Special Guest:
Mathew Anderson is the author of “Our Cosmic Story” available on Amazon in January, 2017. He wrote “Our Cosmic Story” in interest from his years studying science giants like Brian Greene, Neil deGrasse Tyson, Richard Dawkins, and from past figures like Carl Sagan. This book is a big picture view of our world, its diverse life and civilizations, and the chance for life and civilizations elsewhere in the cosmos.
As a special treat, for a limited time, our listeners will have the opportunity to receive an advance electronic copy of Mathew’s books. Join us today to learn how to get your copy!
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<
The wonderful thing about science is that it’s constantly searching for new evidence, revising estimates, throwing out theories, and sometimes discovering aspects of the Universe that we never realized existed.
The best science is skeptical of itself, always examining its own theories to find out where they could be wrong, and seriously considering new ideas to see if they better explain the observations and data.
What this means is that whenever I state some conclusion that science has reached, you can’t come back a few years later and throw that answer in my face. Science changes, it’s not my fault.
I get it, VY Canis Majoris isn’t the biggest star any more, it’s whatever the biggest star is right now. UY Scuti? That what it is today, but I’m sure it’ll be a totally different star when you watch this in a few years.
What I’m saying is, the science changes, numbers update, and we don’t need to get concerned when it happens. Change is a good thing. And so, it’s with no big surprise that I need to update the estimate for the number of galaxies in the observable Universe. Until a couple of weeks ago, the established count for galaxies was about 200 billion galaxies.
But a new paper published in the Astrophysics Journal revised the estimate for the number of galaxies, by a factor of 10, from 200 billion to 2 trillion. 200 billion, I could wrap my head around, I say billion all the time. But 2 trillion? That’s just an incomprehensible number.
Does that throw all the previous estimates for the number of stars up as well? Actually, it doesn’t.
The observable Universe measures 13.8 billion light-years in all directions. What this means is that at the very edge of what we can see, is the light left that region 13.8 billion years ago. Furthermore, the expansion of the Universe has carried to those regions 46 billion light-years away.
Does that make sense? The light you’re seeing is 13.8 billion light-years old, but now it’s 46 billion light-years away. What this means is that the expansion of space has stretched out the light from all the photons trying to reach us.
What might have been visible or ultraviolet radiation in the past, has shifted into infrared, and even microwaves at the very edge of the observable Universe.
Since astronomers know the volume of the observable Universe, and they can calculate the density of the Universe, they know the mass of the entire Universe. 3.4 x 10^54 kilograms including regular matter and dark matter. They also know the ratio of regular matter to dark matter, so they can calculate the total amount of regular mass in the Universe.
In the past, astronomers divided that total mass by the number of galaxies they could see in the original Hubble data and determined there were about 200 billion galaxies.
Now, astronomers used a new technique to estimate the galaxies and it’s pretty cool. Astronomers used the Hubble Space Telescope to peer into a seemingly empty part of the sky and identified all the galaxies in it. This is the Hubble Ultra Deep Field, and it’s one of the most amazing pictures Hubble has ever captured.
Astronomers painstakingly converted this image of galaxies into a 3-dimensional map of galaxy size and locations. Then, they used their knowledge of galaxy structure closer to home to provide a more accurate estimate of what the galaxies must look like, out there, at the very edge of our observational ability.
For example, the Milky Way is surrounded by about 50 satellite dwarf galaxies, each of which has a fraction of the mass of the Milky Way.
By recognizing which were the larger main galaxies, they could calculate the distribution of smaller, dimmer dwarf galaxies that weren’t visible in the Hubble images.
In other words, if the distant Universe is similar to the nearby Universe, and this is one of the principles of modern astronomy, then the distant galaxies have the same structure as nearby galaxies.
It doesn’t mean that the Universe is bigger than we thought, or that there are more stars, it just means that the Universe contains more galaxies, which have less stars in them. There are the big main galaxies, and then a smooth distribution curve of smaller and smaller galaxies down to the tiny dwarf galaxies. The total number of stars comes out to be the same number.
