The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae by tenfold. This rapid expansion of astronomers’ catalog of supernovae is extremely valuable, not least because it improves the reliability of measurements for the expansion of the universe.
Continue reading “Webb is an Amazing Supernova Hunter”Webb Finds the Farthest Galaxy Ever Seen (So Far)
There are some things that never cease to amaze me and the discovery of distant objects is one of them. The James Webb Space Telescope has just found the most distant galaxy ever observed! It has the catchy title JADES-GS-z14-0 and it has a redshift of 14.32. This means its light left when the Universe was only 290 million years old! That means the light left the source LOOOONG before even our Milky Way was here! How amazing is that!
Continue reading “Webb Finds the Farthest Galaxy Ever Seen (So Far)”A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal
Astrophysicists working with the JWST have found a surprising amount of metal in a galaxy only 350 million years after the Big Bang. How does that fit in with our understanding of the Universe?
Continue reading “A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal”JWST Accidentally Found 21 Brown Dwarfs
When you launch humanity’s most powerful telescope, you expect results. The JWST has delivered excellent results by detecting ancient galaxies, identifying chemicals in exoplanet atmospheres, and peering into star-forming regions with more detail and clarity than any other telescope.
But every time a new telescope is about to enter service, astronomers tell us they’re excited not only about the expected results but also about the surprising results. And like other telescopes, the JWST has also delivered some surprises. While going about its business, the JWST has discovered 21 brown dwarfs.
Continue reading “JWST Accidentally Found 21 Brown Dwarfs”JWST Shows How the Early Universe Was Furiously Forming Stars
We can gaze out into regions in our neighbourhood of the Milky Way and find orgies of star birth. The closest region is in the Orion nebula, where astronomers have identified more than 700 young stars. They range from only 100,000 years—mere infancy for a star—to over a million years.
But we’re more than 13 billion years after the Big Bang now. What was star formation like way back when, when conditions in the Universe were so different?
Continue reading “JWST Shows How the Early Universe Was Furiously Forming Stars”Clouds of Carbon Dust Seen When the Universe was Less Than a Billion Years Old
The Milky Way Galaxy contains an estimated one hundred billion stars. Between these lies the Interstellar Medium (ISM), a region permeated by gas and dust grains. This dust is largely composed of heavier elements, including silicate minerals, ice, carbon, and iron compounds. This dust plays a key role in the evolution of galaxies, facilitating the gravitational collapse of gas clouds to form new stars. This galactic dust is measurable by how it attenuates starlight from distant galaxies, causing it to shift from ultraviolet to far-infrared radiation.
However, the origin of various dust grains is still a mystery, especially during the early Universe when heavier elements are thought to have been scarce. Previously, scientists believed that elements like carbon took hundreds of millions of years to form and could not have existed before about 2.5 billion years after the Big Bang. Using data obtained by the JWST Advanced Deep Extragalactic Survey (JADES), an international team of astronomers and astrophysicists report the detection of carbonaceous grains around a galaxy that existed roughly 1 billion years after the Big Bang.
Continue reading “Clouds of Carbon Dust Seen When the Universe was Less Than a Billion Years Old”