Pardon My Vomit: Zero G Ettiquette In the Age Of Space Tourism

Planning on a little space tourism? Better start training! Credit: barfology.com

It’s a new era for space travel. And if there’s one thing that sets it apart from the previous one, it is the spirit of collaboration that exists between space agencies and between the public and private sector. And with commercial aerospace (aka. NewSpace) companies looking to provide everything from launch services to orbital and lunar tourism, a day is fast-approaching when ordinary people will be able to go into space.

Because of this, many aerospace companies are establishing safety and training programs for prospective clients. If civilians plan on going into space, they need to have the benefit of some basic astronaut training. In short, they will need to learn how to go safely conduct themselves in a zero-gravity environment, with everything from how to avoid blowing chunks to how to relieve oneself in a tidy fashion.

In recent years, companies like Blue Origin, Virgin Galactic, Space Adventures, Golden Spike, and SpaceX have all expressed interest in making space accessible to tourists. The proposed ventures range from taking passengers on suborbital spaceflights – a la Virgin Galactic’s SpaceShipTwo – to trips into orbit (or the Moon) aboard a space capsule – a la Blue Origins’ New Shepard launch system.

Virgin Galactic’s SpaceShipTwo’s performing a glide flight. Credit: Virgin Galactic

And while these trips will not be cheap – Virgin Galactic estimates that a single seat aboard SpaceShipTwo will cost $250,000 – they absolutely have to be safe! Luckily, space agencies like NASA already have a very well-established and time-honored practice for training astronauts for zero-g. Perhaps the most famous involves flying them around in a Zero-Gravity Aircraft, colloquially known as the “Vomit Comet”.

This training program is really quite straightforward. After bringing astronaut trainees to an altitude of over 10,000 meters (32,000 feet), the plane begins flying in a parabolic arc. This consists of it climbing and falling, over and over, which causes the trainees to experience the feeling of weightlessness whenever the plane is falling. The name “vomit comet” (obviously) arises from the fact that passengers tend to lose their lunch in the process.

The Soviet-era space program also conducted weightlessness training, which Roscomos has continued since the collapse of the Soviet Union. Since 1984, the European Space Agency (ESA) has also conducts parabolic flights using a specially-modified Airbus A300 B2 aircraft. The Canadian Space Agency (CSA) has done the same since it was founded in 1989, relying on the Falcon 20 twin-engine jet.

Given the fact that NASA has been sending astronauts into space for nearly 60 years, they have certainly accrued a lot of experience in dealing with the effects of weightlessness. Over the short-term, these include space adaptation syndrome (SAS), which is also known as “space sickness”. True to its name, the symptoms of SAS include nausea and vomiting, vertigo, headaches, lethargy, and an overall feeling of unease.

Hawking has experienced zero gravity before, when he flew on Zero Gravity Corp’s modified Boeing 727 in 2007. Credit: Jim Campbell/Aero-News Network

Roughly 45% of all people who have flown in space have suffered from space sickness. The duration of varies, but cases have never been shown to exceed 72 hours, after which the body adapts to the new environment. And with the benefit of training, which includes acclimating to what weightlessness feels like, both the onset and duration can be mitigated.

Beyond NASA and other space agencies, private companies have also offered reduced gravity training to private customers. In 2004, the Zero Gravity Corporation (Zero-G, based in Arlington, Virginia) became the first company in the US to offer parabolic flights using a converted Boeing 727. In 2008, the company was acquired by Space Adventures, another Virginia-based space tourism company.

Much like Virgin Galactic, Space Adventures began offering clients advance bookings for sub-orbital flights, and has since expanded their vision to include lunar spaceflights. As such, the Zero-G experience has become their training platform, allowing clients the ability to experience weightlessness before going into space. In addition, some of the 700 clients who have already booked tickets with Virgin Galactic have used this same training method to prepare.

Similarly, Virgin Galactic is taking steps to prepare its astronauts for the day when they begin making regular flights into sub-orbit. According to the company, this will consist of astronauts taking part in a three day pre-flight preparation program that will be conducted onsite at Spaceport America – Virgin Galactic’s spaceflight facility, located in New Mexico.

Aside from microgravity, their astronaut training will also emphasize how to function when experiencing macrogravity (i.e. multi-g forces), which occur during periods of acceleration. The training will also include medical check-ups, psychological evaluations, and other forms of pre-flight prepation – much in the same way that regular astronauts are prepared for their journey. As they state on their website:

“Pre-flight preparation will ensure that each astronaut is mentally and physically prepared to savor every second of the spaceflight. Basic emergency response training prescribed by our regulators will be at the forefront. Activities to aid familiarity with the spaceflight environment will follow a close second.”

Blue Origin, meanwhile, has also been addressing concerns with regards to its plan to start sending tourists into suborbit in their New Shepard system. After launching from their pad outside of El Paso, Texas, the rocket will fly customers to an altitude of 100 km (62 mi) above the Earth. During this phase, the passengers will experience 3 Gs of acceleration – i.e. three times what they are used to.

Once it reaches space, the capsule will then detach from the rocket. During this time, the passengers will experience a few minutes of weightlessness. Between the intense acceleration and the feeling of freefall, many have wondered if potential clients should be worried about space sickness. These questions have been addressed by former NASA astronaut Nicholas Patrick, who now serves as Blue Origin’s human integration architect.

During an interview with Geekwire in January of 2017, he indicated that they plan to provide barf bags for customers to tuck into their flight suits, just in case. This is similar to what astronauts do aboard the International Space Station (see video above) and during long-term spaceflights. When asked about what customers could do to prepare for space sickness, he also emphasized that some training would be provided:

“It’s a short flight, so we won’t be asking people to train for a year, the way NASA astronauts trained for a shuttle flight, or three years, the way they train for a long space station mission. We’re going to get this training down to a matter of days, or less. That’s because we don’t have very many tasks. You need to know how to get out of your seat gracefully, and back into your seat safely.

“We’ll teach you a few safety procedures, like how to use the fire extinguisher – and maybe how to use the communication system, although that will come naturally to many people. What we’ll probably spend some time on is training people how to enjoy it. What are they going to take with them and use up there? How are they going to play? How are they going to experiment? Not too much training, just enough to have fun.”

“Getting sick to your stomach can be a problem on zero-G airplane flights like NASA’s “Vomit Comet,” but motion sickness typically doesn’t come up until you’ve gone through several rounds of zero-G. Blue Origin’s suborbital space ride lasts only 11 minutes, with a single four-minute dose of weightlessness.”