The galaxies we can see are just the tip of the galactic iceberg. For every galaxy we can see, there are another 9, smaller fainter galaxies that we can’t see.
Of course, we’re just a few years away from being able to see these dimmer galaxies. When NASA’s James Webb Space Telescope launches in October, 2018, it’s going to be carrying a telescope mirror with 25 square meters of collecting surface, compared to Hubble’s 4.5 square meters.
Furthermore, James Webb is an infrared telescope, a specialized tool for looking at cooler objects, and galaxies which are billions of light-years away. The kinds of galaxies that Hubble can only hint at, James Webb will be able to see directly.
So, why don’t we see galaxies in all directions with our eyeballs? This is actually an old conundrum, proposed by Wilhelm Olbers in the 1700, appropriately named Olber’s Paradox. We did a whole article on it, but the basic idea is that if you look in any direction, you’ll eventually hit a star. It could be close, like the Sun, or very far away, but whatever the case, it should be stars in all directions. Which means that the entire night sky should be as bright as the surface of a star. Clearly it isn’t, but why isn’t it?
In fact, with 10 times the number of galaxies, you could restate the paradox and say that in every direction, you should be looking at a galaxy, but that’s not what you see.
Except you are. Everywhere you look, in all directions, you’re seeing galaxies. It’s just that those galaxies are red-shifted from the visible spectrum into the infrared spectrum, so your eyeballs can’t perceive them. But they’re there.
When you see the sky in microwaves, it does indeed glow in all directions. That’s the Cosmic Microwave Background Radiation, shining behind all those galaxies.
It turns out the Universe has 10 times more galaxies than previously estimated – 2 trillion galaxies. Not 10 times the stars or mass, those numbers have stayed the same.
And, once James Webb launches, those numbers will be fine-tuned again to be even more precise. 1.5 trillion? 3.4 trillion? Stay tuned for the better number.
We are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page.
Being stuck here on Earth, at the bottom of this enormous gravity well really sucks. The amount of energy it takes to escape into the black would make even Captain Reynolds curse up a gorram storm.
But gravity has a funny way of evening the score, giving and taking in equal measure.
There are special places in the Universe, where the forces of gravity nicely balance out. Places that a clever and ambitious Solar System spanning civilization could use to get a toehold on the exploration of the Universe.
These are known as the Lagrange Points, or Lagrangian Points, or libration points, or just L-Points. They’re named after the French mathematician Joseph-Louis Lagrange, who wrote an “Essay on the Three Body Problem” in 1772. He was actually extending the mathematics of Leonhard Euler.
Euler discovered the first three Lagrangian Points, even though they’re not named after him, and then Lagrange turned up the next two.
But what are they?
When you consider the gravitational interaction between two massive objects, like the Earth and the Sun, or the Earth and the Moon, or the Death Star and Alderaan. Actually, strike that last example…
As I was saying, when you’ve got two massive objects, their gravitational forces balance out perfectly in 5 places. In each of these 5 places you could position a relatively low mass satellite, and maintain its position with very little effort.
For example, you could park a space telescope or an orbital colony, and you’d need very little, or even zero energy to maintain its position.
The most famous and obvious of these is L1. This is the point that’s balanced between the gravitational pull of the two objects. For example, you could position a satellite a little above the surface of the Moon. The Earth’s gravity is pulling it towards the Moon, but the Moon’s gravity is counteracting the pull of the Earth, and the satellite doesn’t need to use much fuel to maintain position.
There’s an L1 point between the Earth and the Moon, and a different spot between the Earth and the Sun, and a different spot between the Sun and Jupiter, etc. There are L1 points everywhere.
L2 is located on the same line as the mass but on the far side. So, you’d get Sun, Earth, L2 point. At this point, you’re probably wondering why the combined gravity of the two massive objects doesn’t just pull that poor satellite down to Earth.
It’s important to think about orbital trajectories. The satellite at that L2 point will be in a higher orbit and would be expected to fall behind the Earth, as it’s moving more slowly around the Sun. But the gravitational pull of the Earth pulls it forward, helping to keep it in this stable position.
