola could serve as the platform for the first-ever quantum optics experiment in space.

With its 180 degree views of Earth and space, the ISS’s cupola is the perfect place for photography. But Austrian researchers want to use the unique and panoramic platform to test the limits of “spooky action at distance” in hopes of creating a new quantum communications network.

In a new study published April 9, 2012 in the New Journal of Physics, a group of Austrian researchers propose equipping the camera that is already aboard the ISS — the Nikon 400 mm NightPOD camera — with an optical receiver that would be key to performing the first-ever quantum optics experiment in space. The NightPOD camera faces the ground in the cupola and can track ground targets for up to 70 seconds allowing researchers to bounce a secret encryption key across longer distances than currently possible with optical fiber networks on Earth.

“During a few months a year, the ISS passes five to six times in a row in the correct orientation for us to do our experiments. We envision setting up the experiment for a whole week and therefore having more than enough links to the ISS available,” said co-author of the study Professor Rupert Ursin from the Austrian Academy of Sciences.

Albert Einstein first coined the phrase ‘spooky action at a distance’ during his philosophical battles with Neils Bohr in the 1930s to explain his frustration with the inadequacies of the new theory called quantum mechanics. Quantum mechanics explains actions on the tiniest scales in the domain of atoms and elemental particles. While classical physics explains motion, matter and energy on the level that we can see, 19th century scientists observed phenomena in both the macro and micro world that could not easily explained using classical physics.

In particular, Einstein was dissatisfied with the idea of entanglement. Entanglement occurs when two particles are so deeply connected that they share the same existence; meaning that they share the same mathematical relationships of position, spin, momentum and polarization. This could happen when two particles are created at the same point and instant in spacetime. Over time, as the two particles become widely separated in space, even by light-years, quantum mechanics suggests that a measurement of one would immediately impact the other. Einstein was quick to point out that this violated the universal speed limit set out by special relativity. It was this paradox Einstein referred to as spooky action.

CERN physicist John Bell partially resolved this mystery in 1964 by coming up with the idea of non-local phenomena. While entanglement allows one particle to be instantaneously influenced by its exact counterpart, the flow of classical information does not travel faster than light.

The orbital pass of the ISS over an optical ground station could be used for quantum communication from inside the Cupola Module, as long as the OGS is not more than 36° off the NADIR direction. Credit: T Scheidl, E Wille and R Ursin.
The orbital pass of the ISS over an optical ground station could be used for quantum communication from inside the Cupola Module, as long as the OGS is not more than 36° off the NADIR direction. Credit: T Scheidl, E Wille and R Ursin.
The ISS experiment proposes using a “Bell experiment” to test the theoretical contradiction between predictions in quantum and classical physics. For the Bell experiment, a pair of entangled photons would be generated on the ground; one would be sent from the ground station to the modified camera aboard the ISS, while the other would be measured locally on the ground for later comparison. So far, researchers sent a secret key to receivers just a few hundred kilometers apart.

“According to quantum physics, entanglement is independent of distance. Our proposed Bell-type experiment will show that particles are entangled, over large distances — around 500 km — for the very first time in an experiment,” says Ursin. “Our experiments will also enable us to test potential effects gravity may have on quantum entanglement.”

The researchers point out that making the minor alteration to a camera already aboard the ISS will save time and money needed to build a series of satellites to test researchers’ ideas.

Celebrate Earth Month with 2 New Videos from NASA

Nighttime photo of the Nile delta region taken from the ISS (NASA)

Enjoy some great views of our home planet from images taken from the orbiting Earth-observing satellites and taken by astronauts on the International Space Station. The satellites and scientists are cranking out data 24/7 to help us all better understand and sustain our home planet.

Above is a video created for Earth Month, and specifically Earth Day (April 22) from ISS imagery, and below is another video from satellite imagery. These are unique looks at the beauty and wonder of our home planet.


Antares Rocket Erected at Virginia Pad for Inaugural April 17 Launch – Photo Gallery

1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility during exclusive launch complex tour by Universe Today. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com) See Antares rollout and erection photo gallery below

1st fully integrated Antares rocket – decaled with huge American flag – stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 6 April 2013 following night time rollout. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com).
See Antares rollout and erection photo gallery below[/caption]

For the first time ever, the new and fully integrated commercial Antares rocket built by Orbital Sciences was rolled out to its oceanside launch pad on a rather chilly Saturday morning (April 6) and erected at the very edge of the Eastern Virginia shoreline in anticipation of its maiden launch slated for April 17.

The inaugural liftoff of the privately developed two stage rocket is set for 5 p.m. from the newly constructed launch pad 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility in Virginia.

And Universe Today was there! See my photo gallery herein.

Antares is the most powerful rocket ever to ascend near major American East Coast population centers, unlike anything before. The launch is open to the public and is generating buzz.

And this is one very cool looking rocket.

