Expedition 28 Soyuz Crew Lands Safely in Kazakhstan

Expedition 28 Lands. The Soyuz TMA-21 spacecraft is seen as it lands with Expedition 28 Commander Andrey Borisenko, and Flight Engineers Ron Garan, and Alexander Samokutyaev in a remote area outside of the town of Zhezkazgan, Kazakhstan, on Friday, Sept. 16, 2011. NASA Astronaut Garan, Russian Cosmonauts Borisenko and Samokutyaev are returning from more than five months onboard the International Space Station where they served as members of the Expedition 27 and 28 crews. Photo Credit: (NASA/Bill Ingalls)

[/caption]

The three man Soyuz TMA-21 crew of cosmonauts and astronauts comprising of Commander Alexander Samokutyaev, Expedition 28 commander Andrey Borisenko and NASA flight engineer Ronald Garan made a pinpoint landing following a flawless descent and touched down safely in the southern steppes of Kazakhstan at 12:00 AM EDT today, Sept. 16, (10 AM local time), thereby wrapping up a nearly six month tour of duty at the International Space Station.

The Soyuz capsule landed on its side as it is frequently wont to do, about three hours after sunrise. The soft landing engines fired within seconds of touchdown to cushion the shock.

Soyuz TMA-21 lands safely in Kazakhstan on Sept. 16 with Russian-American trio of spaceflyers. Credit: NASA TV

A phalanx of twelve Russian search and recovery helicopters swooped in quickly after landing. The Russian forces had established two way communications and visual sighting with the space flyers in the last minutes of the descent.

Russian America Soyuz TMA-21 Crew after safe landing on Sept 16, 2011 and extraction from capsule. Expedition 28 Commander Andrey Borisenko, left, Flight Engineers Alexander Samokutyaev, center, and Ron Garan, sit in chairs outside the Soyuz Capsule just minutes after they landed in a remote area outside the town of Zhezkazgan, Kazakhstan, on Friday, Sept. 16, 2011. NASA Astronaut Garan, Russian Cosmonauts Borisenko and Samokutyaev are returning from more than five months onboard the International Space Station where they served as members of the Expedition 27 and 28 crews. Photo Credit: NASA/Bill Ingalls

Russian recovery team quickly reach the Soyuz TMA21 capsule after safe landing. Credit: NASA TV

Weather was perfect with very low winds, few clouds and warm temperatures of nearly 70 degrees Fahrenheit.

Altogether the trio spent 164 days in space, 162 of those were aboard the ISS. Their Soyuz capsule had docked at the ISS on April 7, 2011 following a two day trip after liftoff on April 5 from the Baikonur Cosmodome aboard a capsule dubbed Gagarin. The spaceship was named in honor of Yuri Gagarin, first human to orbit the Earth on the 50th anniversary of his courageous one orbit flight in April 1961 that inaugurated the Era of human spaceflight.

This crew lived aboard the ISS for the arrival of the final two history making flights of the Space Shuttle program as well as the anniversaries of Gagarin and America’s first astronaut in space, Alan Shepard.

Soyuz TMA 21 undocks from the ISS.

The helicopter recovery team arrived at the Soyuz capsule with seconds of touchdown and began erection of an inflatable medical tent. The Soyuz was rolled to facilitate the safe and proper extraction of the crew.

The astronauts and cosmonauts were quickly extracted from the capsule by the ground crew, checked by doctors and placed in recliners for the two hour trip back to a staging base in Karaganda, Kazakhstan for a traditional Kazakh welcome. Thereafter the crew will split up. Garan will be returning immediately to the US on a flight back to the Mission Control in Houston, Texas.

Soyuz departs

Just hours earlier this evening, the trio bagan the process of departing the ISS. They donned their Sokol launch and entry pressure suits, floated into the return capsule and closed the hatches between the Soyuz and the ISS.

Following leak checks the crew unhooked latches and undocked the Soyuz from the Poisk module at 8:38 p.m. while flying over northern China. Three minutes later thrusters were fired for 15 seconds to separate the two vehicles.