Bezos also addressed these questions in early April during the 33rd Space Symposium in Colorado Springs, where his company was showcasing the New Shepard crew capsule. Here too, audience members had questions about what passengers should do if they felt the need to vomit (among the other things) in space.

“They don’t throw up right away,” he said, referring to astronauts succumbing to space sickness. “We’re not going to worry about it… It takes about three hours before you start to throw up. It’s a delayed effect. And this journey takes ten or eleven minutes. So you’re going to be fine.”

On April 27th, during a special Q&A session of Twitch Science Week, Universe Today’s own Fraser Cain took part in a panel discussion about the future of space exploration. Among the panelists were and Ariane Cornell, the head of Astronaut Strategy and Sales for Blue Origin. When the subject of training and etiquette came up, she described the compact process Blue Origins intends to implement to prepare customers for their flight:

“[T]he day before flight is when we give you a full – intense, but very fun – day of training. So they are going to teach you all the crucial things that you need. So ingress, how do you get into the capsule, how do you buckle in. Egress, how do you get out of the seat, out of the hatch. We’re going to teach you some emergency procedures, because we want to make sure that you guys are prepared, and feel comfortable. We’re also going to teach you about zero-g etiquette, so then when we’re all up there and we’re doing our somersaults, you know… no Matrix scenes, no Kung Fu fighting – you gotta make sure that everybody gets to enjoy the flight.”

When asked (by Fraser) if people should skip breakfast, she replied:

“No. It’s the most important meal of the day. You’re going to want to have your energy and we’re pretty confident that you’re going to have a good ride and you’re not going to feel nauseous. It’s one parabola. And when we’ve seen people, for example, when they go on rides on NASA’s “Vomit Comet”… What we’ve seen from those types of parabolic flights is that people – if they get sick – its parabola six, seven, eight. It’s a delayed effect, really. We think that with that one parabola – four minutes – you’re going to enjoy every second of it.”

Another interesting issue was addressed during the 33rd Space Symposium was whether or not the New Shepard capsule would have “facilities”. When asked about this, Bezos was similarly optimistic. “Go to the bathroom in advance,” he said, to general laughter. “If you have to pee in 11 minutes, you got problems.” He did admit that with boarding, the entire experience could take up to 41 minutes, but that passengers should be able to wait that long (fingers crossed!)

But in the event of longer flights, bathroom etiquette will need to be an issue. After all, its not exactly easy to relieve oneself in an environment where all things – solid and liquid – float freely and therefore cannot simply be flushed away. Luckily, NASA and other space agencies have us covered there too. Aboard the ISS, where astronauts have to relieve themselves regularly, waste-disposal is handled by “zero-g toilets”.

Similar to what astronauts used aboard the Space Shuttle, a zero-g toilet involves an astronaut fastening themselves to the toilet seat. Rather than using water, the removal of waste is accomplished with a vacuum suction hole. Liquid waste is transferred to the Water Recovery System, where it is converted back into drinking water (that’s right, astronauts drink their own pee… sort of).

Solid waste is collected in individual bags that are stored in an aluminum container, which are then transferred to the docked spacecraft for disposal. Remember that scene in The Martian where Mark Watney collected his crew members solid waste to use as fertilizer? Well, its much the same. Poo in a bag, and then let someone remove it and deal with it once you get home.

When it comes to lunar tourism, space sickness and waste disposal will be a must. And when it comes to Elon Musk’s plan to start ferrying people to Mars in the coming decades – aboard his Interplanetary Transportation System – it will be an absolute must! It will certainly be interesting to see how those who intend to get into the lunar tourism biz, and those who want to colonize Mars, will go about addressing these needs.

In the meantime, keep your eyes on the horizon, keep your barf bags handy, and make sure your zero-g toilet has a tight seal!

Sources:

SpaceX Just Re-Used a Rocket. Why This Changes Everything

SpaceX Just Re-Used a Rocket. Why This Changes Everything
SpaceX Just Re-Used a Rocket. Why This Changes Everything

On March 30, 2017, SpaceX performed a pretty routine rocket launch. The payload was a communications satellite called SES-10, owned by a company in Luxembourg. And if all goes well, the satellite will eventually make its way to a high orbit of 35,000 km (22,000 miles) and deliver broadcasting and television services to Latin America.

For all intents and purposes, this is an absolutely normal, routine, and maybe even boring event in the space industry. Another chemical rocket blasted off another communications satellite to join the thousands of satellites that have come before.

Of course, as you probably know, this wasn’t a routine launch. It was the first step in one of the most important achievements in space flight – launch reusability. This was the second time the 14-story Falcon 9 rocket had lifted off and pushed a payload into orbit. Not Falcon 9s in general, but this specific rocket was reused.

SpaceX Falcon 9 booster successfully lands on droneship after blastoff on Dragon CRS-8 mission to ISS for NASA on April 8, 2016. Credit: SpaceX

In a previous life, this booster blasted off on April 8, 2016 carrying CRS-8, SpaceX’s 8th resupply mission to the International Space Station. The rocket launched from Florida’s Cape Canaveral, released its payload, re-entered the atmosphere and returned to a floating robotic barge in the Atlantic Ocean called Of Course I Still Love You. That’s a reference to an amazing series of books by Iain M. Banks.

Why is this such an amazing accomplishment? What does the future hold for reusability? And who else is working on this?

Developing a rocket that could be reused has been one of the holy grails of the space industry, and yet, many considered it an engineering accomplishment that could never be achieved. Trust me, people have tried in the past.

Portions of the space shuttle were reused – the orbiter and the solid rocket boosters. And a few decades ago, NASA tried to develop the X-33 as a single stage reusable rocket, but ultimately canceled the program.

The proposed X-33 spacecraft. Credit: NASA

To reuse a rocket makes total sense. It’s not like you throw out your car when you return from a road trip. You don’t destroy your transatlantic airliner when you arrive in Europe. You check it out, do a little maintenance, refuel it, fill it with passengers and then fly it again.

According to SpaceX founder Elon Musk, a brand new Falcon 9 first stage costs about $30 million. If you could perform maintenance, and then refill it with fuel, you’d bring down subsequent launches to a few hundred thousand dollars.

SpaceX is still working out what a “flight-tested” launch will cost on a reused Falcon 9 will cost, but it should turn into a significant discount on SpaceX’s already aggressive prices. If other launch providers think they’re getting undercut today, just wait until SpaceX really gets cranking with these reused rockets.

For most kinds of equipment, you want them to have been re-used many times. Cars need to be taken to the test track, airplanes are flown on many flights before passengers ever climb inside. SpaceX will have an opportunity to test out each rocket many times, figuring out where they fail, and then re-engineering those components.  This makes for more durable and safer launch hardware, which I suspect is the actual goal here – safety, not cost.