Antares rocket begins 1st ever rollout from processing hanger to NASA Wallops launch pad - beneath the Moon on 6 April 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins 1st ever rollout from processing hanger to NASA Wallops launch pad – beneath the Moon on 6 April 2013. Credit: Ken Kremer (kenkremer.com)

The maiden April 17 launch is actually a test flight dubbed the A-One Test Launch Mission.

The goal of the A-One mission is to validate that Antares is ready to launch Orbital‘s Cygnus capsule on a crucial docking demonstration and resupply mission to the International Space Station (ISS) as soon as this summer.

The 1 mile horizontal rollout trek of the gleaming white rocket from the NASA integration hanger to the pad on a specially designed trailer began in the dead of a frosty, windy night at 4:30 a.m. – and beneath a picturesque moon.

“We are all very happy and proud to get Antares to the pad today for the test flight,” Orbital ground operations manager Mike Brainard told Universe Today in an interview at Launch Complex 0-A.

The rocket was beautifully decaled with a huge American flag as well as the Antares, Cygnus and Orbital logos.

Raising Antares at NASA Wallops. Credit: Ken Kremer (kenkremer.com)
Raising Antares at NASA Wallops. Credit: Ken Kremer (kenkremer.com)

Antares was transported aboard the Transporter/Erector/Launcher (TEL), a multifunctional, specialized vehicle that also slowly raised the rocket to a vertical position on the launch pad a few hours later, starting at about 1 p.m. under clear blue skies.

This first ever Antares erection took about 30 minutes. The lift was postponed for several hours after arriving at the pad as Orbital personal monitored the continually gusting winds approaching the 29 knot limit and checked all pad and rocket systems to insure safety.

The TEL vehicle also serves as a support interface between the 133-foot Antares and the range of launch complex systems.

Antares transported atop aboard the Transporter/Erector/Launcher (TEL) beneath the Moon on 6 April 2013.  Credit: Ken Kremer (kenkremer.com
Antares transported atop aboard the Transporter/Erector/Launcher (TEL) beneath the Moon on 6 April 2013. Credit: Ken Kremer (kenkremer.com

Now that Antares stands vertical, “We are on a clear path to a launch date of April 17, provided there are no significant weather disruptions or major vehicle check-out delays between now and then,” said Mr. Michael Pinkston, Orbitals Antares Program Manager.

Antares is a medium class rocket similar to the Delta II and SpaceX Falcon 9.

For this test flight Antares will boost a simulated version of the Cygnus carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares rolls up the ramp to Launch Complex 0-A at NASA’s Wallops Flight Facility on 6 April 2013. Credit: Ken Kremer (kenkremer.com)
Antares rolls up the ramp to Launch Complex 0-A at NASA’s Wallops Flight Facility on 6 April 2013. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 680,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

The Antares/Cygnus system was developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle fleet.

Up Close with Antares beautifully decaled nose NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)
Up Close with Antares beautifully decaled nose at NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)

Orbital’s Antares/Cygnus system is similar in scope to the SpaceX Falcon 9/Dragon system. Both firms won lucrative NASA contracts to deliver approximately 20,000 kilograms of supplies and equipment to the ISS.

The goal of NASA’s COTS initiative is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).

Orbital will launch at least eight Antares/Cygnus resupply missions to the ISS at a cost of $1.9 Billion

The maiden Antares launch has been postponed by about 2 years due to delays in laiunch pad construction and validating the rocket and engines for flight- similar in length to the start up delays experienced by SpaceX for Falcon 9 and Dragon.

Read my prior Antares story detailing my tour of the launch complex following the successful 29 sec hot-fire engine test that cleared the path for the April 17 liftoff – here & here.

Watch for my continuing reports through liftoff of the Antares A-One Test flight.

Ken Kremer

…………….

Learn more about Antares, SpaceX, Curiosity and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

Only a few hundred feet of beach sand and a  low sea wall separate the pad from the Atlantic Ocean and Mother Nature and potential catastrophe. Credit: Ken Kremer (kenkremer.com
Only a few hundred feet of beach sand and a low sea wall separate the Wallops Island pad from the Atlantic Ocean and Mother Nature and potential catastrophe. Credit: Ken Kremer (kenkremer.com)
Thumbs Up for Antares ! - from NASA Wallops Media team and Space journalists.  Ken at right. Credit: Ken Kremer (kenkremer.com)
Thumbs Up for Antares ! – from NASA Wallops Media team and Space journalists. Ken at right. Credit: Ken Kremer (kenkremer.com)

How the Air Force and SpaceX Saved Dragon from Doom

This grappling of the SpaceX Dragon capsule on March 3, 2013 by the space station robotic arm nearly didn’t happen when a thruster failure just minutes after the March 1 liftoff nearly doomed the mission. Credit: NASA

The picture perfect docking of the SpaceX Dragon capsule to the International Space Station (ISS) on March 3 and the triumphant ocean splashdown last week on March 26 nearly weren’t to be – and it all goes back to a microscopic manufacturing mistake in the oxidizer tank check valves that no one noticed long before the vessel ever took flight.