Left behind on the station was the Expedition 29 crew comprising Commander Mike Fossum from the US, cosmonaut Sergei Volkov from Russia and Japanese astronaut Satoshi Furukawa.

Soyuz landing in Kazakhstan on Sept 16, 2011. Credit: NASA TV

As the ISS and Soyuz were flying in tandem, the crew executed the 4 minutes 14 sec “de-orbit burn” which took place exactly on time at 11: 05 p.m. EDT. The critical Soyuz thruster burn slowed the ship by some 258 MPH and enabled the capsule to drop out of orbit, setting up the descent down through the Earth’s atmosphere.

Then the computer commanded pyrotechnic separation of the three Soyuz modules took place some 87 miles above Earth about 22 minutes later at 11:33 p.m., occurring just three minutes prior to re-entry into the Earth’s atmosphere over the heart of Africa.

Getting ready to open Soyuz hatch. Credit: NASA TV

The crew landed inside the central descent module less than an hour after completing the burn and less than 30 minutes after module separation.

The ISS will now be tended by only a three man crew for the next two months. That’s an unusually long time to maintain a reduced crew. But it’s all due to the recent failure of the third stage of the Russian Soyuz-U rocket lofting the Progress 44 cargo ship on Aug 24. The failure has been traced to a clogged fuel line. Russia is working to determine exactly how and why this could have happened and taking steps to prevent a repeat which would have disastrous consequences.

The next Soyuz blastoff is provisionally set for Nov.14 with a station arrival on Nov. 16. The three man crew of Anton Shkaplerov, Anatoly Ivanishin and NASA flight engineer Dan Burbank had originally been slated for Sept 22. But it was pushed back following the Progress launch failure.

Mike Fossom’s crew is scheduled to depart just 2 days later. Thus any further Soyuz launch delay wil require the ISS to be at least temporarily “de-manned” for the first time since continuous crewed operations started a dozen years ago.

Opening Soyuz hatch to cramped quarters. Credit: NASA TV

Robot Works on Repairs While ISS Astronauts Sleep

If it turns out that astronauts do have to leave the International Space Station unmanned, at least Dextre, the Canadian Space Agency’s robotic handyman, will be there to take care of things until humans return. Above is a sped-up video showing the work done recently by Dextre, replacing a faulty circuit-breaker box outside the station. Curiously, the robot did most of this work while the astronauts inside were sleeping. Imagine, dozing peacefully inside your sleep station and hearing a knocking sound outside the module….
Continue reading “Robot Works on Repairs While ISS Astronauts Sleep”

ISS Crew Provides Light-Hearted Look at Current Space Flight Plight

What does the International Space Station crew think about the situation they face since the Progress cargo ship mishap? Astronaut Ron Garan wanted to do something light-hearted to let everyone know that “we are all in this together,” so he and his crewmates created a video. Garan said “Despite the seriousness of the possibilities, and while we are all in this period of uncertainty, it doesn’t mean we can’t still have a little fun.”

This video also provides an impromptu tour of the ISS and shows how big the space station is, as it takes fellow astronaut Mike Fossum a long time to find Garan.

It should be noted that they made this video before they got the news of the potential of having the ISS unmanned. “This would have serious implications, and we all hope that it does not come to that,” Garan wrote on his Fragil Oasis blog. You can read Garan’s entire commentary about the video at that link, and take a look around at his other postings, as well. Garan is doing a great job of sharing his experiences in space.

Deadly and Destructive Path of Hurricane Irene seen in NASA Videos and Images

Irene Makes Landfall Over New York. This GOES-13 satellite image is of Hurricane Irene just 28 minutes before the storm made landfall in New York City. The image shows Irene's huge cloud cover blanketing New England, New York and over Toronto, Canada. Shadows in Irene's clouds indicate the bands of thunderstorms that surrounded the storm. Credit: NASA/NOAA GOES Project

NASA Video Caption: The Life of Hurricane Irene from the Caribbean to Canada from August 21 through August 29 seen by NASA/NOAA satellites. Credit: NASA/NOAA/GOES/MODIS

The new NASA animation above shows the birth and subsequent destructive and deadly path followed by Hurricane Irene from August 21 through August 29, 2011 starting in the Caribbean, and then tracking along the US East Cost and up into Canada. The observations combine images taken by NASA and NOAA Earth orbiting satellites.

