This Hilarious Conversation With A Space Robot Makes Kirobo Seem Almost Human

The Kirobo talking robot on the ISS. Credit: Toyota.

Just how human-sounding is Kirobo, the first talking robot on the station? This amusing conversation, recorded on the International Space Station and broadcast on a Toyota YouTube channel, shows a pint-sized robot that not only responds to questions, but also gestures and moves around in a scary person-like way.

As Kirobo chats with Japanese astronaut Koichi Wakata — who is excellent at deadpan, by the way — the two discussed matters such as how the Earth looks from space, the Japanese robotic arm Kibo and — right at the end — the most important difference between Kirobo and his backup, Mirata.

We don’t want to spoil the joy of the conversation for you by repeating what Kirobo says, but let’s just say there’s something special about watching a Japanese space robot make a reference to the first landing on the moon, which was hailed as a huge technological achievement when it happened in 1969. 

The 13.4-inch (0.34 meter) Kirobo is sponsored by Toyota and the University of Tokyo and is supposed to be able to pick up on the facial expressions of crewmates. The robot will be working closely with Wakata during Expedition 38 and then Expedition 39, when Wakata assumes command of station.

One goal is to see how well humans and semi-autonomous robots can work together in space. To see Kirobo’s first words from station, check out our past story from September.

Space Trucks! A Pictorial History Of These Mighty Machines

A view of Orbital Sciences' Cygnus spacecraft while it was being released from the International Space Station on Oct. 22. Credit: NASA/Karen Nyberg

Cargo resupply ships are vital for space exploration. These days they bring food, experiments and equipment to astronauts on the International Space Station. And in recent years, it hasn’t just been government agencies sending these things up; SpaceX’s Dragon spacecraft and (just this week) Orbital Sciences’ Cygnus spacecraft brought up cargo of their own to station in recent months.

NASA just published a brief timeline of (real-life) cargo spacecraft, so we thought we’d adapt that information in pictorial form. Here are some of the prominent members of that elite group. Did we miss anything? Let us know in the comments.

Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
SpaceX’s Dragon in orbit during the CRS-2 mission. It was the first commercial spacecraft to resupply the space station, and since 2012 has completed resupply missions. Credit: NASA/CSA/Chris Hadfield
Thrust
Space shuttle Discovery heads to space after lifting off from Launch Pad 39A at NASA’s Kennedy Space Center in Florida to begin its final flight to the International Space Station on the STS-133 mission. The shuttle was NASA’s main human spacecraft between 1981 and 2011. Credit: NASA
Progress 51 on final approach to the International Space Station. The stuck antenna is visible below the crosshairs. Credit: NASA TV (screencap)
Progress 51 on final approach to the International Space Station. The Russians have been flying versions of this cargo spacecraft since 1978. Credit: NASA TV (screencap)
JAXA's H-II Transfer Vehicle during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA
JAXA’s H-II Transfer Vehicle (HTV) during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA

 

The ATV Johannes Kepler docked at the International Space Station. Credit: NASA
The ATV Johannes Kepler docked at the International Space Station. Versions of this spacecraft have flown since 2008. Credit: NASA
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons

Japanese Transfer Vehicle Launches Supplies, Robot to the Space Station

Scfeenshot from NASA TV of the HTV-4 launch from Japan.

More supplies and a brand new talking robot for International Space Station. The Japan Aerospace Exploration Agency’s (JAXA) HTV-4 Transfer Vehicle launched successfully from the Tanegashima Space Center in Japan, and will rendezvous in six days with the ISS. On board are 3.6 tons of dry cargo, water, experiments and spare parts to the International Space Station. The new robot, a .34 meter (13.4-inch) robot named Kirobo, is designed to be able to have a conversation with its astronaut crewmates and to study how robot-human interactions can help the astronauts in the space environment.

Unlike a Russian Progress vehicle which docks automatically, the HTV-4 will be captured by the Canadarm2 and berthed to the Harmony module. The cargo spacecraft will be commanded to fly within about 40 feet and then hold where Flight Engineer Karen Nyberg will operate the Canadarm2 during the approach and rendezvous of the Kountouri supply vehicle.

This Energy-Boosting Region In The Sun Will Have A New NASA Satellite Watching It

IRIS will take a closer look at the lower parts of the sun's atmosphere, which is producing the spectacular flare shown in this image. Credit: NASA&JAXA/Hinode

How does the sun’s energy flow? Despite the fact that we live relatively close (93 million miles, or eight light-minutes) to this star, and that we have several spacecraft peering at it, we still know little about how energy transfers through the solar atmosphere.