In addition to the first stage, SpaceX also re-used the satellite fairing. This is the covering that makes the payload more aerodynamic while the rocket moves through the lower atmosphere. The fairing is usually ejected and burns up on re-entry, but SpaceX has figured out how to recover that too, saving a few more million.

SpaceX’s goals are even more ambitious. In addition to the first stage booster and launch fairing, SpaceX is looking to reuse the second stage booster. This is a much more complicated challenge, because the second stage is going much faster and needs to lose a lot more velocity. In late 2014, they put their plans on hold for a second stage reuse.

SpaceX’s next big milestone will be to decrease the reuse time. From almost a year to under 24 hours.

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: SpaceX

Sometime this year, SpaceX is expected to do the first launch of the Falcon Heavy. A launch system that looks like it’s made up of 3 Falcon-9 rockets bolted together. Since that’s basically what it is.

The center booster is a reinforced Falcon-9, with two additional Falcon-9s as strap-on boosters. Once the Falcon Heavy lifts off, the three boosters will detach and will individually land back on Earth, ready for reassembly and reuse. This system will be capable of carrying 54,000 kilograms into low Earth orbit. In addition, SpaceX is hoping to take the technology one more step and have the upper stage return to Earth.

Imagine it. Three boosters and upper stage and payload fairing all returning to Earth and getting reused.

And waiting in the wings, of course, is SpaceX’s huge Interplanetary Transport System, announced by Elon Musk in September of 2016. The super-heavy lift vehicle will be capable of carrying 300,000 kilograms into low Earth orbit.

The Interplanetary Transport System blasting off. Credit: SpaceX

For comparison, the Apollo era Saturn V could carry 140,000 kg into low Earth orbit, so this thing will be much much bigger. But unlike the Saturn V, it’ll be capable of returning to Earth, and landing on its launch pad, ready for reuse.

SpaceX just crossed a milestone, but they’re not the only player in this field.

Perhaps the biggest competitor to SpaceX comes from another internet entrepreneur: Amazon’s Jeff Bezos, the 2nd richest man in the world after Bill Gates. Bezos founded his own rocket company, Blue Origin in Seattle, which had been working in relative obscurity for the last decade. But in the last few years, they demonstrated their technology for reusable rocket flight, and laid out their plans for competing with SpaceX.

The New Shepard launching from its facility in West Texas. Image: Blue Origin
The New Shepard rocket launching from its facility in West Texas. Image: Blue Origin

In April 2015, Blue Origin launched their New Shepard rocket on a suborbital trajectory. It went up to an altitude of about 100 km, and then came back down and landed on its launch pad again. It made a second flight in November 2015, a third flight in April 2016, and a fourth flight in June 2016.

That does sound exciting, but keep in mind that reaching 100 km in altitude requires vastly less energy than what the Spacex Falcon 9 requires. Suborbital and orbital are two totally milestones. The New Shepard will be used to carry paying tourists to the edge of space, where they can float around weightlessly in the vomit of the other passengers.

But Blue Origin isn’t done. In September 2016, they announced their plans for the follow-on New Glenn rocket. And this will compete head to head with SpaceX. Scheduled to launch by 2020, like, within 3 years or so, the New Glenn will be an absolute monster, capable of carrying 45,000 kilograms of cargo into low Earth orbit. This will be comparable to SpaceX’s Falcon Heavy or NASA’s Space Launch System.

The New Glenn spacecraft. Credit: Blue Origin

Like the Falcon 9, the New Glenn will return to its launch pad, ready for a planned reuse of 100 flights.

A decade ago, the established United Launch Alliance – a consortium of Boeing and Lockheed-Martin – was firmly in the camp of disposable launch systems, but even they’re coming around to the competition from SpaceX. In 2014, they began an alliance with Blue Origin to develop the Vulcan rocket.

Rendering of the ULA Vulcan rocket blasting off. United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

The Vulcan will be more of a traditional rocket, but some of its engines will detach in mid-flight, re-enter the Earth’s atmosphere, deploy parachutes and be recaptured by helicopters as they’re returning to the Earth. Since the engines are the most expensive part of the rocket, this will provide some cost savings.

There’s another level of reusability that’s still in the realm of science fiction: single stage to orbit. That’s where a rocket blasts off, flies to space, returns to Earth, refuels and does it all over again. There are some companies working on this, but it’ll be the topic for another episode.

Now that SpaceX has successfully launched a first stage booster for the second time, this is going to become the new normal. The rocket companies are going to be fine tuning their designs, focusing on efficiency, reliability, and turnaround time.

These changes will bring down the costs of launching payloads to orbit. That’ll mean it’s possible to launch satellites that were too expensive in the past. New scientific platforms, communications systems, and even human flights become more reasonable and commonplace.

Of course, we still need to take everything with a grain of salt. Most of what I talked about is still under development. That said, SpaceX just reused a rocket. They took a rocket that already launched a satellite, and used it to launch another satellite.

It’s a pretty exciting time, and I can’t wait to see what happens next.

Now you know how I feel about this accomplishment, I’d like to hear your thoughts. Do you think we’re at the edge of a whole new era in space exploration, or is this more of the same? Let me know your thoughts in the comments.

Take a Peek Inside Blue Origin’s New Shepard Crew Capsule

Take a peek inside Blue Origin's New Shepard crew capsule. Credit: Blue Origin.

Blue Origin founder Jeff Bezos provided a sneak peek today into the interior of the New Shepard crew capsule, the suborbital vehicle for space tourism. He released a few images which illustrate what the flight experience might be like on board.

“Our New Shepard flight test program is focused on demonstrating the performance and robustness of the system,” Bezos said via an email release. “In parallel, we’ve been designing the capsule interior with an eye toward precision engineering, safety, and comfort.”

Take a look:

A view of the interior of the New Shepard crew capsule from Blue Origin. Credit: Blue Origin.

The interior has six seats with large windows for a great view of our planet.

“Every seat’s a window seat,” Bezos said.

What looks like a console in the center of the capsule is actually the escape motor to protect future passengers from any anomaly during launch. Unlike the Apollo escape system that used an escape “tower” motor located on top of the capsule to ‘pull’ the crew cabin away from a failing booster, New Shepard’s escape system is mounted underneath the capsule, to ‘push’ the capsule away from a potentially exploding booster. Blue Origin successfully tried out this escapes motor in October 2016 during an in-flight test.

Blue Origin touts the view from the New Shepard crew capsule as ‘the largest windows ever in space.’ Credit: Blue Origin.