You’ll want to play a lot of Kerbal Space Program to really wrap your head around it. Sadly, your No Man’s Sky time isn’t helping you at all, except to teach you that hyperdrives are notoriously finicky and you’ll never have enough inventory space.
L3 is located on the direct opposite side of the system. Again, the forces of gravity between the two masses balance out so that the third object maintains the same orbital velocity. For example, a satellite in the L3 point would always remain exactly hidden by the Sun.
Hold on, hold on, I know there are a million thoughts going through your brain right now, but bear with me.
There are two more points, the L4 and L5 points. These are located ahead and behind the lower mass object in orbit. You form an equilateral triangle between the two masses, and the third point of the triangle is the L4 point, flip the triangle upside down and there’s L5.
Now, it’s important to note that the first 3 Lagrange points are gravitationally unstable. Any satellite positioned there will eventually drift away from stability. So they need some kind of thrusters to maintain this position.
Imagine a tall smooth mountain, with a sharp peak. Put a bowling ball at the very top and you’re not going to need a lot of energy to keep it in that location. But the blowing wind will eventually knock it out of place, and down the mountain. That’s L1, L2 and L3, and it’s why we don’t see any natural objects located in those places.
But L4 and L5 are actually stable. It’s the opposite situation, a deep valley where a bowling ball will tend to fall down into. And we find asteroids in the natural L4 and L5 positions in the larger planets, like Jupiter. These are the Trojan asteroids, trapped in these natural gravity wells though the gravitational interaction of Jupiter and the Sun.
So what can we use Lagrange points for? There are all kinds of space exploration applications, and there are already a handful of satellites in the various Earth-Sun and Earth-Moon points.
Sun-Earth L1 is a great place to station a solar telescope, where it’s a little closer to the Sun, but can always communicate with us back on Earth.
The James Webb Space Telescope is destined for Sun-Earth L2, located about 1.5 million km from Earth. From here, the bright Sun, Earth and Moon are huddled up in a tiny location in the sky, leaving the rest of the Universe free for observation.
Earth-Moon L1 is a perfect place to put a lunar refueling station, a place that can get to either the Earth or the Moon with minimal fuel.
Perhaps the most science fictiony idea is to put huge rotating O’Neill Cylinder space stations at the L4 and L5 points. They’d be perfectly stable in orbit, and relatively easy to get to. They’d be the perfect places to begin the colonization of the Solar System.
Thanks gravity. Thanks for interacting in all the strange ways that you do, and creating these stepping stones that we can use as we reach up and out from our planet to become a true Solar System spanning civilization.
The Fermi Paradox essentially states that given the age of the Universe, and the sheer number of stars in it, there really ought to be evidence of intelligent life out there. This argument is based in part on the fact that there is a large gap between the age of the Universe (13.8 billion years) and the age of our Solar System (4.5 billion years ago). Surely, in that intervening 9.3 billion years, life has had plenty of time to evolve in other star system!
NASA GODDARD SPACE FLIGHT CENTER, MD – It’s Mesmerizing ! That’s the overwhelming feeling expressed among the fortunate few setting their own eyeballs on the newly exposed golden primary mirror at the heart of NASA’s mammoth James Webb Space Telescope (JWST) – a sentiment shared by the team building the one-of-its-kind observatory and myself during a visit this week by Universe Today.
“The telescope is cup up now [concave]. So you see it in all its glory!” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center on Tuesday, May 3, after the covers were carefully removed just days ago from all 18 primary mirror segments and the structure was temporarily pointed face up.
“The entire mirror system is checked out, integrated and the alignment has been checked.”
It’s a banner year for JWST at Goddard where the engineers and technicians are well into the final assembly and integration phase of the optical and science instrument portion of the colossal observatory that will revolutionize our understanding of the cosmos and our place it in. And they are moving along at a rapid pace.
JWST is the scientific successor to NASA’s 25 year old Hubble Space Telescope. It will become the biggest and most powerful space telescope ever built by humankind after it launches 30 months from now.
