The James Webb Space Telescope was designed and built to study the early universe, and hopefully revolutionary our understanding of cosmology. Two years after its launch, it’s doing just that.
Continue reading “James Webb’s Big Year for Cosmology”One of the Most Interesting Exoplanets Just Got Even More Interesting!
Since the discovery of the first exoplanet in 1992, thousands more have been discovered. 40 light years away, one such system of exoplanets was discovered orbiting a star known as Trappist-1. Studies using the James Webb Space Telescope have revealed that one of the planets, Trappist-1 b has a crust that seems to be changing. Geological activity and weathering are a likely cause and if the latter, it suggests the exoplanet has an atmosphere too.
Continue reading “One of the Most Interesting Exoplanets Just Got Even More Interesting!”Three More “Galactic Monster” Ultra-Massive Galaxies Found
One of the surprise findings with the James Webb Space Telescope is the discovery of massive galaxies in the early Universe. The expectations were that only young, small, baby galaxies would exist within the first billion years after the Big Bang. But some of the newly found galaxies appear to be as large and as mature as galaxies that we see today.
Three more of these “monster” galaxies have now been found, and they have a similar mass to our own Milky Way. These galaxies are forming stars nearly twice as efficiently as galaxies that were formed later on in the Universe. Although they’re still within standard theories of cosmology, researchers say they demonstrate how much needs to be learned about the early Universe.
Continue reading “Three More “Galactic Monster” Ultra-Massive Galaxies Found”James Webb Confirms Hubble’s Calculation of Hubble’s Constant
We have been spoiled over recent years with first the Hubble Space Telescope (HST) and then the James Webb Space Telescope (JWST.) Both have opened our eyes on the Universe and made amazing discoveries. One subject that has received attention from both is the derivation of the Hubble Constant – a constant relating the velocity of remote galaxies and their distances. A recent paper announces that JWST has just validated the results of previous studies by the Hubble Space Telescope to accurately measure its value.
Continue reading “James Webb Confirms Hubble’s Calculation of Hubble’s Constant”Why are Some Quasars So Lonely?
At the centre of most galaxies are supermassive black holes. When they are ‘feeding’ they blast out jets of material with associated radiation that can outshine the rest of the galaxy. These are known as quasars and they are usually found in regions where huge quantities of gas exist. However, a recent study found a higher than expected number of quasars that are alone in the Universe. These loners are not surrounded by galaxies nor a supply of gas. The question therefore remains, how are they shining so brightly.
Continue reading “Why are Some Quasars So Lonely?”Early Black Holes Fed 40x Faster than Should Be Possible
The theory goes that black holes accrete material, often from nearby stars. However the theory also suggests there is a limit to how big a black hole can grow due to accretion and certainly shouldn’t be as large as they are seen to be in the early Universe. Black holes it seems, are fighting back and don’t care about those limits! A recent study shows that supermassive black holes are growing at rates that defy the limits of current theory. Astronomers just need to figure out how they’re doing it!
Continue reading “Early Black Holes Fed 40x Faster than Should Be Possible”Hubble and Webb are the Dream Team. Don't Break Them Up
Many people think of the James Webb Space Telescope as a sort of Hubble 2. They understand that the Hubble Space Telescope (HST) has served us well but is now old, and overdue for replacement. NASA seems to agree, as they have not sent a maintenance mission in over fifteen years, and are already preparing to wind down operations. But a recent paper argues that this is a mistake. Despite its age, HST still performs extremely well and continues to produce an avalanche of valuable scientific results. And given that JWST was never designed as a replacement for HST — it is an infrared (IR) telescope) — we would best be served by operating both telescopes in tandem, to maximize coverage of all observations.
Continue reading “Hubble and Webb are the Dream Team. Don't Break Them Up”Webb Scans Vega for Planets
To northern sky watchers, Vega is a familiar sight in the summer sky. It’s one of the brightest stars in the sky and in 2013, astronomers detected a large ring of rocky debris surrounding the planet. The prospect of planets suddenly became a real possibility so astronomers turned the James Webb Space Telescope (JWST) on the star. The hunt achieved 10 times the sensitivity of previous ground based searches but alas no planets were discovered.
Continue reading “Webb Scans Vega for Planets”Red Dwarf Stars Might Be Able to Hold Onto Their Atmospheres After All
Exoplanets are a fascinating aspect of the study of the Universe. TRAPPIST-1 is perhaps one of the most intriguing exoplanet systems discovered to date with no less than 7 Earth-sized worlds. They orbit a red dwarf star which can unfortunately be a little feisty, hurling catastrophic flares out into space. These flares could easily strip atmospheres away from the alien worlds rendering them uninhabitable. A new piece of research suggests this may not be true and that the rocky planets may be able to maintain a stable atmosphere after all.
Continue reading “Red Dwarf Stars Might Be Able to Hold Onto Their Atmospheres After All”Webb Finds Dozens of Supernovae Remnants in the Triangulum Galaxy
Infrared astronomy has revealed so much about the Universe, ranging from protoplanetary disks and nebulae to brown dwarfs, aurorae, and volcanoes on together celestial bodies. Looking to the future, astronomers hope to conduct infrared studies of supernova remnants (SNRs), which will provide vital information about the physics of these explosions. While studies in the near-to-mid infrared (NIR-MIR) spectrum are expected to provide data on the atomic makeup of SNRs, mid-to-far IR (MIR-FIR) studies should provide a detailed look at heated dust grains they eject into the interstellar medium (ISM).
Unfortunately, these studies have been largely restricted to the Milky Way and the Magellanic Clouds due to the limits of previous IR observatories. However, these observational regimes are now accessible thanks to next-generation instruments like the James Webb Space Telescope (JWST). In a recent study, a team led by researchers from Ohio State University presented the first spatially resolved infrared images of supernova remnants (SNRs) in the Triangulum Galaxy (a.k.a. Messier 33). Their observations allowed them to acquire images of 43 SNRs, thanks to the unprecedented sensitivity and resolution of Webb’s IR instruments.
Continue reading “Webb Finds Dozens of Supernovae Remnants in the Triangulum Galaxy”