NASA’s next solar mission will launch Wednesday, June 26 (if all goes to plan) to try to learn a little bit more. It’s called the Interface Region Imaging Spectrograph (IRIS), and it will zero in on a spot in the sun’s lower atmosphere known as the “interface region.” The zone only has a thickness of  3,000 to 6,000 miles and is seen as a key transfer point to the sun’s incredibly hot corona (that you can see during total solar eclipses.)

“IRIS will extend our observations of the sun to a region that has historically been difficult to study,” stated Joe Davila, IRIS project scientist at NASA’s Goddard Space Flight Center. “Understanding the interface region better improves our understanding of the whole corona and, in turn, how it affects the solar system.”

Figuring out more about the interface region, NASA stated, will teach us a lot more about the “space weather” that affects Earth.

Some of the energy in the interface region leaks out and powers the solar wind, which is a sort of rain of particles that leave the star. Some of them hit the Earth’s magnetic field and can produce auroras. Most of the sun’s ultraviolet radiation also flows from the interface region.

IRIS’ images will be able to zero in on about 1 percent of the sun in a single go, with resolution of features of as small as 150 miles. The 400-pound satellite will orbit Earth in an orbit perpetually keeping it above the sunrise line, a spot that lets the satellite look at the sun continuously for eight months without the sun being obscured by Earth.

It’ll also form part of a larger network of sun-staring satellites.

Technicians work on NASA’s Interface Region Imaging Spectrograph (IRIS) in a "clean room", a specially designed facility intended to minimize contaminants on spacecraft before launch. Credit: Lockheed Martin
Technicians work on NASA’s Interface Region Imaging Spectrograph (IRIS) in a “clean room”, a specially designed facility intended to minimize contaminants on spacecraft before launch. Credit: Lockheed Martin

NASA highlighted its Solar Dynamics Observatory and a joint mission it has with Japan, called Hinode, which both take images of the sun in high-definition. These other two observatories, however, look at different solar layers (specifically, the surface and the outer atmosphere).

With IRIS joining the fleet and looking at the interface region, it will provide a more complete picture.

“Relating observations from IRIS to other solar observatories will open the door for crucial research into basic, unanswered questions about the corona,” stated Davila.

Source: NASA

Mystery of Escaping Planetary Atmospheres Comes Under Japanese Scrutiny

Artist's conception of the solar system, often used in the Eyes on the Solar System 3D Simulator. Credit: NASA

Venus and Mars may be all right tonight, but there’s still a lot we don’t understand about these planets. Why does one, Venus,  have such a thick atmosphere? Why is that of Mars so thin? And why is Earth’s atmosphere so different again from what we see on Venus and Mars?

A new JAXA (Japan Aerospace Exploration Agency) satellite aims to better understand what’s going on. It’s called SPRINT-A, for Spectroscopic Planet Observatory for Recognition of Interaction of Atmosphere.

JAXA has set an official launch date of Aug. 22 from the Uchinoura Space Center, although the window extends as far as Sept. 30. (Launches can be delayed due to weather and mechanical difficulties.) The satellite’s expected Earth orbit will range from 590 to 715 miles (950 to 1150 kilometers) above the planet.

“Venus and Earth may be called twin planets, and it recently becomes clear that three terrestrial planets in the solar system – including Mars – have very similar environments in the beginning era of the solar system,” JAXA stated in a press release.

Earth may not have formed quite like once thought (Image: NASA/Suomi NPP)
Earth’s atmosphere was similar to that of Venus and Mars in the early solar system, but now it’s quite different, says JAXA. (Image: NASA/Suomi NPP)

The agency pointed out, however, that these three planets ended up with different fates. Venus has a runaway greenhouse effect on its planet, with surface temperatures reaching a scorching 752 degrees Fahrenheit (400 degrees Celsius). Mars, on the other hand, has a very thin atmosphere and more variable temperatures that can get a little chilly.

Understanding how atmospheres escape into outer space is the main goal of SPRINT-A. The sun, the scientists stated, had more intense activity in the past than what we see presently, which could have blown away the atmosphere on some terrestrial planets.

“The study on interaction of the strong solar wind on the atmosphere of the planet leads to acquiring knowledge of history in the early stage of the solar system,” JAXA stated.

Besides looking at the inner solar system, SPRINT-A will investigate a phenomenon related to a splotchy volcanic moon orbiting the planet Jupiter.

