The First Images and Videos from the Double Venus Flyby

BepiColombo’s close-up image of Venus, taken by the spacecraft’s Monitoring Camera 3 on August 10, 2021. Credit: ESA/BepiColombo/MTM

Two spacecraft made historic flybys of Venus last week, and both sent back sci-fi-type views of the mysterious, cloud-shrouded planet.

The Solar Orbiter and BepiColombo spacecraft both used Venus for gravity assists within 33 hours of each other, capturing unique imagery and data during their encounters.

Continue reading “The First Images and Videos from the Double Venus Flyby”

Satellite Images Can Help Predict When Underwater Volcanos are About to Erupt

Predicting volcanic eruptions is notoriously tricky. In large part this is because volcanos are unique, each with their own quirks and personalities: the lessons learned from studying one volcano may not apply directly to another. Luckily, researchers are getting better at finding warning signs that they can apply broadly. Some of the most well-known are heightened seismic activity, rising temperatures, expanding magma pools, and the release of gases. New research using satellite imagery now offers a new warning sign for underwater volcanos: a change in the color of the ocean.

Continue reading “Satellite Images Can Help Predict When Underwater Volcanos are About to Erupt”

Lunar Rovers! Transform and Roll Out!

Credit: JAXA/TOMY/Sony/Doshisha University

A number of missions are destined for the Moon before this decade is over. In addition to the Artemis Program, the European Space Agency (ESA), the China National Space Agency (CNSA), Roscosmos, and other space agencies have some ambitious plans of their own. These include sending robotic missions to characterize the local environment, scout out resources, and pave the way for permanent human outposts.

The Japanese Aerospace Exploration Agency (JAXA) also some very interesting lunar missions in mind. In addition to partnering with NASA on the Artemis Program and helping to create the Lunar Gateway, JAXA has the radical idea to send a transforming rover to the Moon. The data this rover collects will be used to inform the design of a pressurized rover that will allow for a sustained human presence on the Moon.

Continue reading “Lunar Rovers! Transform and Roll Out!”

JAXA Using Water Bottle Technology for Sample-Return Missions From the ISS

Artist's impression of the HRSC-II reentering Earth's atmosphere. Credit: JAXA

The International Space Station (ISS) is not only the largest and most sophisticated orbiting research facility ever built, it is arguably the most important research facility we have. With its cutting-edge facilities and microgravity environment, the ISS is able to conduct lucrative experiments that are leading to advances in astrobiology, astronomy, medicine, biology, space weather and meteorology, and materials science.

Unfortunately, the cost of transporting experiments to and from the ISS is rather expensive and something only a handful of space agencies are currently able to do. To address this, the Japanese Aerospace Exploration Agency (JAXA) and Tiger Corporation partnered in 2018 to create a new type of container that would cut the cost of returning samples to Earth. With the success of their initial design, JAXA and Tiger are looking to create a reusable version that will allow for regular sample returns from the ISS.

Continue reading “JAXA Using Water Bottle Technology for Sample-Return Missions From the ISS”

Animation Shows how Saturn’s Rings Move at Different Speeds

Saturn's F ring is extremely narrow compared to the historic A, B and C rings. It measure just a few hundred kilometers across. Credit: NASA/Cassini

Saturn’s rings are one of the most recognized and revered celestial objects known to the human race. From a distance, they look like a disk of layered crystal or multicolored disks within disks that wrap around Saturn’s hazy umber face. When viewed up close, we see that these rings are actually particles of water ice (from microns to icebergs), as well as silicates, carbon dioxide, and ammonia.

We would also noticed that the rings have some interesting orbital mechanics. In fact, each ring has a different orbit that is the result of its proximity to Saturn (i.e., the closer they are, the faster they orbit). To illustrate what this complex system look like, NASA Fellow Dr. James O’Donoghue created a stunning animation that shows how each of Saturn’s major ring segments (A-Ring to F-Ring) orbit together around the planet.

Continue reading “Animation Shows how Saturn’s Rings Move at Different Speeds”

OSIRIS-REx Did One Last Close Flyby of Asteroid Bennu. It’s Almost Time to Come Home

After more than two years in orbit around asteroid Bennu, NASA’s OSIRIS-REx spacecraft is ready to come home. It’s bringing with it a pristine sample of space rocks that geologists here on Earth are eager to study up close. The sample will arrive in September 2023, but we won’t have to wait nearly that long for new data from OSIRIS-REx. Last week, the probe carried out one final flyby of Bennu, in an effort to photograph the sample collection site. The photographs are being downlinked now, and should be here by midweek.

If you’ve been following the OSIRIS-REx mission, you probably already know why scientists are keen to see these photographs, but if you haven’t, hold on to your hats – it’s a wild story.

Continue reading “OSIRIS-REx Did One Last Close Flyby of Asteroid Bennu. It’s Almost Time to Come Home”

What Could We Learn From a Mission to Phobos?

Phobos. From where did it arise or arrive? Is it dry or wet? Should we flyby or sample and return? Should it be Boots or Bots? (Photos: NASA, Illus.:T.Reyes)

According to new research that appeared in the scientific journal Nature Geoscience, the larger of Mars’ two moons (Phobos) has an orbit that takes it through a stream of charged particles (ions) that flow from the Red Planet’s atmosphere. This process has been taking place for billions of years as the planet slowly lost its atmosphere, effectively establishing a record of Martian climate change on Phobos’ surface.

This research has provided yet another incentive for landing a mission on Phobos, something that has never been done successfully. In essence, this mission could gather sample data that would allow scientists to study this record more closely. In the process, they would be able to learn a great deal more about how Mars went from being a warmer world with liquid water to the extremely arid and cold environment it is today.

Continue reading “What Could We Learn From a Mission to Phobos?”

Japan to Launch ‘Wooden Satellite’ in 2023

woodsat

What a proposed wooden satellite could (and could not) accomplish.

A strange satellite proposal made at the end of 2020 by a Japanese company had many space pundits scratching their heads into 2021.

The proposal came out of Kyoto University in partnership with Sumitomo Forestry in Japan, though most of the information on the project comes from a BBC post quoting Japanese Aerospace Exploration Agency (JAXA) astronaut and Kyoto University professor Takao Doi, who flew aboard the U.S. space shuttle on missions STS-87 and STS-123 to the International Space Station. STS-123 delivered and installed JAXA’s Kib? module in 2008.

Continue reading “Japan to Launch ‘Wooden Satellite’ in 2023”

Even the Outside of Hayabusa 2’s Sample Capsule has Asteroid Debris on it

Hayabusa 2 artwork
An artist's conception shows Hayabusa 2's sample return capsule making its atmospheric re-entry as its mothership flies above. (JAXA Illustration)

On December 5th, 2020, the Japanese Aerospace Exploration Agency’s (JAXA) Hayabusa 2 mission sent a sample capsule home containing debris from the near-Earth asteroid (NEA) 162173 Ryugu. This was the culmination of the probe’s first six years in space, which launched in Dec. 2014 and rendezvoused with Ryugu in June 2018. While the probe sets its sights on its new targets, scientists will be busy analyzing the Ryugu sample.

One thing they noticed immediately after opening the shell on Monday (Dec. 21st) was the black sandy dust that lined the capsule’s outer shell. According to a statement issued by JAXA, the black sand is material taken from the surface of Ryugu. Considering what’s inside sample chamber A, it appears that the amount of material obtained by Hayabusa 2 is more substantial than previously thought.

Continue reading “Even the Outside of Hayabusa 2’s Sample Capsule has Asteroid Debris on it”

Hayabusa 2’s Sample is Landing on Earth December 6th

Image taken with Hayabusa2's CAM-H instrument on May 30th, 2019. Credit: JAXA

Japan’s Hayabusa 2 spacecraft is nearly back home, with precious cargo aboard! The sample-return mission departed asteroid Ryugu (162173 Ryugu) a little over a year ago, with soil samples and data that could provide clues to the early days of our Solar System. On December 6, 2020, the sample return container is set to land in the Australian outback.

Continue reading “Hayabusa 2’s Sample is Landing on Earth December 6th”