The flight structure for the backplane assembly truss that holds the mirrors and science instruments arrived at Goddard last August from Webb prime contractor Northrop Grumman Aerospace Systems in Redondo Beach, California.
The painstaking assembly work to piece together the 6.5 meter diameter primary mirror began just before the Thanksgiving 2015 holiday, when the first unit was successfully installed onto the central segment of the mirror holding backplane assembly.
Technicians from Goddard and Harris Corporation of Rochester, New York then methodically populated the backplane assembly one-by-one, sequentially installing the last primary mirror segment in February followed by the single secondary mirror at the top of the massive trio of mirror mount booms and the tertiary and steering mirrors inside the Aft Optics System (AOS).
Everything proceeded according to the meticulously choreographed schedule.
“The mirror installation went exceeding well,” Durning told Universe Today.
“We have maintained our schedule the entire time for installing all 18 primary mirror segments. Then the center section, which is the cone in the center, comprising the Aft Optics System (AOS). We installed that two months ago. It went exceedingly well.”
The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.
The next step is to install the observatory’s quartet of state-of-the-art research instruments, a package known as the ISIM (Integrated Science Instrument Module), in the truss structure over the next few weeks.
“The telescope is fully integrated and we are now doing the final touches to get prepared to accept the instrument pack which will start happening later this week,” Durning explained.
The integrated optical mirror system and ISIM form Webb’s optical train.
“So we are just now creating the new integration entity called OTIS – which is a combination of the OTE (Optical Telescope Assembly) and the ISIM (Integrated Science Instrument Module) together.”
“That’s essentially the entire optical train of the observatory!” Durning stated.
“It’s the critical photon path for the system. So we will have that integrated over the next few weeks.”
The combined OTIS entity of mirrors, science module and backplane truss weighs 8786 lbs (3940 kg) and measures 28’3” (8.6m) x 8”5” (2.6 m) x 7”10“ (2.4 m).
After OTIS is fully integrated, engineers and technicians will spend the rest of the year exposing it to environmental testing, adding the thermal blanketry and testing the optical train – before shipping the huge structure to NASA’s Johnson Space Center.
“Then we will send it to NASA’s Johnson Space Center (JSC) early next year to do some cryovac testing, and the post environmental test verification of the optical system,” During elaborated.
“In the meantime Northrup Grumman is finishing the fabrication of the sunshield and finishing the integration of the spacecraft components into their pieces.”
“Then late in 2017 is when the two pieces – the OTIS configuration and the sunshield configuration – come together for the first time as a full observatory. That happens at Northrup Grumman in Redondo Beach.”
Webb’s optical train is comprised of four different mirrors. We discussed the details of the mirrors, their installation, and testing.
“There are four mirror surfaces,” Durning said.
“We have the large primary mirror of 18 segments, the secondary mirror sitting on the tripod above it, and the center section looking like a pyramid structure [AOS] contains the tertiary mirror and the fine steering mirror.”
“The AOS comes as a complete package. That got inserted down the middle [of the primary mirror].”
Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.
In space, the folded mirror structure will unfold into side by side sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.
The lone rounded secondary mirror sits at the top of the tripod boom over the primary.
The tertiary mirror and fine steering mirror sit in the Aft Optics System (AOS), a cone shaped unit located at the center of the primary mirror.
“So how it works is the light from the primary mirror bounces up to the secondary, and the secondary bounces down to the tertiary,” Durning explained.
“And then the tertiary – which is within that AOS structure – bounces down to the steering mirror. And then that steering mirror steers the beams of photons to the pick off mirrors that sit below in the ISIM structure.”
“So the photons go through that AOS cone. There is a mask at the top that cuts off the path so we have a fixed shape of the beam coming through.”
“It’s the tertiary mirror that directs the photons to the fine steering mirror. The fine steering mirror then directs it [the photons] to the pick off mirrors that sit below in the ISIM structure.”
So the alignment between the AOS system and the telescopes primary and secondary mirrors is incredibly critical.
“The AOS tertiary mirror catches the light [from the secondary mirror] and directs the light to the steering mirror. The requirements for alignment were just what we needed. So that was excellent progress.”