Barely 11 minutes after I witnessed the spectacular March 1 blastoff of the Dragon atop the SpaceX Falcon 9 rocket from Cape Canaveral, Florida, everyone’s glee suddenly turned to disbelief and gloom with the alarming news from SpaceX Mission Control that contact had been lost.

I asked SpaceX CEO and founder Elon Musk to explain what caused the failure and how they saved the drifting, uncontrolled Dragon capsule from doom – just in the nick of time.

Applying the space version of the Heimlich maneuver turned out to be the key. But if you can’t talk to the patient – all is lost.

dragonRight after spacecraft separation in low Earth orbit , a sudden and unexpected failure of the Dragon’s critical thrust pods had prevented three out of four from initializing and firing. The oxidizer pressure was low in three tanks. And the propulsion system is required to orient the craft for two way communication and to propel the Dragon to the orbiting lab complex.

So at first the outlook for the $133 million Dragon CRS-2 cargo resupply mission to the ISS appeared dire.

Then, SpaceX engineers and the U.S Air Force sprang into action and staged an amazing turnaround.

“The problem was a very tiny change to the check valves that serve the oxidizer tanks on Dragon.” Musk told Universe Today

“Three of the check valves were actually different from the prior check valves that had flown – in a very tiny way. Because of the tiny change they got stuck.”

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

SpaceX engineers worked frantically to troubleshoot the thruster issues in an urgent bid to overcome the serious glitch and bring the crucial propulsion systems back on line.

“What we did was we were able to write some new software in real time and upload that to Dragon to build pressure upstream of the check valves and then released that pressure- to give it a kind of a kick,” Musk told me at a NASA media briefing.

“For the spacecraft you could call it kind of a Heimlich maneuver. Basically that got the valves unstuck and then they worked well”

“But we had difficulty communicating with the spacecraft because it was in free drift in orbit.”

“So we worked closely with the Air Force to get higher intensity, more powerful dishes to communicate with the spacecraft and upload the software to do the Heimlich pressure maneuver.”

Schematic of SpaceX Dragon. Credit: SpaceX
Schematic of SpaceX Dragon. Credit: SpaceX

Just how concerned was Musk?

“Yes, definitely it was a worrying time,” Musk elaborated.

“It was a little frightening,” Musk had said right after the March 1 launch.

Later in the briefing Musk explained that there had been a small design change to the check valves by the supplier.

“The supplier had made mistakes that we didn’t catch,” said Musk. “You would need a magnifying glass to see the difference.”

SpaceX had run the new check valves through a series of low pressurization systems tests and they worked well and didn’t get stuck. But SpaceX had failed to run the functional tests at higher pressures.

“We’ll make sure we don’t repeat that error in the future,” Musk stated.

Musk added that SpaceX will revert to the old check valves and run tests to make sure this failure doesn’t happen again.

SpaceX, along with Orbital Sciences Corp, are both partnered with NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.

Orbital’s Antares rocket could blast off on its first test mission as early as April 17.

Of course the Dragon CRS-2 flight isn’t the first inflight space emergency, and surely won’t be the last either.

So, for some additional perspective on the history of reacting to unexpected emergencies in space on both human spaceflight and robotic science probes, Universe Today contacted noted space historian Roger Launius, of the Smithsonian National Air & Space Museum (NASM).

Roger provided these insights to Universe Today editor Nancy Atkinson – included here:

“There are many instances in the history of spaceflight in which the mission had difficulties that were overcome and it proved successful,” said Launius.

“Let’s start with Hubble Space Telescope which had a spherical aberration on its mirror and the first reports in 1990 were that it would be a total loss, but the engineers found workarounds that allowed it to be successful even before the December 1993 servicing mission by a shuttle crew that really turned it into a superb scientific instrument.”

“Then what about Galileo, the Jupiter probe, which had a problem with its high gain antenna. It never did fully deploy but the engineers found ways to overcome that problem with the communication system and the spacecraft turned into a stunning success.”

“If you want to feature human spaceflight let’s start with the 1999 shuttle flight with Eileen Collins as commander that had a shutdown of the SSMEs prematurely and it failed to reach its optimum orbit. It still completed virtually all of the mission requirements.”

“That says nothing about Apollo 13,… I could go on and on. In virtually every mission there has been something potentially damaging to the mission that has happened. Mostly the folks working the mission have planned for contingencies and implement them and the public rarely hears about it as it looks from the outside like a flawless operation.”

“Bottom line, the recovery of the Dragon capsule was not all that amazing. It was engineers in the space business doing what they do best,” said Launius.

Ken Kremer

…………….

Learn more about SpaceX, Antares, Curiosity and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

SpaceX Falcon 9 rocket and Dragon capsule poised to blast off from Cape Canaveral Air Force Station, Florida on a commercial resupply mission to the ISS. Credit: Ken Kremer/www.kenkremer.com