The cloud images were captured by the NASA/NOAA GOES-13 satellite and overlaid on a true-color NASA MODIS map. Irene followed a lengthy course over Puerto Rico, Hispaniola, the Bahamas, and then along the entire US East with landfalls over North Carolina, New Jersey and New York.

NASA ISS astronaut Ron Garan and cameras flying overhead aboard the International Space Station (ISS) also photographed vivid images showing the magnitude of Irene slamming into the US East coast.

Irene caused widespread property damage. Massive and raging flooding in several US states destroyed houses, crushed businesses and washed away bridges and roads and more. The worst flooding is yet to come to some inland portions of Vermont, New Jersey, New York, Pennsylvania and elsewhere as uncontrollable waters continue to rise at numerous rivers, lakes and even ponds, threatening even more misery in their wake.

[/caption]

So far 41 fatalities in 12 states have been attributed to Irene and more may be expected as searches continue. Some communities have been entirely cut off due to washed out access. Airlifts of food and water have begun. More people are being evacuated from New Jersey towns today, Aug 30.

Brave emergency rescue workers have put their own lives at peril and saved the lives of countless others of all ages from babies to the elderly. Some 8 million customers, including my area, lost power due to extensive flooding, downed trees and electrical wires, and devastated infrastructure.

Hurricane Irene twitpic from the International Space Station on 8/27/11 by NASA Astronaut Ron Garan
Irene From Space and the ISS as it crossed the coast on August 27, 2011 at 3:32pm EST. Hope everyone is OK wrote NASA Astronaut Ron Garan with his twitpic from the ISS. Credit: NASA/Ron Garan aboard the ISS

Emergency crews are hard at work to restore power as quickly as possible, but many thousands of homes and businesses could be without power for up to a week or more. About 3.3 million customers are still without power today.

NASA’s GOES-13 satellite captured a dramatic view of Hurricane Irene just 28 minutes prior to making landfall over New York City. Today’s NASA Image of the day shows the humongous cloud cover spanning the US East coast from the Mid-Atlantic States up to New Jersey, New York, Pennsylvania, and New England and into Toronto, Canada.

This GOES-13 image from Monday, August 29 at 7:45 a.m. EDT shows an active Atlantic Ocean with the remnants of Hurricane Irene moving into Quebec and Newfoundland (left), Tropical Storm Jose (center) and newly formed Tropical Depression 12 (right). Credit: NASA/NOAA GOES Project
Irene slams into North Carolina. The GOES-13 satellite saw Hurricane Irene on August 27, 2011 at 10:10 a.m. EDT after it made landfall at 8 a.m. in Cape Lookout, North Carolina. Irene's outer bands had already extended into New England. Credit: NASA/NOAA GOES Project

Many transit systems and airports in Irene’s path were shutdown ahead of the storm.

Send me your photos of Irene’s destruction to post at Universe Today.

The View from Space: Northwestern Europe at Night

Northwestern Europe at night, as seen from the International Space Station on August 10, 2011. Credit: NASA

[/caption]

Astronauts always say the view of Earth is the best part of being in space. Here’s a beautiful shot of northwestern Europe at night. The landscape is dotted with clusters of lights from individual urban areas; visible are London, Paris, Brussels, Milan and Amsterdam, which stand out due to their large light “footprints,” while the English Channel is completely dark.

This photograph was taken by one of the Expedition 28 crewmembers on the International Space Station (ISS) and was taken with a short camera lens, providing the wide field of view. To give a sense of scale, the centers of the London and Paris metropolitan areas are approximately 340 kilometers (210 miles) from each other.