Blue Origin’s suborbital rocket is named after Alan Shepard, the first NASA astronaut to take a suborbital trip to space in 1961. Their orbital rocket will be named New Glenn, named for John Glenn, the first American in orbit. Blue Origin is also developing a larger rocket to bring payloads beyond Earth orbit, and they’ve named that vehicle after Neil Armstrong, the first human to walk on the Moon.

Blue Origin hasn’t released a timeline yet of when they will be flying their first paying passengers; all Bezos has said is that he hopes to fly as soon as possible.

The commercial company describes the experience this way:

Following a thrilling launch, you’ll soar over 100 km above Earth—beyond the internationally recognized edge of space. You’ll help extend the legacy of space explorers who have come before you, while pioneering access to the space frontier for all.

Sitting atop a 60-foot-tall rocket in a capsule designed for six people, you’ll feel the engine ignite and rumble under you as you climb through the atmosphere. Accelerating at more than 3 Gs to faster than Mach 3, you will count yourself as one of the few who have gone these speeds and crossed into space.

Blue Origin’s black feather logo on the New Shepard rocket is ‘a symbol of the perfection of flight,’ says founder Jeff Bezos. Credit: Blue Origin.

“We are building Blue Origin to seed an enduring human presence in space, to help us move beyond this blue planet that is the origin of all we know,” Bezos said in the press release after a successful test flight of the New Shepard rocket in 2015. “We are pursuing this vision patiently, step-by-step. Our fantastic team in Kent, Van Horn and Cape Canaveral is working hard not just to build space vehicles, but to bring closer the day when millions of people can live and work in space.”

Blue Origin’s black feather logo on the New Shepard rocket is ‘a symbol of the perfection of flight,’ says founder Jeff Bezos, and “flight with grace and power in its functionality and design.”

Their moto, “Gradatim Ferociter” is Latin for “Step by Step, Ferociously.” Bezos has said that is how they are approaching their goals in spaceflight.

Find out more about the Blue Origin “Astronaut Experience” on their website.

If you’re lucky enough to be attending the 33rd Space Symposium in Colorado Springs April 3-6, 2017, you can see the New Shepard capsule for yourself. “The high-fidelity capsule mockup will be on display alongside the New Shepard reusable booster that flew to space and returned five times.” Bezos said.

Odds Are Blue Origin Launch Test Will End In Fiery Destruction: Watch Live

New Shepard Pusher Escape System. Credit: Blue Origin.

The last time an in-flight escape system test for a crew capsule took place was during the Apollo program, in 1966. Now, you can watch live as Blue Origin tests the escape system for their New Shepard rocket on Wednesday, October 5, 2016 at 10:45 a.m. ET. The test was originally planned for today (Tuesday) but was postponed because of inclement weather.

You can watch live here:

As founder Jeff Bezos described the test, “Our next flight is going to be dramatic, no matter how it ends.” If all goes well, the crew capsule (empty, this time) should land rather gently. The likely end for the rocket booster, however, will be its destruction in a ball of flames.

Dramatic, indeed.

The New Shepard launching from its facility in West Texas. Image: Blue Origin
The New Shepard rocket launching from its facility in West Texas. Image: Blue Origin

Although the New Shepard has already launched successfully four times since November 2015, this fifth flight will test the system to protect future passengers from any anomaly during launch. Unlike the Apollo escape system that used an escape “tower” motor located on top of the capsule to ‘pull’ the crew cabin away from a failing booster, New Shepard’s escape system is mounted underneath the capsule, to ‘push’ the capsule away from a potentially exploding booster.

As the video below from Blue Origin explains, “Like the airbag in your car, this full envelope capsule escape system is always there if needed.” Bezos also described the test in an email:

About 45 seconds after liftoff at about 16,000 feet, we’ll intentionally command escape. Redundant separation systems will sever the crew capsule from the booster at the same time we ignite the escape motor. The escape motor will vector thrust to steer the capsule to the side, out of the booster’s path. The high acceleration portion of the escape lasts less than two seconds, but by then the capsule will be hundreds of feet away and diverging quickly. It will traverse twice through transonic velocities – the most difficult control region – during the acceleration burn and subsequent deceleration. The capsule will then coast, stabilized by reaction control thrusters, until it starts descending. Its three drogue parachutes will deploy near the top of its flight path, followed shortly thereafter by main parachutes.

While SpaceX successfully tested their escape system in May 2015, it wasn’t an in-flight test. The Crew Dragon spacecraft abort system was launched off a specially built platform at Cape Canaveral Air Force Station’s Space Launch Complex 40 in Florida. The engines fired for about six seconds, instantly producing about 15,000 pounds of thrust each and lifting the spacecraft out over the Atlantic Ocean and parachuting safely into the water.

Bezos said that while they’d really like to retire this New Shepard booster and put it in a museum, that’s probably not a possibility.

New Shepard comes in for a landing with drag brakes and landing gear deployed. Image: Blue Origin.
New Shepard comes in for a landing with drag brakes and landing gear deployed. Image: Blue Origin.

“It’s the first ever rocket booster to fly above the Karman line into space and then land vertically upon the Earth,” he said. “But the booster was never designed to survive an in-flight escape. The capsule escape motor will slam the booster with 70,000 pounds of off-axis force delivered by searing hot exhaust. The aerodynamic shape of the vehicle quickly changes from leading with the capsule to leading with the ring fin, and this all happens at maximum dynamic pressure.”

Monte Carlo simulations show there’s some chance the booster can survive those stresses and land vertically as it’s done previously. But probably not. There will still be propellant on board and if it lands hard, as expected, Bezos said “its impact with the desert floor will be most impressive.”

You can access the live feed on Blue Origin’s website.

Blue Origin Goes Big With New Glenn Rocket

Size comparison between the New Glenn and all other rockets currently in operations (with the Saturn V for comparison). Credit: Blue Origin

Space exploration is becoming a lucrative domain for private aerospace companies (aka. the NewSpace industry). With opportunities for launch and resupply services growing, costs dwindling, and the cancellation of the Space Shuttle Program, private companies have been stepping up in recent years to provide their own launch vehicles and services to fill the gap.

Take Jeff Bezos, for example. Back in 2000, the founder of Amazon.com created Blue Origin to fulfill his lifelong dream of colonizing space. For years, Bezos and the company he founded have been working to produce their own fleet of reusable rockets. And as of the morning of Monday, Sept. 12th, he unveiled their newest and heaviest rocket – the New Glenn.

Much like SpaceX, Blue Origin has been committed to the creation of reusable rocket technology. This was made clear with the development of the New Shepard suborbital rocket, which was unveiled in 2006. Named in honor of the first American astronaut to go into space (Alan Shepard), this rocket made its first flight in April of 2015 and has had an impressive record, nailing four out of five soft landings in the space of just over a year.