Io, a moon of Jupiter.  The colors in this image have been enhanced to better show differences. Sulfur dioxide frost appears in white and grey, and other types of sulfur are in yellow and brown. Recent volcanic activity is marked by red and black blotches. Credit: NASA
Io, a moon of Jupiter. The colors in this image have been enhanced to better show differences. Sulfur dioxide frost appears in white and grey, and other types of sulfur are in yellow and brown. Recent volcanic activity is marked by red and black blotches. Credit: NASA

SPRINT-A aims to better understand a ring of material surrounding Jupiter that came from Io.

Electrons and ions from the volcanic moon surround Jupiter and, as they collide, produce ultraviolet light in a process similar to what causes auroras in the upper atmosphere of Earth and other planets. How this happens is still being figured out, though.

It’s a pretty radiation-heavy environment in that region of the solar system. The spacecraft Galileo safely orbited the Jovian moons for years, but humans would have a little more trouble surviving the radiation without heavy shielding and careful precautions.

Check out more information about SPRINT-A on JAXA’s website. Japan also recently announced it will launch the  Kounotori 4 cargo spacecraft to the International Space Station in August, likely Aug. 4.

Japanese HTV-3 Berthed to International Space Station

The HTV-3 Japanese cargo spacecraft was successfully captured with the International Space Station’s Canadarm 2 robotic arm, and then installed to a docking port. JAXA astronaut Aki Hoshide berthed the HTV supply ship, called Kounotori3, or “white stork,” at 14:19 GMT (10:19 EDT) on July 27, 2012 to the Earth-facing side of the Harmony node on the ISS.

Above is a timelapse of the capture and berthing provided by SpaceVids.
Continue reading “Japanese HTV-3 Berthed to International Space Station”

Awesome Map of Space Agencies Around the World

When you think of space agencies around the world, what comes to mind? Probably NASA, ESA, ISRO and JAXA are the acronyms you know; then there’s the Russian Federal Space Agency, the Canadian Space Agency, and the China National Space Agency. But did you know there are dozens of countries with space agencies, with nearly 200 space agencies and centers around the world? Blogger Heather Archuletta has put together a map and list of all the space agencies on the planet, including countries you may not have realized had a space agency such as Argentina, Bulgaria, Pakistan Morocco, and more. The list includes links to all the space agency’s websites and a link to an interactive Google Map. The immediate thought that came to mind, which Heather shared on Twitter was, ROAD TRIP!

For any space nerd, that would be the ultimate global trek, to visit every space agency in the world. With all the NASA and Russian centers and all the various countries in ESA, your trip would include 198 locations around our planet!

Heather is known for her Pillownaut blog which originally detailed her time participating in NASA bedrest studies to simulate long duration spaceflight. The space agency map was a new project, born from a conversation with a friend.

“Overall, I created it to be a tracking tool, and to show how huge the space industry has become,” Heather told Universe Today. “Many people think of the space game as being the US, Russia and a handful of Europeans… but truly, lifestyle in many countries is dependent upon the use of space, even if it’s just as simple as remote sensing or collaborative satellites.”

Heather noted that the map includes one site in India that is not operational yet, but built.

But consider how many jobs around the world have been created because of space exploration… and these jobs employ some of the best and brightest minds in forward-thinking, global-enriching ways. And even more, there’s now the burgeoning private space industry that is employing even more people with jobs that focus on the future.

Check out http://pillownaut.com/spacemap/spacemap.html and plan your space-nerd road trip today!

Hayabusa 2 Mission Approved by Japanese Government

Artist's conception of Hayabua 2 approaching the asteroid 1999 JU3. Credit: Akihiro Ikeshita/JAXA

[/caption]

In 2010, the Japanese spacecraft Hayabusa completed an exciting although nail-biting mission to the asteroid Itokawa, successfully returning samples to Earth after first reaching the asteroid in 2005; the mission almost failed, with the spacecraft plagued by technical problems. The canister containing the microscopic rock samples made a soft landing in Australia, the first time that samples from an asteroid had been brought back to Earth for study.

Now, the Japanese government has approved a follow-up mission, Hayabusa 2. This time the probe is scheduled to be launched in 2014 and rendezvous with the asteroid known as 1999 JU3 in mid-2018. Samples would again be taken and returned to Earth in late 2020.

1999 JU3 is approximately 914 metres (3,000 feet) in diameter, a little larger than Itokawa, and is roughly spherical in shape, whereas Itokawa was much more oblong.

As is common for any space agency, the Japanese Aerospace Exploration Agency (JAXA) is working with tight budgets and deadlines to make this next mission happen. There is a possibility of a back-up launch window in 2015, but if that deadline is also not met, the mission will have to wait another decade to launch.

The asteroid Itokawa, visited by Hayabusa in 2005. Credit: JAXA

One of the main problems with Hayabusa was the failure of the sampling mechanism during the “landing” (actually more of a brief contact with the surface with the sample capturing device) to retrieve the samples for delivery back to Earth. Only a small amount of material made it into the sample capsule, but which was fortunate and ultimately made the mission a limited success. The microscopic grains were confirmed to have primarily come from Itokawa itself and are still being studied today.

To avoid a repetition of the glitches experienced by Hayabusa, some fundamental changes needed to be made.

This next spacecraft will use an updated ion propulsion engine, the same propulsion system used by Hayabusa, as well as improved guidance and navigation systems, new antennas and a new altitude control system.

For Hayabusa 2’s sample-collecting activities, a slowly descending impactor will be used, detonating upon contact with the surface, instead of the high-speed projectile used by Hayabusa. Perhaps not quite as dramatic, but hopefully more likely to succeed. Like its predecessor, the main objective of the mission is to collect as much surface material as possible for delivery back home.

Hopefully Hayabusa 2 will not be hampered by the same problems as Hayabusa; if JAXA can achieve this, it will be exciting to have samples returned from a second asteroid as well, which can only help to further our understanding of the history and formation of the solar system, and by extrapolation, even other solar systems as well.

Japan’s Trash-laden HTV-2 Undocks from ISS

Japan's Kounotori 2 –or ‘White Stork’ – cargo carrier as it arrived at the ISS in January. Credit: Paolo Nespol/NASA

[/caption]

Japan’s HTV-2 Kounotori resupply ship undocked from the International Space Station at 15.45 GMT on March 28, and will burn up in Earth’s atmosphere sometime early Wednesday March 31. Back in January, the craft brought five metric tons of equipment and supplies to the station, but now it is loaded with trash and unneeded equipment and packing materials. Most of the HTV will likely disintegrate as it passes through the atmosphere, but any pieces left over will find a watery grave in a remote area in the Central Pacific. But sensors on board the HTV-2 will provide data on how the craft behaves during its fiery demise.

The Re-entry Breakup Recorder (REBR) will record temperature, acceleration, rotational rate and other data.

The second HTV from Japan arrived at the ISS on January 27 carrying its cargo of food, water supplies, and equipment. Japan expects to send another seven cargo ships to the station by 2015, with the next one scheduled to arrive in January 2012.

The ISS crew grappled HTV-2 with the Canadarm 2, undocked it from the station and then maneuvered the HTV into a release position about 30 feet below the station. The Space Station Integration and Promotion Center in Tsukuba, Japan was able to handle the commands to activate and check out the freighter’s guidance, navigation and control systems. Because of the March 11 earthquake in Japan, controls of the HTV and Japan’s Kibo laboratory was temporarily handed over to NASA in Houston, but the center is now fully restored for full commanding, telemetry and voice capabilities for the ISS.

The cargo ship will enter the atmosphere on Wednesday at 03.09 GMT, and any remaining fragments will fall into the Pacific Ocean 31 minutes later.

So long Konotori, and we thank you.

Perseus Cluster Thicker Around the Middle Than Thought

Credits: NASA/ISAS/DSS/A. Simionescu et al.; inset: NASA/CXC/A. Fabian et al.

[/caption]

The Japanese Suzaku X-ray telescope has just taken a close look at the Perseus galaxy cluster, and revealed it’s got a bit of a spare tire.

Suzaku explored faint X-ray emission of hot gas across two swaths of the Perseus Galaxy Cluster. The resulting images, which record X-rays with energies between 700 and 7,000 electron volts in a combined exposure of three days, are shown in the two false-color strips above. Bluer colors indicate less intense X-ray emission. The dashed circle is 11.6 million light-years across and marks the so-called virial radius, where cold gas is now entering the cluster. Red circles indicate X-ray sources not associated with the cluster.

The results appear in today’s issue of Science.

The Perseus cluster (03hh 18m +41° 30) is the brightest extragalactic source of extended X-rays.

Lead author Aurora Simionescu, an astrophysicist at Stanford, and her colleagues note that until now, most observations of galaxy clusters have focused on their bright interiors. The Suzaku telescope was able to peer more closely at the outskirts of the Perseus cluster. The resulting census of baryonic matter (protons and neutrons of gas and metals) compared to dark matter offers some surprising observations.

It turns out the fraction of baryonic matter to dark matter at Perseus’s center was consistent with measurements for the universe as a whole, but the baryonic fraction unexpectedly exceeds the universal average on the cluster’s outskirts.

“The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web,” the authors write in the new paper.

Source: Science. See also JAXA’s Suzaku site