“So the entire mirror system is checked out. The system has been integrated and the alignment has been checked.”
Webb’s golden mirror structure was tilted up for a very brief period this week on May 4 as seen in this NASA time-lapse video:
The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA
The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.
With the mirror structure complete, the next step is ISIM science module installation.
To accomplish that, technicians carefully moved the Webb mirror structure this week into the clean room gantry structure.
As shown in this time-lapse video we created from Webbcam images, they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.
Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Webbcam. Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni
The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.
The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).
Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.
More about ISIM in the next story.
Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
For countless generations, people have looked up at the stars and wondered if life exists somewhere out there, perhaps on planets much like ours. But it has only been in recent decades that we have been able to confirm the existence of extrasolar planets (aka. exoplanets) in other star systems. In fact, between 1988 and April 20th of 2016, astronomers have been able to account for the existence of 2108 planets in 1350 different star systems, including 511 multiple planetary systems.
Most of these discoveries have taken place within just the past three years, thanks to improvements in our detection methods, and the deployment of the Kepler space observatory in 2009. Looking ahead, astronomers hope to improve on these methods even further with the introduction of the Starshade, a giant space structure designed to block the glare of stars, thus making it easier to find planets – and perhaps another Earth!
The James Webb Space Telescope (JWST) isn’t even operational yet, and already its gleaming golden mirror has reached iconic status. It’s segmented mirror is reminiscent of an insect eye, and once that eye is unfolded at its eventual stationary location at L2, the JWST will give humanity its best view of the Universe yet. Now, NASA has unveiled the JWST’s mirrors in a clean room at the Goddard Space Flight Centre, giving us a great look at what the telescope will look like when it’s operational.
Even if you didn’t know anything about the JWST, its capabilities, or its torturous path to finally being built, you would still look at it and be impressed. It’s obviously a highly technological, highly engineered, one of a kind object. In fact, you could be forgiven for mistaking it for a piece of modern art. (I’ve seen less appealing modern art, have you?)
The fact that the JWST will outperform its predecessor, the Hubble, is a well-known fact. After all, the Hubble is pretty long in the tooth now. But how exactly it will outperform the Hubble, and what the JWST’s mission objectives are, is less well-known. It’s worth it to take a look at the objectives of the JWST, again, and re-visit the enthusiasm that has surrounded this mission since its inception.
NASA groups JWST’s science objectives into four areas:
infrared vision that acts like a time-machine, giving us a look at the first stars and galaxies to form in the Universe, over 13 billion years ago.
a comparative study of the stately spiral and elliptical galaxies of our age with the faintest, earliest galaxies to form in the Universe.
a probing gaze through clouds of dust, to watch stars and planets being born.
a look at extrasolar planets, and their atmospheres, keeping an eye out for biomarkers.
That is an impressive list, even in an age where people take technological and scientific progress for granted. But alongside these noble objectives, there will no doubt be some surprises. Guessing what those surprises might be is a bit of a fool’s errand, but this is the internet, so let’s dare to be foolish.
We have an idea that abiogenesis on Earth happened fairly quickly, but we have nothing to compare it to. Will we learn enough about exoplanets and their atmospheres to shed some light on conditions needed for life to happen? It’s a stretch, but who knows?
We have an understanding of the expansion of the Universe, and it’s backed up by pretty solid evidence. Will we learn something surprising about this? Or something that sheds some light on Dark Matter and Dark Energy, and their role in the early Universe?
Or will there be surprising findings in the area of planetary and stellar formation? The capability to look deeply into dust clouds should certainly reveal things previously unseen, but only guessed at.
Of course, not everything needs to be surprising to be exciting. Evidence that supports and fine tunes current theories is also intriguing. And the James Webb should deliver a boatload of evidence.
There’s no question that the JWST will outdo the Hubble in the science department. But for a generation or two of people, the Hubble will always have a special place. It drew many of us in, with its breathtaking pictures of nebulae and other objects, its famous Deep Field study, and, of course, its science. It was probably the first telescope to gain celebrity status.