New Shepard comes in for a landing with drag brakes and landing gear deployed. Image: Blue Origin.
New Shepard comes in for a landing with drag brakes and landing gear deployed. Credit: Blue Origin.

With the New Glenn – named in honor of astronaut John Glenn, the first American astronaut to orbit the Earth – the company now intends to take the next step, offering launch services beyond Low-Earth Orbit (LEO) and for crewed missions. As Bezos said during the press conference:

“New Glenn is designed to launch commercial satellites and to fly humans into space. The three-stage variant-with its high specific impulse hydrogen upper stage—is capable of flying demanding beyond-LEO missions.”

According to Bezos, Blue Origin will have both a two-stage and three-stage variant of the rocket. Whereas the two-stage will provide heavier lift capacity to LEO, the three-stage will be able to reach further, and will the company’s go-to when sending crewed missions into space. Work on the rocket began back in 2012, and the company hopes to make their first launch prior to 2020.

As Bezos said during the unveiling, this rocket carries on in the same tradition that inspired the creation of the New Shepard:

“Building, flying, landing, and re-flying New Shepard has taught us so much about how to design for practical, operable reusability. And New Glenn incorporates all of those learnings. Named in honor of John Glenn, the first American to orbit Earth, New Glenn is 23 feet in diameter and lifts off with 3.85 million pounds of thrust from seven BE-4 engines. Burning liquefied natural gas and liquid oxygen, these are the same BE-4 engines that will power United Launch Alliance’s new Vulcan rocket.”

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-7 mission for the U.S. Air Force launches from Cape Canaveral Air Force Station, Fl, on July 23, 2015. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Delta IV rocket launching from Cape Canaveral Air Force Station, Fl, on July 23rd, 2015. Credit: Ken Kremer/kenkremer.com

The rocket will have a sea-level thrust of 1.746 million kg (3.85 million lbs), placing it ahead of the Delta IV Heavywhich has a sea-level thrust of about 900,000 kg (2 million lbs) – but behind the 2.268 million kg (5 million lbs) of the Falcon Heavy. Both variants will be powered by BE-4 engines, which are also manufactured by Blue Origin. The third-stage also employs a single vacuum-optimized BE-3 engine that burns liquid hydrogen and liquid oxygen.

However, the most interesting facet of the New Glenn is the fact that it will be reusable, with its first stage providing braking thrust and deployable legs (similar to the Falcon 9). In creating a heavy lift rocket that employs a retrievable first-stage, Blue Origin has signaled its intent to give SpaceX a run for its money when it comes to the development of reusable rocket technology.

It is also likely to raise the company’s profile, which has so far been limited to conducting sub-orbital research for NASA and dabbling in the space-tourism industry. But once the New Glenn is up and running, it is likely to begin securing contracts to provide resupply services the ISS, as well as contracts with companies and research institutions to place satellites in orbit.

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: spacex.com
The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: spacex.com

According to The Verge, Bezos also hinted that his company has another project in mind – called the New Armstrong. While no details have been given just yet, the name of this rocket is a clear allusion to the Moon Landing, and hints that the company may have designs on possible moon missions in the coming decades.

This is an exciting time for the NewSpace industry. In the coming months, SpaceX is expected to conduct the first launch of the Falcon Heavy, which will be the most powerful rocket built in the US since the retirement of the Apollo program’s Saturn V launcher. And if they keep to their current schedule, Blue Origin will be following this in a few years time with the launch of the largest rocket of the post-Apollo era.

Big rockets and big lift capacities can mean only thing: big things lie ahead of us!

Further Reading: ArsTechnica, The Verge, Blue Origin

Bezos Is Building A House For His Big Brother

Artist concept of Blue Origin's 750,000 square foot spacecraft factory. Credit: Blue Origin.

Blue Origin and its founder Jeff Bezos do a little one-upmanship on the old saying, “go big or go home.” With the groundbreaking of their new orbital vehicle manufacturing complex, they are going big AND going home. The new facility will be located near Kennedy Space Center in Florida and will house Blue Origin’s orbital launch vehicle, which Bezos has sometimes referred to as “Very Big Brother.” The new facility has a planned grand opening of December 2017.

Site preparation for Blue Origin's new orbital vehicle manufacturing complex in Florida. Credit: Blue Origin.
Site preparation for Blue Origin’s new orbital vehicle manufacturing complex in Florida. Credit: Blue Origin.

Blue Origin announced the plans for the complex in September 2015, and bulldozers started clearing ground this week (June 28, 2016). The facility will be where Blue Origin manufactures, processes, integrates and tests its rockets.

“It’s exciting to see the bulldozers in action,” Bezos wrote in an email update. “We’re clearing the way for the production of a reusable fleet of orbital vehicles that we will launch and land, again and again.”

Bezos said the 750,000 square foot (70,000 sq. meter) building will be “custom-built from the ground up” and will enable “large scale friction stir welding and automated composite processing equipment,” among other things.

The entire launch vehicle will be manufactured in this new facility except for the engines, the BE-4 — which Blue Origin says will be flight qualified by 2017 — and are currently produced in Blue Origin’s Kent, Washington facility. But they plan to build a new, larger engine production facility to accommodate their projected need for higher production rates, and they will conduct a site selection process for that facility later this year.

Another artist concept of Blue Origin's orbital vehicle manufacturing complex in Florida. Credit: Blue Origin.
Another artist concept of Blue Origin’s orbital vehicle manufacturing complex in Florida. Credit: Blue Origin.

Another little one-upmanship: Blue Origin’s new facility will best SpaceX’s main factory, which is about 550,000 square feet (51,000 sq. meters). SpaceX’s Hawthorne, California building was originally used by Northrup Aircraft to build 747 fuselages (although, SpaceX’s total campus of buildings in Hawthorne is over 1.6 million square feet.)

Very Big Brother (VBB) will get an official name at some point, but it will be a vertical takeoff, vertical landing (VTVL) system, like Blue Origin’s smaller suborbital New Shepard rocket. The plan is to have VBB’s lower stage be reusable and the upper stage be expendable.

For launches, Blue Origin will share Cape Canaveral Air Force Station’s Space Launch Complex 36 with Google Lunar X PRIZE team Moon Express (MoonEx).

