How To Train for a Mission to the ISS: Eating in Space

Canadian astronaut Chris Hadfield (right)and NASA astronaut Tom Marshburn participate in a food tasting session in the Habitability and Environmental Factors Office at NASA’s Johnson Space Center. Photo credit: NASA

Food is important for everyone, for reasons beyond dietary and health issues, as sometimes just the right meal can make (or break) your day. That’s just one of the reasons why the space agencies involved with the International Space Station put a lot of work into creating a variety of foods for the astronauts and cosmonauts that are on long duration missions in space. And variety is key.

“On Earth, we take for granted that if nothing in your fridge appeals to you, you just go out,” Canadian astronaut Chris Hadfield told Universe Today. “But on a long-duration mission in space, you can’t just order a pizza or go out for a burger or Baskin Robbins.”

“Space Vegetables, before and after. Tastes better than it looks,” Hadfield Tweeted.

The primary food on the ISS is supplied by NASA and the Russian Space Agency. Each of the other space agencies provide supplemental food, or special items, too.

“Space food is fine, pretty tasty, and of good variety,” Hadfield said. “It’s limited to food that has a long shelf life, with no refrigeration and no microwave, so it’s a lot like camping food or Army rations. The majority of it is dehydrated, so we add cold or hot water to it, like Ramen noodles or instant soup or powdered drinks. But we have a mixture of Russian and American foods, plus specialty items from Canada, Europe and Japan, so we eat really well.”

“Astronaut Diet – on 4-day prescribed meals of low sodium to test how my body reacts. This is lunch,” said Hadfield.

Crews eat three meals a day, with two snacks.

Hadfield explained the way it normally works is that NASA and Roscosmos each have a menu of hundreds of potential food items.

“So, some days when it is lunch time, our dieticians and food preparation kitchen have us over for a food tasting, and we try a mouthful of about thirty different things for lunch one day,” Hadfield said. “We rank them from 1 to 9, with 9 being ‘I could eat this for every meal for the rest of my life,’ and 0 being ‘this makes me gag.’ We do that in Houston for all the NASA food and in Russia for all the Russian food, and limited tastings for all the food that comes from the other partners.”

Space-grilled chicken. Via Chris Hadfield.

From there, the astronauts put together a list of the food they would like to have in orbit, in addition to the ‘generic’ or staple foods that are always on board. “The food that all the astronauts on average have rated the highest, they try to keep in stock on the ISS,” Hadfield said. “We also have bonus containers that are personal, where you have food that you ranked as ‘9,’ or you can bring in supplemental food from your country – in my case, Canada– so I can enjoy it and also share it with the other crew on special occasions or holidays that you’ll be on orbit for.”

Hadfield launches this week, on Dec. 19, and so will be on orbit for the Christmas and New Year’s holidays.

During Hadfield’s Expedition 34/35, the Canadian specialty food includes candied wild smoked salmon, smoked salmon pate, cranberry buffalo stix, cereal, dried apple chunks, fruit bars, green tea cookies with orange zest, maple syrup cookies, organic chocolate, honey drops, chocolate bars and maple syrup.

SeaChange Candied Wild Smoked Salmon that will heading to the ISS.

Some of this food was chosen as part of a contest held by the Canadian Space Agency, Canadian Snacks for Space.

The first shipment of the Canadian treats were delivered to the ISS on board the SpaceX Dragon capsule that brought supplies to the space station in October. The second shipment should be sent on an automated resupply spacecraft in February 2012.

Hadfield said the addition of Japanese and Italian modules on the ISS has also resulted in tasty international food being part of the regular ISS rations.

“Italian space food – scallopine, lasagne and freeze-dried pea and carrot blocks. Their tiramisu is delicious!” said Hadfield via Twitter.

Hadfield said the dieticians are interested in the balance of salt content, protein and carbohydrates as they want to keep the astronauts healthy, and to have them maintain their weight. But they also need to have food that is appealing. A well-known problem is that astronaut’s taste buds seems to go flat while in space, so spicy food is appreciated even though it might not be a favorite on the ground.

“The food is important, but sometimes things can happen,” said Hadfield, “like one of the resupply ships get delayed and your favorite food isn’t there, and you have to eat the leftovers of the previous crews, or eat a future crew’s food. So it never goes perfectly. So, part of being an astronaut is not being too picky!

Hadfield said they are provided a wide variety of lots of different food, and you can see Hadfield’s potential menu here.
But, like on Earth, mealtime is vital for other reasons, too.

“The food is important, but we also use dinner as a good time to get together and talk, relax, and be human,” Hadfield said.

“Crew at Breakfast – with our new Expedition shirts shining. Roman (left) is going to be a hoot to fly with,” Hadfield Tweeted.

As for what Hadfield’s last Earthly meal will be before he launches on Wednesday morning, it won’t be anything big or fancy.

“Imagine what it is going to be like to be in a small, cramped spaceship for two days,” he said. “My last meal will be beef broth.”

Note what Hadfield has in front of him in the image above, which he shared this morning via Twitter and Facebook.

Previous articles in this series:
How to Train for Long Duration Space Flight with Chris Hadfield
How to Train for a Mission to the ISS: Medical Mayhem

NASA’s Version of Mr. Fusion

Researcher Stephen Anthony works with the new reactor prototype that could turn trash into gas. Image credit: NASA/Dmitri Gerondidakis

It probably won’t be able to fuel Doc Brown’s flux capacitor on his DeLorean time machine, but NASA researchers are hoping a new device that will be tested on the International Space Station can turn trash into power. The Trash to Gas Reactor is a miniature version of large waste incineration facilities on Earth that generate electricity or fuel. This could help with the accumulating trash on the ISS and be used on future missions beyond Earth orbit, as well as help the trash problem in areas of the world where there are neither large power plants nor garbage processing facilities.

“Not only will the effort on this help space missions but also on Earth because we have enough problems dealing with our own trash,” said Anne Caraccio, a chemical engineer working on the project.

The prototype of the Trash to Gas Reactor is a meter-long (3 foot-long) device that looks strikingly similar to the “Mr. Fusion” reactor in the second “Back to the Future” movie. Just like Doc Brown and Marty, astronauts can throw in things like food wrappers, used clothing, food scraps, tape, packaging and other garbage accumulated by the crew and the reactor will turn it into potential power, such as methane gas, or even oxygen or water.

The team developing the reactor is hoping to have their prototype ready to fly on the ISS by 2018 – which unfortunately doesn’t fit into the “Back to the Future” timeline: Emmett Brown travels to 2015 where he gets his Mr. Fusion and changes the future. But perhaps its Earth-bound counterpart could be ready in two years, in time for the Doc’s arrival from 1985.

“Back to the Future’s” Mr. Fusion. Via Theme Park Review.

OK, back to reality now, even though this does have a science fiction element to it…

A team led by Paul Hintze at the Kennedy Space Center has built an 80-pound small reactor to test theories about incinerating a variety of trash ranging from used clothes to uneaten food. The reactor holds more than three quarts of material and burns at about 1,000 degrees F, about twice the maximum temperature of an average household oven. It’s expected to take astronauts four hours to burn a day’s worth of trash from a crew of four.

The team estimates that during the course of a year in space – one half the length of time a mission to Mars is expected to take – trash processing for a crew of four would create about 2,200 pounds of methane fuel, enough to power a launch from the lunar surface, Hintze said.

“The longer the mission, the more applicable this technology is,” Hintze said. “If you’re just doing a two-week mission, you wouldn’t want to take along something like this because you wouldn’t get anything out of it.”

Converting garbage into fuel also would keep astronauts from turning their cramped space capsule into an orbiting landfill.

Paul Hintze is the researcher leading the trash-to-gas project at NASA’s Kennedy Space Center in Florida. Image credit: NASA/Dmitri Gerondidakis

The experimental version of the reactor is made of steel, but the team expects to employ a different alloy for future versions, something that might be lighter but just as strong in order to withstand the high temperatures needed to break down the materials and destroy potential microbes.

One of the issues the team is working on is making sure that no smell or potential hazardous gases are created as a by-product in the closed environment of the space station or a spacecraft on its way to deep space.

“On Earth, a little bit of an odor is not a problem, but in space a bad smell is a deal breaker,” Hintze said.

Right now trash in the ISS is stuffed into the Progress resupply ship, which burns up in the atmosphere during re-entry. This new reactor could turn the trash into something valuable in space.

Source: NASA

International Space Station Making New Solar Observations

The International Space Station. Credit: NASA

This weekend the International Space Station will turn itself to face the Sun, enabling ESA’s SOLAR instrument to capture an entire rotation of the solar surface. This is the first time the Station has changed attitude for scientific reasons alone.

This instrument has been on the ISS since 2008, and for the first time will record a full rotation of the Sun. It began this effort on November 19, 2012, and on December 1, the Station will spend two hours turning about 7 degrees so that observations can continue. It will hold this angle for ten days before returning to its original attitude.

“We want to record a complete rotation of the Sun and that takes around 25 days,” said Nadia This, operations engineer at the Belgian User Support and Operations Centre that controls SOLAR.

SOLAR needs to be in direct view of the Sun to take measurements but the Space Station’s normal orbit obscures the view for two weeks every month.

All the international partners had to agree on changing the ISS’s orientation.

However, moving a 450-ton orbital outpost the size of a city block isn’t a simple undertaking. Aside from calculating the correct orbit to keep SOLAR in view of the Sun, other factors need to be taken into account such as ensuring the solar panels that power the Station also face the Sun. Additionally, communication antennas need to be reoriented to stay in contact with Earth and other scientific experiments must be adjusted.

The SOLAR instrument located on the exterior of the Columbus module on the ISS. Credit: ESA

The SOLAR instrument was originally designed to last about 18 months, but has been going strong for 5 years. It is installed on the outside of the ESA’s Columbus module.

The SOLAR payload consists of three instruments to the solar spectral irradiance throughout virtually the whole electromagnetic spectrum.

The three complementary solar science instruments are:

SOVIM (SOlar Variable and Irradiance Monitor), which covers near-UV, visible and thermal regions of the spectrum.
SOLSPEC (SOLar SPECctral Irradiance measurements) covers the 180 nm – 3 000 nm range.
SOL-ACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers) measures the EUV/UV spectral regime.

Scientists say SOLAR’s observations are improving our understanding of the Sun and allowing scientists to create accurate computer models and predict its behavior.

Source: ESA

NASA, Roscosmos Choose First Crew for Year-Long ISS Mission

Back in October the partnering countries of the International Space Station announced an agreement to send two crew members to the International Space Station on a one-year mission designed to collect valuable scientific data needed to send humans to new destinations in the solar system. Today, NASA, the Russian Federal Space Agency (Roscosmos) announced they have selected the first crew to be part of such a mission: NASA has selected Scott Kelly and Roscosmos has chosen Mikhail Kornienko.

Kelly and Kornienko begin their mission in the spring of 2015, launching on Russian Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan in spring 2015 and will land in Kazakhstan in spring 2016. Kelly and Kornienko have trained together before, as Kelly was a backup crew member for the station’s Expedition 23/24 crews, where Kornienko served as a flight engineer.

“Congratulations to Scott and Mikhail on their selection for this important mission,” said William Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington. “Their skills and previous experience aboard the space station align with the mission’s requirements. The one-year increment will expand the bounds of how we live and work in space and will increase our knowledge regarding the effects of microgravity on humans as we prepare for future missions beyond low-Earth orbit.”

NASA astronaut Scott Kelly

Kelly is the twin brother of former astronaut Mark Kelly, who is married to Gabrielle Giffords, the former US Congresswoman who was shot by an assailant in January of 2011.

The goal of their yearlong expedition is to understand better how the human body reacts and adapts to the harsh environment of space. Data from the 12-month expedition will help inform current assessments of crew performance and health and will determine better and validate countermeasures to reduce the risks associated with future exploration as NASA plans for missions around the moon, an asteroid and ultimately Mars.

“Selection of the candidate for the one year mission was thorough and difficult due to the number of suitable candidates from the Cosmonaut corps,” said head of Russian Federal Space Agency, Vladimir Popovkin. “We have chosen the most responsible, skilled and enthusiastic crew members to expand space exploration, and we have full confidence in them.”

Kelly, a captain in the U.S. Navy, is from Orange, N.J. He has degrees from the State University of New York Maritime College and the University of Tennessee, Knoxville. He served as a pilot on space shuttle mission STS-103 in 1999, commander on STS-118 in 2007, flight engineer on the International Space Station Expedition 25 in 2010 and commander of Expedition 26 in 2011. Kelly has logged more than 180 days in space.

Russian cosmonaut Mikhail Kornienko

Kornienko is from the Syzran, Kuibyshev region of Russia. He is a former paratrooper officer and graduated from the Moscow Aviation Institute as a specialist in airborne systems. He has worked in the space industry since 1986 when he worked at Rocket and Space Corporation-Energia as a spacewalk handbook specialist. He was selected as an Energia test cosmonaut candidate in 1998 and trained as an International Space Station Expedition 8 backup crew member. Kornienko served as a flight engineer on the station’s Expedition 23/24 crews in 2010 and has logged more than 176 days in space.

During the 12 years of permanent human presence aboard the International Space Station, scientists and researchers have gained valuable, and often surprising, data on the effects of microgravity on bone density, muscle mass, strength, vision and other aspects of human physiology. This yearlong stay will allow for greater analysis of these effects and trends.

Kelly and Kornienko will begin a two-year training program in the United States, Russia and other partner nations starting early next year.

Take a Guided Tour of the International Space Station

Before she left the International Space Station this weekend, former ISS commander Suni Williams recorded an extensive guided tour of the orbital laboratory. The tour includes scenes of each of the station’s modules and research facilities with a running narrative by Williams of the work that has taken place and which is ongoing aboard the orbital outpost.

Suni Williams, Expedition 33 commander, works in the Quest airlock of the International Space Station. Credit: NASA

Change of Command on the Space Station

Before the crew of Expedition 32/33 comes home today, astronaut and commander Suni Williams handed over the reins of the International Space Station to Kevin Ford during the traditional change of command ceremony … which was not so traditional. Williams handed out gifts to the new crew, and at times seemed quite emotional. Last week Williams wrote in her blog that she really didn’t want to think about leaving the ISS. “Up to this point I haven’t, and sort of denied it,” she wrote. “And, I am still in denial, but I am going thru the motions because I don’t want to forget something when the hatch closes.”

Williams, Aki Hoshide of the Japanese Aerospace Exploration Agency, and Russian cosmonaut Yuri Malenchenko will return home after what seems like a short 125 days in space, arriving at the ISS on July 17.

They will leave the station today (Sunday, Nov 18), undocking at 22:26 UTC (5:26 p.m. EST) Sunday and land in Kazakhstan at 01:53 UTC on Monday (8:53 p.m EST Sunday). You can watch live coverage on NASA TV.

Remaining onboard the ISS to begin Expedition 34 are Ford, Oleg Novitskiy and Evgeny Tarelkin. They will be joined by Chris Hadfield of the Canadian Space Agency, Russian cosmonaut Roman Romanenko, and NASA’s Tom Marshburn on Dec. 21 to bring the ISS crew compliment back to six. As Ford notes in the video, the new crew are “newbies” with a combined in-space experience of about 3 months, while Williams and her crew have a combined time in space of about 3 years.

JAXA astronaut Aki Hoshide during an EVA on Nov. 1, 2012, where he and Suni Williams worked to troubleshoot problems with an ammonia leak outside the ISS. Credit: NASA

The time Williams, Hoshide and Malenchenko were on board saw the October arrival the first official commercial spacecraft, SpaceX’s Dragon. Williams and Hoshide also carried out two spacewalks, with Williams now holding the record for total spacewalk time by a female at 50 hours and 40 minutes over seven career spacewalks. Malenchenko is a space veteran with several Soyuz flights, a flight on the Space Shuttle and three stints on the ISS.

Here’s the scene as Williams, Hoshide and Malenchenko say goodbye and close the hatches between the ISS and Soyuz:

Exploded Rocket Fragments Could Endanger ISS and Future Missions

The International Space Station will have to look out for new debris from an exploded Russian rocket (NASA image)

Traveling through low-Earth orbit just got a little more dangerous; a drifting Russian Breeze M (Briz-M) rocket stage that failed to execute its final burns back on August 6 has recently exploded, sending hundreds of shattered fragments out into orbit.

Russia and the U.S. Defense Department (JFCC-Space) have stated that they are currently tracking 500 pieces of debris from the disintegrated Breeze M, although some sources are saying there are likely much more than that.

After a successful liftoff via Proton rocket on August 6 from the Baikonur Cosmodrome, the Breeze M upper stage’s engines shut off after only 7 seconds as opposed to the normal 18 minutes, leaving its fuel tanks filled with 10 to 15 tons of hydrazine and nitrogen tetroxide propellants. Its payloads, the Indonesian Telkom 3 and the Russian Express-MD2 communications satellites, were subsequently deployed into the wrong orbits as the Breeze M computer continued functioning.

Although originally expected to remain intact for at least another year, the rocket stage “violently disintegrated” on October 16. Evidence of the explosion was first observed by astronomer Robert McNaught at Australia’s Siding Springs Observatory, who counted 70 fragments visible within the narrow field-of-view telescope he was using for near-Earth asteroid observations.

The exact cause of the explosion isn’t known — it may have been sparked by an impact with another piece of space junk or the result of stresses caused by the Breeze M’s eccentric orbit, which varied in altitude from 265 to 5,015 kilometers (165 miles to 3,118 miles) with an inclination of 49.9 degrees.

This was the third such breakup of a partially-full Breeze M upper stage in orbit, the previous events having occurred in 2007 and 2010, and yet another Breeze M still remains in orbit after a failed burn in August 2011.

Most of the latest fragments are still in orbit at altitudes ranging from 250 to 5,000 km (155 to 3,100 miles), where they are expected to remain.

“Although some of the pieces have begun to re-enter, most of the debris will remain in orbit for an extended period of time.”

– Jamie Mannina, US State Department spokesperson

According to NASA the debris currently poses no immediate threat to the Space Station although the cloud is “believed not to be insignificant.” Still, according to a post on Zarya.com the Station’s course will periodically take it within the Breeze M debris cloud, and “will sometimes spend several days at a time with a large part of its orbit within the cloud.”

Source: RT.com and SpaceflightNow.com.  Inset image: the Breeze M (Briz-M) upper stage which disintegrated on Oct. 16. (Khrunichev)

Soyuz Launches New Crew to Space Station

The Soyuz rocket with three Expedition 33/34 crew members launched to the International Space Station on Tuesday, October 23, 2012, in Baikonur, Kazakhstan. Credit: NASA/Bill Ingalls

Three new crew members — and a stuffed hippo — are on their way to the International Space Station. Expedition 33/34 NASA Flight Engineer Kevin Ford, Soyuz Commander Oleg Novitskiy and Flight Engineer Evgeny Tarelkin launched aboard the Soyuz TMA-06M spacecraft at 10:51 UTC (6:51 a.m. EDT, 5:51 p.m. Baikonur time) Tuesday from the Baikonur Cosmodrome, Kazakhstan. The trio is now safely in orbit, and on Thursday they will hook up with the ISS and join their Expedition 33 crewmates — Commander Suni Williams, ISS veteran Yuri Malenchenko, and Akihiko Hoshide — onboard the Space Station.

It was a beautiful daytime launch from the Site 31 launchpad, a different pad than usual. The pad that is normally used for human launches is undergoing renovations.

The stuffed hippo was given to the crew by Novitskiy’s daughter. Soyuz crews have had a history of having a mascot hanging in view of the cameras and when it starts floating is the visual confirmation of when the crew reaches orbit. The hippo isn’t the only animal on board. 32 medaka fish are stowed along for the ride, as they will be part of a new aquarium on the ISS called the Aquatic Habitat that will study how the fish adapt to microgravity.

Watch the video of the launch, below:

Ford, Novitskiy and Tarelkin will be on the ISS for about five months, until March 2013. Williams, Malenchenko and Hoshide, who have been on the station since July, will return to Earth Nov. 19.

The next launch to the ISS will be on Dec. 21 when cosmonaut Roman Romanenko, Canadian astronaut Chris Hadfield and NASA astronaut Tom Marshburn head to the Station on board the Soyuz TMA-07M spacecraft.

Go Inside the Dragon Capsule with New Interactive Panorama

Wish you could be on the International Space Station right now, helping to unload the SpaceX Dragon capsule that is berthed to the Harmony Node? A new interactive panorama from SpaceX allows the closest experience of being inside Dragon. Inside, you can see all the storage compartments, and the panorama lets you zoom around inside as if you were floating in Zero-G. If you watch out the window port, the view will change from seeing Earth, to having the protective shutters closed and then (sadly) you end up back on Earth inside the SpaceX Hanger at Cape Canaveral. The panorama is a fun Friday diversion, but make sure you share it with your favorite budding astronaut — kids will love it! Click on the image above to get to the panorama, or use this link.

Antares Commercial Rocket Reaches New Atlantic Coast Launch Pad

Image Caption: Antares Rocket At Wallops Flight Facility Launch Pad. Orbital Sciences Corporation’s Antares rocket at the launch pad at NASA’s Wallops Flight Facility. In a few months, Antares is scheduled to launch a cargo delivery demonstration mission to the International Space Station as part of NASA’s Commercial Orbital Transportation Services (COTS) program. Credit: NASA

At long last, Orbital Sciences Corporation has rolled their new commercially developed Antares medium class rocket to the nation’s newest spaceport – the Mid-Atlantic Regional Spaceport (MARS) at Wallops Island,Va – and commenced on pad operations as of Monday, Oct 1.

The long awaited rollout marks a key milestone on the path to the maiden test flight of the Antares, planned to blast off before year’s end if all goes well.

This is a highly noteworthy event because Antares is the launcher for Orbital’s unmanned commercial Cygnus cargo spacecraft that NASA’s hopes will reestablish resupply missions to the International Space Station (ISS) lost with the shuttle’s shutdown.

“MARS has completed construction and testing operations on its launch complex at Wallops Island, the first all-new large-scale liquid-fuel launch site to be built in the U.S. in decades,” said David W. Thompson, Orbital’s President and Chief Executive Officer.

“Accordingly, our pad operations are commencing immediately in preparation for an important series of ground and flight tests of our Antares medium-class launch vehicle over the next few months. In fact, earlier today (Oct. 1), an Antares first stage test article was transported to the pad from its final assembly building about a mile away, marking the beginning of full pad operations.”

Antares 1st stage rocket erected at Launch Pad 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Flight Facility in Virginia. Credit: NASA

In about 4 to 6 weeks, Orbital plans to conduct a 30 second long hot fire test of the first stage, generating a total thrust of 680,000 lbs. If successful, a full up test flight of the 131 foot tall Antares with a Cygnus mass simulator bolted on top is planned for roughly a month later.

An ISS docking demonstration mission to the ISS would then occur early in 2013 which would be nearly identical in scope to the SpaceX Falcon 9/Dragon demonstration flight successfully launched and accomplished in May 2012.

The first commercial resupply mission to the ISS by SpaceX (CRS-1) is now set to lift off on Oct. 7 from Cape Canaveral, Florida.

The 700,000 lb thrust Antares first stage is powered by a pair of Soviet era NK-33 engines built during the 1960 and 1970’s as part of Russia’s ill-fated N-1 manned moon program. The engines have since been upgraded and requalified by Aerojet Corp. and integrated into the Ukrainian built first stage rocket as AJ-26 engines.

Image Caption: Antares first stage arrives on the pad at NASA_Wallops on Oct. 1. First stage approaching adapter ring on the right. Credit: NASA

NASA awarded contracts to Orbital Sciences Corp and SpaceX in 2008 to develop unmanned commercial resupply systems with the goal of recreating an American capability to deliver cargo to the ISS which completely evaporated following the forced retirement of NASA’s Space Shuttle orbiters in 2011 with no follow on program ready to go.

“Today’s (Oct. 1) rollout of Orbital’s Antares test vehicle and the upcoming SpaceX mission are significant milestones in our effort to return space station resupply activities to the United States and insource the jobs associated with this important work,” said NASA Associate Administrator for Communications David Weaver. “NASA’s commercial space program is helping to ensure American companies launch our astronauts and their supplies from U.S. soil.”

The public will be invited to watch the Antares blastoff and there are a lot of locations for spectators to gather nearby for an up close and personal experience.

“Antares is the biggest rocket ever launched from Wallops,” NASA Wallops spokesman Keith Koehler told me. “The launches will definitely be publicized.”

Ken Kremer