The James Webb will probably never gain the social status that the Hubble gained. It’s kind of like the Beatles, there can only be one ‘first of its kind.’ But the JWST will be much more powerful, and will reveal to us a lot that has been hidden.
The JWST will be a grand technological accomplishment, if all goes well and it makes it to L2 and is fully functional. Its ability to look deeply into dust clouds, and to look back in time, to the early days of the Universe, make it a potent scientific tool.
And if engineering can figure out a way to reverse the polarity in the warp core without it going crit, we should be able to fire a beam of tachyon anti-matter neutrinos and de-cloak a Romulan Warbird at a distance of 3 AUs. Not bad for something Congress threatened to cancel!
Since it was first launched in 1990, the Hubble Space Telescope has provided people all over the world with breathtaking views of the Universe. Using its high-tech suite of instruments, Hubble has helped resolve some long-standing problems in astronomy, and helped to raise new questions. And always, its operators have been pushing it to the limit, hoping to gaze farther and farther into the great beyond and see what’s lurking there.
And as NASA announced with a recent press release, using the HST, an international team of astronomers just shattered the cosmic distance record by measuring the farthest galaxy ever seen in the universe. In so doing, they have not only looked deeper into the cosmos than ever before, but deeper into it’s past. And what they have seen could tell us much about the early Universe and its formation.
Due to the effects of special relativity, astronomers know that when they are viewing objects in deep space, they are seeing them as they were millions or even billions of years ago. Ergo, an objects that is located 13.4 billions of light-years away will appear to us as it was 13.4 billion years ago, when its light first began to make the trip to our little corner of the Universe.
This is precisely what the team of astronomers witnessed when they gazed upon GN-z11, a distant galaxy located in the direction of the constellation of Ursa Major. With this one galaxy, the team of astronomers – which includes scientists from Yale University, the Space Telescope Science Institute (STScI), and the University of California – were able to see what a galaxy in our Universe looked like just 400 million years after the Big Bang.
Prior to this, the most distant galaxy ever viewed by astronomers was located 13.2 billion light years away. Using the same spectroscopic techniques, the Hubble team confirmed that GN-z11 was nearly 200 million light years more distant. This was a big surprise, as it took astronomers into a region of the Universe that was thought to be unreachable using the Hubble Space Telescope.
In fact, astronomers did not suspect that they would be able to probe this deep into space and time without using Spitzer, or until the deployment the James Webb Space Telescope – which is scheduled to launch in October 2018. As Pascal Oesch of Yale University, the principal investigator of the study, explained:
“We’ve taken a major step back in time, beyond what we’d ever expected to be able to do with Hubble. We see GN-z11 at a time when the universe was only three percent of its current age. Hubble and Spitzer are already reaching into Webb territory.”
In addition, the findings also have some implications for previous distance estimates. In the past, astronomers had estimated the distance of GN-z11 by relying on Hubble and Spitzer’s color imaging techniques. This time, they relied on Hubble’s Wide Field Camera 3 to spectroscopically measure the galaxies redshift for the first time. In so doing, they determined that GN-z11 was farther way than they thought, which could mean that some particularly bright galaxies who’s distanced have been measured using Hubble could also be farther away.
The results also reveal surprising new clues about the nature of the very early universe. For starters, the Hubble images (combined with data from Spitzer) showed that GN-z11 is 25 times smaller than the Milky Way is today, and has just one percent of our galaxy’s mass in stars. At the same time, it is forming stars at a rate that is 20 times greater than that of our own galaxy.
As Garth Illingworth – one of the team’s investigator’s from the University of California, Santa Cruz – explained:
“It’s amazing that a galaxy so massive existed only 200 million to 300 million years after the very first stars started to form. It takes really fast growth, producing stars at a huge rate, to have formed a galaxy that is a billion solar masses so soon. This new record will likely stand until the launch of the James Webb Space Telescope.”
Last, but not least, they provide a tantalizing clue as to what future missions – like the James Webb Space Telescope – will be finding. Once deployed, astronomers will likely be looking ever farther into space, and farther into the past. With every step, we are closing in on seeing what the very first galaxies that formed in our Universe looked like.