The New Shepard launching from its facility in West Texas. Image: Blue Origin
The New Shepard rocket launching from its facility in West Texas. Image: Blue Origin

Boeing Rejects Aerojet Rocketdyne Bid for ULA and Affirms Vulcan Rocket Support, Lockheed Martin Noncommittal

Rendering of the ULA Vulcan rocket blasting off. United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

Boeing has officially and publicly rejected a bid by Aerojet Rocketdyne to buy rocket maker United Launch Alliance (ULA), which the firm co-owns with rival aerospace giant Lockheed Martin. Furthermore Boeing affirmed support for ULA’s new next generation Vulcan rocket now under development, a spokesperson confirmed to Universe Today.

Aerojet Rocketdyne, which supplies critical rocket engines powering ULA’s fleet of Atlas and Delta rockets, recently made an unsolicited offer to buy ULA for approximately $2 Billion in cash, as Universe Today reported last week.

The Vulcan is planned to replace all of ULA’s existing rockets – which are significantly more costly than those from rival launch provider SpaceX, founded by billionaire entrepreneur Elon Musk.

Boeing never “seriously entertained” the Aerojet-Rocketdyne buyout offer, Universe Today confirmed with Boeing spokesperson Cindy Anderson.

Meanwhile in stark contrast to Boeing, Lockheed Martin has “no comment” regarding the Aerojet-Rocketdyne offer to buy ULA, Universe Today confirmed with Lockheed Martin Director External Communications Matt Kramer.

Furthermore Lockheed Martin is not only noncommittal about the future of ULA but is also “currently assessing our options” concerning the development of ULA’s Vulcan rocket, Kramer told me.

“With regard to reports of an unsolicited proposal for ULA, it is not something we seriously entertained for a number of reasons,” Boeing spokesperson Anderson told Universe Today.

“Regarding Aerojet and ULA, as a matter of policy Lockheed Martin does not have a comment,” Lockheed Martin spokesman Kramer told Universe Today.

Vulcan - United Launch Alliance (ULA)  next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

ULA was formed in 2006 as a 50:50 joint venture between Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

Who owns ULA is indeed of significance to all Americans – although most have never head of the company – because ULA holds a virtual monopoly on launches of vital US government national security payloads and the nation’s most critical super secret spy satellites that safeguard our national defense 24/7. ULA’s rocket fleet also launched scores of NASA’s most valuable science satellites including the Curiosity Mars rover, Dawn and New Horizons Pluto planetary probe.

Since 2006 ULA has enjoyed phenomenal launch success with its venerable fleet of Atlas V and Delta IV rockets.

“ULA is a huge part of our strategic portfolio going forward along with our satellites and manned space business. This bid we’ve really not spent much time on it at all because we’re focusing on a totally different direction,” said Chris Chadwick, president and chief executive of Boeing Defense, Space & Security, on Sept. 16 at the Air Force Association’s annual technology expo in National Harbor, Maryland – according to a report by Space News.

Boeing offered strong support for ULA and the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space that can propel payloads to low Earth orbit as well as throughout the solar system – including Pluto. It is slated for an inaugural liftoff in 2019.

Vulcan’s continued development is being funded by Lockheed Martin and Boeing, but only on a quarterly basis.

The key selling point of Vulcan is that it will be an all American built rocket and it will dramatically reduce launch costs to compete toe to toe with the SpaceX Falcon rocket family.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” ULA VP Dr. George Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

And there is a heated competition on which of two companies will provide the new American built first stage engine that will replace the Russian-built RD-180 that currently powers the ULA Atlas V.

Vulcan’s first stage will most likely be powered by the BE-4 engine being developed by the secretive Blue Origin aerospace firm owned by billionaire Jeff Bezos.

This week ULA announced an expanded research agreement with Blue Origin about using the BE-4.

But ULA is also evaluating the AR-1 liquid fueled engine being developed by Aerojet-Rocketdyne – the company that wants to buy ULA.

The Atlas V dependence on Russia’s RD-180’s landed at the center of controversy after Russia invaded Crimea in the spring of 2014, raising the ire of Congress and enactment of a ban on their use several years in the future.

ULA is expected to make a final decision on which first stage engine to use between Blue Origin and Aerojet-Rocketdyne, sometime in 2016.

The engine choice would clearly be impacted if Aerojet-Rocketdyne buys ULA.

Boeing for its part says they strongly support ULA and continued development of the Vulcan.

“Boeing is committed to ULA and its business, and to continued leadership in all aspects of space, as evidenced by the recent announcement of an agreement with Blue Origin,” Boeing spokesperson Anderson told me.

Lockheed Martin in complete contrast did not express any long term commitment to Vulcan and just remarked they were merely “actively evaluating continued investment,” as is their right as a stakeholder.

“We have made no long-term commitments on the funding of a new rocket, and are currently assessing our options. The board is actively evaluating continued investment in the new rocket program and will continue to do so,” Lockheed Director, External Communications Matt Kramer told Universe Today.

Another factor is that Aerojet-Rocketdyne has also sought to buy the rights to manufacture the Atlas V from ULA, which is currently planned to be retired several years after Vulcan is introduced, officials have told me.

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
Aerojet-Rocketdyne made a bid to buy ULA, manufacturer of the Atlas V, for approximately $2 Billion. MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

The Atlas V enjoys unparalleled success. Earlier this month on Sept. 2, ULA conducted its 99th launch with the successful blastoff of an Atlas V with the MUOS-4 military communications satellite from Cape Canaveral Air Force Station for the U.S. Navy.

Boeing has also chosen the Atlas V as the launcher that will soon propel Americans astronauts riding aboard the commercially developed Boeing CST-100 ‘Starliner’ taxi to the Earth-orbiting International Space Station (ISS).

Starliner will eventually blastoff atop Vulcan after the Atlas V is retired in the next decade.

Lockheed provided me this update on Vulcan and ULA on Sept 21:

“Lockheed Martin is proud of ULA’s unparalleled track record of mission success, with 99 consecutive successful launches to date. We support the important role ULA plays in providing the nation with assured access to space. ULA’s Vulcan rocket takes the best performance elements of Atlas and Delta and combines them in a new system that will be superior in reliability, cost, weight, and capability. The government is working to determine its strategy for an American-made engine and future launch services. As they make those determinations we’ll adjust our strategy to make sure we’re aligned with the government’s objectives and goals.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

First view of upper half of the Boeing CST-100 'Starliner' crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
First view of upper half of the Boeing CST-100 ‘Starliner’ crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

Genesis of ULA’s New Vulcan Rocket Borne of Fierce Commercial and Political Pressures: Interview

Rendering of the ULA Vulcan rocket blasting off. United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

Fierce commercial and international political pressures have forced the rapid development of the new Vulcan launcher family recently announced by rocket maker United Launch Alliance (ULA). Vulcan’s “genesis” and development was borne of multiple unrelenting forces on ULA and is now absolutely essential and critical for its “transformation and survival in a competitive environment” moving forward, according to Dr. George Sowers, ULA Vice President for Advanced Concepts and Technology, in an exclusive interview with Universe Today.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” Dr. Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space and slated for an inaugural liftoff in 2019.