Source: NASA Earth Observatory website

More Views of Hurricane Irene from Space: It’s Big

A view of Hurricane Irene taken by the GOES satellite at 2:55 p.m. Eastern Daylight Time on August 24, 2011. Credit: NASA

Here are several different views of Hurricane Irene: from 230 miles above the Earth, cameras on the International Space Station captured several views of powerful Hurricane Irene as it churned over the Bahamas at 3:10 p.m. EDT on August 24, 2011. Irene is moving to the northwest as a Category 3 hurricane, packing winds of 120 miles an hour. Irene is expected to strengthen to a Category 4 storm as it heads toward the Outer Banks of North Carolina, the Eastern Seaboard and the middle Atlantic and New England states.

See more from other satellites, below:

[/caption]

This view of Irene was taken by the GOES satellite at 2:55 p.m. Eastern Daylight Time on August 24, 2011. Irene now has a distinct eye and the clouds spiraling around the center are becoming more compact. The image also shows how large Irene has become, measuring several hundred kilometers across.

A three dimensional perspective of Irene, showing rainfall. Credit: NASA/TRMM satellite

This image was taken on August 22, but is a really nifty, three-dimensional view of the precipitation from Irene, as seen by the Tropical Rainfall Measuring Mission. It reveals an area of deep convection (shown in red) near the storm’s center where precipitation-sized particles are being carried aloft. These tall towers are associated with strong thunderstorms responsible for the area of intense rain near the center of Irene seen in the previous image. They can be a precursor to strengthening as they indicate areas within a storm where vast amounts of heat are being released. This heating, known as latent heating, is what is drives a storm’s circulation and intensification.

Here’s the latest view of Irene from WeatherBug:

View of Irene from WeatherBug.com
View of Irene from WeatherBug.com

As of 8 a.m. EDT on August 25, Hurricane Irene was located near 25.5 N and 76.5 W, or 65 miles east-southeast of Nassau, Bahamas. This places it about 670 miles south of Cape Hatteras, N.C. Irene`s top sustained winds remain at 115 mph, and is moving to the northwest at 13 mph.

Sources: NASA Multimedia,

More Details on the Black Hole that Swallowed a Screaming Star

Images from Swift's Ultraviolet/Optical (white, purple) and X-Ray telescopes (yellow and red) were combined to make this view of Swift J1644+57. Evidence of the flares is seen only in the X-ray image, which is a 3.4-hour exposure taken on March 28, 2011. Credit: NASA/Swift/Stefan Immler

Back in June we reported on the black hole that devoured a star and then hurled the x-ray energy across billions of light years, right at Earth. It was such a spectacular and unprecedented event, that more studies have been done on the source, known as Swift J1644+57, and the folks at the Goddard Space Flight Center mulitmedia team have produced an animation (above) of what the event may have looked like. Two new papers were published yesterday in Nature; one from a group at NASA studying the data from the Swift satellite and the Japanese Monitor of All-sky X-ray Image (MAXI) instrument aboard the International Space Station, and the other from scientists using ground-based observatories.

They have confirmed what happened was the result of a truly extraordinary event — the awakening of a distant galaxy’s dormant black hole as it shredded, sucked and consumed a star, and the X-ray burst was akin to the death screams of the star.

[/caption]

In the new studies, detailed analysis of MAXI and Swift observations revealed this was the first time that a nucleus with no previous X-ray emission had ever suddenly started such activity. The strong X-ray and rapid variation indicated that the X-ray came from a jet that was pointed right at Earth.

“Incredibly, this source is still producing X-rays and may remain bright enough for Swift to observe into next year,” said David Burrows, professor of astronomy at Penn State University and lead scientist for Swift’s X-Ray Telescope instrument. “It behaves unlike anything we’ve seen before.”

The galaxy is so far away, it took the light from the event approximately 3.9 billion years to reach Earth (that distance was updated from the 3.8 billion light years reported in June).

The black hole in the galaxy hosting Swift J1644+57, located in the constellation Draco, may be twice the mass of the four-million-solar-mass black hole in the center of the Milky Way galaxy. As a star falls toward a black hole, it is ripped apart by intense tides. The gas is corralled into a disk that swirls around the black hole and becomes rapidly heated to temperatures of millions of degrees.

The innermost gas in the disk spirals toward the black hole, where rapid motion and magnetism create dual, oppositely directed “funnels” through which some particles may escape. Jets driving matter at velocities greater than 90 percent the speed of light form along the black hole’s spin axis.

This illustration steps through the events that scientists think likely resulted in Swift J1644+57. Credit: NASA/Goddard Space Flight Center/Swift

The Swift satellite detected flares from this region back on March 28, 2011, and the flares were initially assumed to signal a gamma-ray burst, one of the nearly daily short blasts of high-energy radiation often associated with the death of a massive star and the birth of a black hole in the distant universe. But as the emission continued to brighten and flare, astronomers realized that the most plausible explanation was the tidal disruption of a sun-like star seen as beamed emission.

“The radio emission occurs when the outgoing jet slams into the interstellar environment, and by contrast, the X-rays arise much closer to the black hole, likely near the base of the jet,” said Ashley Zauderer, from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass, lead author of a study of the event from numerous ground-based radio observatories, including the National Radio Astronomy Observatory’s Expanded Very Large Array (EVLA) near Socorro, N.M.

“Our observations show that the radio-emitting region is still expanding at more than half the speed of light,” said Edo Berger, an associate professor of astrophysics at Harvard and a coauthor of the radio paper. “By tracking this expansion backward in time, we can confirm that the outflow formed at the same time as the Swift X-ray source.”

Swift launched in November 2004 and MAXI is mounted on the Japanese Kibo module on the ISS (installed in July 2009) and has been monitoring the whole sky since August 2009.

See more images and animations at the Goddard Space Flight Center Multimedia page.

Sources: Nature, JAXA, NASA

Managers Still Assessing How Progress Crash Will Affect ISS Operations

A previous Progress approach to the Space Station over Earth (NASA)

[/caption]

Today’s loss of a Russian Progress re-supply ship to the International Space Station will likely have implications to the ISS and crew, said NASA’s Mike Suffredini, who is the space station program manager. But, just how the entire program will be affected is yet to be determined. “We are in a good position, and can go several months without a re-supply vehicle if necessary, due to the supplies delivered by the last shuttle flight,” said Suffredini.

This first post-shuttle era launch of a Progress cargo abruptly ended at about six minutes into the flight when an engine anomaly prompted an engine shutdown, just before the third stage of the Soyuz rocket ignited. The rocket and ship crashed to Earth in eastern Russia, in a sparsely populated area in the Choisk region of the Republic of Altai. No injuries have been reported so far.

“Our Russian colleagues have immediately begun the process of assessing implications of the program and ISS crew, and to assess the data that’s available to try to determine root cause,” Suffredini said at a press briefing shortly after the malfunction. He added everyone is now trying hard “to give our Russian colleagues time to gather data and sort it out and find important details.”

Suffredini said they normally have 30 days of contingency supplies on board, and with the latest (and final) shuttle resupply, they have at least 40-50 extra days of supplies for the current crew. “We’re in a good position logistically to withstand this loss of supplies,” Suffredini said. “And in fact, I would tell you we can go several months without a resupply vehicle if that becomes necessary.”

Since the Russian Soyuz crew module also flies on a Soyuz rocket, albeit a different version, the implications for crew rotation are not yet known, and Russian teams are gathering data to sort out the cause of the malfunction to the normally reliable spacecraft.

Suffredini said the current crew can stay on board extra time if necessary; if a delay for next Soyuz crew goes longer than anticipated, they will bring part of crew home and operate the ISS with crew of three.

Another Progress cargo ship is scheduled to fly in October; Suffredini said if the problem is figured out rather soon, it could probably fly earlier to make up for the loss of this current ship. Additionally, a European ATV supply ship is scheduled to launch in March 2012 and a Japanese HTV cargo ship will likely launch in May 2012.

“There are things we can do to extend our current supplies, but we have no concerns in that area even if nothing flies before ATV in March 2012,” Suffredini said.

The Progress was carrying 2.9 tons of supplies, mainly fuel for a planned station re-boost, water, hygiene supplies, food and other various supplies. Suffredini said no science experiments were on board the Progress, and that there should be enough fuel on board the ISS to do a re-boost, as well as any space debris avoidance maneuvers that might become necessary.

The biggest problem might be a shortage of what Suffredini called “potty supplies,” extra parts and equipment for the bathroom on the station. The specialized toilet includes hardware designed to recycle urine into drinking water.

Currently, Expedition 29 is scheduled to launch for the ISS on Sept. 22, 2011 with a crew of Anton Shkaplerov, Anatoly Ivanishin and Dan Burbank, launching aboard the Soyuz TMA-22 spacecraft. But that launch schedule will be assessed in light of today’s launch failure.

This was the second launch failure in a row — and within a week — for the Russian space program. The Breeze-M upper stage of a Proton rocket malfunctioned last Thursday, putting a communications satellite in the wrong orbit.

New Opportunity for Students to Reach for the Stars and Send an Experiment to the Space Station

A new opportunity is available to students to have their experiments flown to the ISS. Credit: NAS

[/caption]

A new opportunity is available for students and teachers to be part of history and fly the very first Student Spaceflight Experiments Program (SSEP) mission to the International Space Station. This program is open to students from any country that is part of the ISS partnership, in grades 5-12 as well as colleges and universities.

This opportunity offers real research done on orbit, with students designing and proposing the experiments to fly to the space station.

“Science is not something that can only be carried out by an elite community of researchers,” Dr. Jeff Goldstein, the Director for the National Center for Earth and Space Science Education told Universe Today. “It’s really just organized curiosity, and can be undertaken by anyone. So to inspire our next generation of scientists and engineers, we thought we’d give students an opportunity to do real scientific research on America’s newest National Laboratory – the International Space Station.”

SSEP is a program that launched in June 2010 by the National Center for Earth and Space Science Education in partnership with NanoRacks, LLC, a company that is working with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

Two previous SSEP missions flew on the final shuttle flights, but this is the first to be part of the ISS science program.

NanoRacks hopes to stimulate space station research by providing a very low-cost 1 kilogram platform and other hardware that puts micro-gravity projects within the reach of universities and small companies, as well as elementary and secondary schools through SSEP. So, this is actually a commercial space program and not a NASA program.

On the previous SSEP missions with the space shuttles, 1,027 student team proposals were submitted with 27 experiments selected to fly, representing the 27 communities.

“We know even 5th graders can rise to this challenge and amaze us all,” Goldstein said, “and they already proved it on the final two flights of the Space Shuttle.”

The countries that can participate are the US, Canada, Japan and the European nations that are partners in the ISS program.

SSEP Mission 1 to ISS is now open for registration, with participating communities selected no later than September 30, 2012, so this is time critical.

Goldstein noted there are a significant number of resources that make this process straight-forward, including an instructionally designed recipe allowing teachers to easily facilitate the introduction of the program in the classroom, conduct experiment design, and do the proposal writing.

There are five categories of participation:

Pre-College (the core focus for SSEP) in the U.S., (grades 5-12), with a participating school district—even an individual school—providing stunning, real, on-orbit RESEARCH opportunities to their upper elementary, middle, and high school students

2-Year Community Colleges in the U.S., (grades 13-14), where the student body is typically from the local community, providing wonderful pathways for community-wide engagement

4-Year Colleges and Universities in the U.S., (grades 13-16), with an emphasis on Minority-Serving Institutions, where the program fosters interdisciplinary collaboration across schools and departments, and an opportunity for formal workforce development for science majors

Communities in the U.S. led by Informal Education or Out-of-School Organizations, (e.g., a museum or science center, a homeschool network, a boy scout troop), because high caliber STEM education programs must be accessible to organizations that promote effective learning beyond the traditional classroom

Communities in ISS Partner Nations: EU nations, Canada, and Japan with participation through NCESSE’s Arthur C. Clarke Institute for Space Education.

Goldstein said the program is a U.S. national Science, Technology, Engineering, and Mathematics (STEM) education initiative that gives up to 3,200 students across a community—middle and high school students (grades 5-12), and/or undergraduates the ability to fly their own experiments in low Earth orbit on the International Space Station.

For more information see the SSEP website

Read about the experience of previous SSEP program schools on the space shuttle

Watch a video of Dr. Jeff Goldstein talking about SSEP.