Faced with the combined challenges of a completely changed business and political environment emanating powerfully from new space upstart SpaceX offering significantly reduced launch costs, and continuing uncertainty over the future supply of the Russian-made RD-180 workhorse rocket engines that power ULA’s venerable Atlas V rocket, after Russia’s annexation of Crimea, Sowers and ULA’s new CEO Tory Bruno were tasked with rapidly resolving these twin threats to the firms future well being – which also significantly impacts directly on America’s national security.

“Our current plan is to have the new Vulcan rocket flying by 2019,” Sowers stated.

Whereas ULA enjoyed a virtual US launch monopoly for many years, those days are now history thanks to SpaceX.

Vulcan - United Launch Alliance (ULA)’s next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

The Vulcan launcher was created in response to the commercial SpaceX Falcon 9 rocket, and it will combine the best features of ULA’s existing unmanned Atlas V and Delta IV booster product lines as well as being revamped with new and innovative American-made first stage engines that will eventually be reusable.

It will meet and exceed the capabilities of ULA’s current stable of launchers, including the Delta IV Heavy which recently launched NASA’s maiden Orion crew module on an unmanned test flight in Dec. 2014.

“We at ULA were faced with how do we take our existing products and transform them into a single fleet that enables us to do the entire range of missions on just one family of rockets.”

“So that was really the genesis of what we now call the “Vulcan” rocket. So this single family will be able to do everything [from medium to heavy lift],” Sowers told me.

Another requirement is that Vulcan’s manufacturing methodology be extremely efficient, slashing costs to make it cost competitive with the Space X Falcon 9. Sowers said the launcher would sell “for less than $100 million” at the base level.

“Vulcan will be the highest-performing, most cost-efficient rocket on the market. It will open up new opportunities for the nation’s use of space,” says ULA CEO Tory Bruno.

In its initial configuration Vulcan’s first stage will be powered by a revolutionary new class of cost effective and wholly domestic engines dubbed the BE-4, produced by Blue Origin.

It can be augmented by up to six solid rocket boosters, to propel high value payloads on missions ranging from low Earth orbit to interplanetary destinations for NASA, private industry and vital US national security interests.

Vulcan will also blast off with astronaut crews aboard the Boeing CST-100 space taxi bound for the International Space Station (ISS) in the early 2020s.

Cutaway diagram of ULA’s new Vulcan rocket powered by BE-4 first stage engines, six solid rocket motors and a 5 meter diameter payload fairing. Credit ULA
Cutaway diagram of ULA’s new Vulcan rocket powered by BE-4 first stage engines, six solid rocket motors and a 5 meter diameter payload fairing. Credit ULA

Further upgrades including a powerful new upper stage called ACES, will be phased in down the road as launches of ULA’s existing rocket families wind down, to alleviate any schedule slips.

“Because rocket design is hard and the rocket business is tough we are planning an overlap period between our existing rockets and the new Vulcan rocket,” Sowers explained. “That will account for any delays in development and other issues in the transition process to the new rocket.”

ULA was formed in 2006 as a 50:50 joint venture between Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

Development of the two Evolved Expendable Launch Vehicles (EELV’s) was originally funded by the U.S. Air Force to provide two independent and complimentary launch capabilities thereby offering assured access to space for America’s most critical military reconnaissance satellites gathering intelligence for the National Reconnaissance Office (NRO), DOD and the most senior US military and government leaders.

Since 2006, SpaceX (founded by billionaire Elon Musk) has emerged on the space scene as a potent rival offering significantly lower cost launches compared to ULA and other launch providers in the US and overseas – and captured a significant and growing share of the international launch market for its American-made Falcon rocket family.

And last year to top that all off, Russia’s deputy prime minister, Dmitry Rogozin, who is in charge of space and defense industries, threatened to “ban Washington from using Russian-made [RD-180] rocket engines [used in the Atlas V rocket], which the US has used to deliver its military satellites into orbit.”

A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida.  Credit: Ken Kremer- kenkremer.com
ULA Atlas V rocket first stage is powered by Russian-made RD-180 engines.
United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, March 12, 2015, Florida. Credit: Ken Kremer- kenkremer.com

“ULA was formed eight years ago as a government regulated monopoly focused on US government launches. Now eight years later the environment is changing,” Sowers told me.

How did ULA respond to the commercial and political challenges and transform?

“So there are a lot of things we had to do structurally to make that transformation. One of the key ones is that when ULA was formed, the government was very concerned about having assured access to space for national security launches,” Sowers explained.

“In their mind that meant having two independent rocket systems that could essentially do the same jobs. So we have both the Atlas V and the Delta IV. But in a competitive environment you can well imagine that that requirement drives your costs significantly higher than they need to be.”

ULA actually offered three rocket families after the merger, when only one was really needed.

“So our first conclusion on how to be competitive was how do we go from supporting three rocket families – including the Delta II – off of 6 launch pads, to our ultimate aim of getting down to just 1 rocket family of off just 2 pads – one on each coast. So, that is the most cost effective structure that we could come up with and the most competitive.”

Developing a new first stage engine not subject to international tensions was another primary impetus.

“The other big objective that was always in our minds, but that became much higher priority in April 2014 when Russia decided to annex Crimea, is that the RD-180 rocket engine that became our workhorse on Atlas, now became politically untenable.”

“So the other main objective of Vulcan is to re-engine [the first stage of] our fleet with an American engine, the Blue Origin BE-4.”

The RD-180’s will be replaced with a pair of BE-4 engines from Blue Origin, the highly secretive aerospace firm founded by Jeff Bezos, billionaire founder of Amazon. The revolutionary BE-4 engines are fueled by liquefied natural gas and liquid oxygen and will produce about 1.1 million pounds of thrust vs. about 900,000 pounds of thrust for the RD-180, a significant enhancement in thrust.

“The Blue Origin BE-4 is the primary engine [for Vulcan]. ULA is co-investing with Blue Origin in that engine.”

Although the BE-4 is ULA’s primary choice to replace the RD-180, ULA is also investing in development of a backup engine, the AR-1 from Aerojet-Rocketdyne, in case the BE-4 faces unexpected delays.

“As I said, rocket development is hard and risky. So we have a backup plan. That is with Aerojet-Rocketdyne and their AR-1. And we are investing in that engine as well.”

More on the Vulcan, BE-4, reusability and more upcoming in part 2.

ULA concept for SMART reuse capability for the new Vulcan rocket involves eventual midair recovery and reuse of the first stage engines.  Credit: ULA
ULA concept for SMART reuse capability for the new Vulcan rocket involves eventual midair recovery and reuse of the first stage engines. Credit: ULA

Meanwhile, the next commercial SpaceX Falcon 9 is due to blastoff this Sunday, June 28, on the Dragon CRS-7 resupply mission to the ISS.

Watch for my onsite reports from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer
………….

Learn more about ULA, SpaceX, Europa, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 25-28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Apollo 11 F-1 Engine Finding Confirmed by Jeff Bezos on Eve of 1st Human Moonwalk

Saturn V Moon Rocket F-1 Engine Thrust Chamber recovered from the floor of the Atlantic Ocean. Credit: Jeff Bezos Expeditions

In a fitting testament to NASA’s momentous Apollo Moon Landing Program, NASA and billionaire Jeff Bezos confirmed today (July 19) the discovery of a powerful F-1 first stage engine component from the Saturn V moon rocket that launched three American astronauts on the historic journey of Apollo 11 to land the first two humans on the Moon on July 20, 1969.

“On the eve of the 44th moonwalk anniversary, the Bezos Expedition confirms an Apollo 11 Saturn V F1 engine find,” NASA officially announced on its websites just moments ago today, July 19.

Apollo 11 commander and NASA astronaut Neil Armstrong, was immortalized forever when he first set foot on the moon 44 years ago tomorrow (July 20, 1969), followed minutes later by the lunar module pilot, NASA astronaut Buzz Aldrin.

The Saturn V rockets first stage was powered by a cluster of five F-1 engines – a technological marvel and the most powerful single-nozzle, liquid-fueled rocket engine ever developed.

“44 years ago tomorrow Neil Armstrong stepped onto the moon, and now we have recovered a critical technological marvel that made it all possible,” says Bezos on his Expedition website today.

Apollo 11 Saturn V F-1 Engine Thrust Chamber recovered from the floor of the Atlantic Ocean- stenciled with Rocketdyne serial number “2044”. Credit: Jeff Bezos Expeditions
Apollo 11 Saturn V F-1 Engine Thrust Chamber recovered from the floor of the Atlantic Ocean- stenciled with Rocketdyne serial number “2044”. Credit: Jeff Bezos Expeditions

Bezos, founder and Chief Executive Officer of the aerospace company Blue Origin and Amazon.com, originally announced the discovery and recovery of significant components of two flown F-1 engines amongst a field of twisted wreckage from the floor of the Atlantic Ocean in March of this year, aboard the Seabed Worker at Port Canaveral, Florida, along with a treasure trove of other major Saturn V components hauled up from a depth of almost 3 miles.

“We brought back thrust chambers, gas generators, injectors, heat exchangers, turbines, fuel manifolds and dozens of other artifacts – all simply gorgeous and a striking testament to the Apollo program,” wrote Bezos in a update this morning, July 19.

But until today, the engines exact identification remained elusive because of decades of severe seabed corrosion and their fiery, destructive end upon plunging and smashing unimpeded onto the ocean’s surface.

Saturn V F-1 Engine Nozzle recovered from the floor of the Atlantic Ocean. Credit: Jeff Bezos Expeditions
Saturn V F-1 Engine nozzle recovered from the floor of the Atlantic Ocean. Credit: Jeff Bezos Expeditions

Conservators from the Kansas Cosmosphere and Space Center in Hutchinson, Kansas worked painstakingly since March to identify the F-1 engine parts.

“Today, I’m thrilled to share some exciting news. One of the conservators who was scanning the objects with a black light and a special lens filter has made a breakthrough discovery – “2044” – stenciled in black paint on the side of one of the massive thrust chambers, says Bezos.

“2044 is the Rocketdyne serial number that correlates to NASA number 6044, which is the serial number for F-1 Engine #5 from Apollo 11. The intrepid conservator kept digging for more evidence, and after removing more corrosion at the base of the same thrust chamber, he found it – “Unit No 2044” – stamped into the metal surface.”

Blacklight ocean view of Saturn V F-1 Engine recovered from the floor of the Atlantic Ocean.   Credit: Jeff Bezos Expeditions
Blacklight view of Apollo 11 Saturn V F-1 Engine recovered from the floor of the Atlantic Ocean with identifying “2044” serial number. Credit: Jeff Bezos Expeditions

Apollo 11 launched to the Moon on July 16, 1969 from Launch Complex 39-A at the Kennedy Space Center in Florida.

Armstrong and Aldrin landed on the Sea of Tranquility inside the Lunar Module. They took a single lunar excursion and spent 2 hours and 11 minutes as the first two men to walk on the moon. They stayed on the moon for a total of 21 hours and 36 minutes before blasting off for the journey back home to Earth.

Armstrong suddenly passed away nearly a year ago on August 25, 2012 at age 82 – read my stories, here and here.

Aldrin is still active and strenuously advocating for starting human expeditions to the Red Planet.

He outlined his exploration concepts in a newly published book titled – “Mission to Mars.”

neil_bg_800

The five F-1 engines used in the 138-foot-tall Saturn V first stage known as the S-IC generated 7.5 million pounds of liftoff thrust, or some 1.5 million pounds each. They stand 19 feet tall by 12 feet wide. Each one weighs over 18,000 pounds and was manufactured by Rocketdyne.

The F-1 had more power than all three space shuttle main engines combined. They burned a mixture of liquid oxygen and kerosene fuel for two-and-one-half-minutes, carrying the Saturn V to an altitude of some 36 miles.

Altogether, six Apollo Moon landing flights boosted by Saturn V’s sent a total of 12 humans on moon walking expeditions to Earth’s nearest neighbor during the 1960s and 1970s.

“This is a big milestone for the project and the whole team couldn’t be more excited to share it with you all,” Bezos wrote.

Bezos’ Blue Origin firm is also working to develop a commercial rocket and ‘space taxi’ to finally resume launching American astronauts back to low Earth orbit from American soil after a multi year gap.

More than four decades have passed since the last humans traversed the lunar surface in December 1972 during NASA’s Apollo 17 moon landing mission.

After all that time, the F-1 may yet live again.

NASA is now working on an upgraded F-1 to power a future variant of the new SLS heavy lift booster under development and intended to launch humans aboard the new Orion crew capsule back to the Moon and to deep space destinations including Asteroids and Mars.

NASA’s robotic exploration of the moon continues this year with the blastoff of the LADEE Lunar observatory on Sept. 6 from NASA’s Wallops Island facility in Virginia.

Ken Kremer

Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history - exactly 44 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history – exactly 44 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA