Looking directly at stars is a bad way to find planets orbiting faraway suns but using a new technique, scientists can now sift the starlight to find new exoplanets millions of times dimmer than their parent stars.
“We are blinded by this starlight,” says Ben R. Oppenheimer, a curator in the American Museum of Natural History’s Department of Astrophysics and principal investigator for Project 1640. “Once we can actually see these exoplanets, we can determine the colors they emit, the chemical compositions of their atmospheres, and even the physical characteristics of their surfaces. Ultimately, direct measurements, when conducted from space, can be used to better understand the origin of Earth and to look for signs of life in other worlds.”
Using indirect detection methods, astronomers have found hundreds of planets orbiting other stars. The light stars emit, however, is tens of millions to billions of times brighter than the light reflected by planets.
Project 1640 is an advanced telescope imaging system, made up of the world’s most advanced adaptive optics system, instruments and software. The project operates at the 200-inch Hale Telescope at California’s Palomar Observatory. Engineers at the American Museum of Natural History, California Institute of Technology, and NASA’s Jet Propulsion Laboratory worked more than six years developing the new system.
Earth’s atmosphere wreaks havoc with starlight. The heating and cooling of the atmosphere produces turbulence that creates a twinkling effect on the point-like light from a star. Optics within a telescope also warp light. The instruments that make up Project 1640 manipulate starlight by deforming a mirror more than 7 million times a second to counteract the twinkling. This produces a crystal clear infrared image of the star with a precision smaller than one nanometer; about 100 times smaller than a typical bacteria.
“Imaging planets directly is supremely challenging,” said Charles Beichman, executive director of the NASA ExoPlanet Science Institute at the California Institute of Technology. “Imagine trying to see a firefly whirling around a searchlight more than a thousand miles away.”
A coronagraph, built by the American Museum of Natural History, optically dims the star leaving other celestial objects in the field of view. Other instruments help create an “artificial eclipse” inside Project 1640. Only about half a percent of the original light remains in the form of a speckled background. These speckles can still be hundreds of times brighter than the dim planets. The instruments control the light from the speckles to further dim their brightness. What the instrument creates is a dark hole where the star had been while leaving the light reflected from any planets. Coordination of the system is extremely important, say the researchers. Even the smallest light leak would drown out the incredibly faint light from planets orbiting a star.
For now Project 1640, the world’s most advanced and highest contrast imaging system, is focusing on bright stars relatively close to Earth; about 200 light-years away. Their three-year survey includes plans to image hundreds of young stars. The planets they may find are likely to be very large, Jupiter-sized bodies.
“The more we learn about them, the more we realize how vastly different planetary systems can be from our own,” said Jet Propulsion Laboratory astronomer Gautam Vasisht. “All indications point to a tremendous diversity of planetary systems, far beyond what was imagined just 10 years ago. We are on the verge of an incredibly rich new field.”
Image Caption: Two images of HD 157728, a nearby star 1.5 times larger than the Sun. The star is centered in both images, and its light has been mostly removed by the adaptive optics system and coronagraph. The remaining starlight leaves a speckled background against which fainter objects cannot be seen. On the left, the image was made without the ultra-precise starlight control that Project 1640 is capable of. On the right, the wavefront sensor was active, and a darker square hole formed in the residual starlight, allowing objects up to 10 million times fainter than the star to be seen. Images were taken on June 14, 2012 with Project 1640 on the Palomar Observatory’s 200-inch Hale telescope. (Courtesy of Project 1640)
January 2012 marks the 8th anniversary since of the daring landing’s of “Spirit” and “Opportunity” – NASA’s now legendary twin Mars Exploration Rovers (MER), on opposite sides of the Red Planet in January 2004. They proved that early Mars was warm and wet – a key finding in the search for habitats conducive to life beyond Earth.
I asked the leaders of the MER team to share some thoughts celebrating this mind-boggling milestone of “8 Years on Mars” and the legacy of the rovers for the readers of Universe Today. This story focuses on Spirit, first of the trailblazing twin robots, which touched down inside Gusev Crater on Jan. 3, 2004. Opportunity set down three weeks later on the smooth hematite plains of Meridiani Planum.
“Every Sol is a gift. We push the rovers as hard as we can,” Prof. Steve Squyres informed Universe Today for this article commemorating Spirit’s landing. Squyres, of Cornell University, is the Scientific Principal Investigator for the MER mission.
“I seriously thought both Spirit and Opportunity would be finished by the summer of 2004,” Ray Arvidson told Universe Today. Arvidson, of Washington University in St. Louis, is the deputy principal investigator for the MER rovers.
Spirit endured for more than six years and Opportunity is still roving Mars today !
The dynamic robo duo were expected to last a mere three months, or 90 Martian days (sols). In reality, both robots enormously exceeded expectations and accumulated a vast bonus time of exploration and discovery in numerous extended mission phases.
Spirit survived three harsh Martian winters and only succumbed to the Antarctic-like temperatures when she unexpectedly became mired in an unseen sand trap driving beside an ancient volcanic feature named ‘Home Plate’ that prevented the solar arrays from generating life giving power to safeguard critical electronic and computor components.
Spirit was heading towards another pair of volcanic objects named von Braun and Goddard and came within just a few hundred feet when she died.
“I never thought that we would still be planning sequences for Opportunity today and that we only lost Spirit because of her limited mobility and bad luck of breaking through crusty soil to get bogged down in loose sands,” said Arvidson
By the time of her last dispatch from Mars in March 2010, Spirit had triumphantly traversed the red planets terrain for more than six years of elapsed mission time – some 25 times beyond the three month “warranty” proclaimed by NASA as the mission began back in January 2004.
“I am feeling pretty good as the MER rover anniversaries approach in that Spirit had an excellent run, helping us understand without a doubt that early Mars had magmatic and volcanic activity that was “wet”, Arvidson explained.
“Magmas interacted with ground water to produce explosive eruptions – at Home Plate, Goddard, von Braun – with volcanic constructs replete with steam vents and perhaps hydrothermal pools.”
Altogether, the six wheeled Spirit drove over 4.8 miles (7.7 kilometers) and the cameras snapped over 128,000 images. NASA hoped the rovers would drive about a quarter mile during the planned 90 Sol mission.
“Milestones like 8 years on Mars always make me look forward rather than looking back,” Squyres told me.
Spirit became the first robotic emissary from humanity to climb a mountain beyond Earth, namely Husband Hill, a task for which she was not designed.
“No one expected the rovers to last so long,” said Rob Manning to Universe Today. Manning, of NASA’s Jet Propulsion laboratory, Pasadena, CA. was the Mars Rover Spacecraft System Engineering team lead for Entry, Descent and Landing (EDL)
“Spirit surmounted many obstacles, including summiting a formidable hill her designers never intended her to attempt.”
“Spirit, her designers, her builders, her testers, her handlers and I have a lot to be thankful for,” Manning told me.
After departing the Gusev crater landing pad, Spirit traversed over 2 miles to reach Husband Hill. In order to scale the hill, the team had to create a driving plan from scratch with no playbook because no one ever figured that such a mouthwatering opportunity to be offered.
It took over a year to ascend to the hill’s summit. But the team was richly rewarded with a science bonanza of evidence for flowing liquid water on ancient Mars.
Spirit then descended down the other side of the hill to reach the feature dubbed Home Plate where she now rests and where she found extensive evidence of deposits of nearly pure silica, explosive volcanism and hot springs all indicative of water on Mars billions of years ago.
“Spirit’s big scientific accomplishments are the silica deposits at Home Plate, the carbonates at Comanche, and all the evidence for hydrothermal systems and explosive volcanism, Squyres explained. “ What we’ve learned is that early Mars at Spirit’s site was a hot, violent place, with hot springs, steam vents, and volcanic explosions. It was extraordinarily different from the Mars of today.”
“We’ve still got a lot of exploring to do [with Opportunity], but we’re doing it with a vehicle that was designed for a 90-sol mission,” Squyres concluded. “That means that ever sol is a gift at this point, and we have to push the rover and ourselves as hard as we can.”
NASA concluded the last attempt to communicate with Spirit in a transmission on May 25, 2011.
Meanwhile, the Curiosity Mars Science Lab rover, NASA’s next Red Planet explorer, continues her interplanetary journey on course for a 6 August 2012 landing at Gale Crater.
Jan 11: Free Lecture by Ken Kremer at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL
Take a good close look at the Moon today and consider this; Two new Moon’s just reached orbit.
NASA is ringing in the New Year with a double dose of champagne toasts celebrating the back to back triumphal insertions of a pair of tiny probes into tandem lunar orbits this weekend that seek to unravel the hidden mysteries lurking deep inside the Moon and figure out how the inner solar system formed eons ago.
Following closely on the heels of her twin sister, NASA’s GRAIL-B spacecraft ignited her main braking rockets precisely as planned on New Year’s Day (Jan.1) to go into a formation flying orbit around the Moon, chasing behind GRAIL-A which arrived on New Year’s Eve (Dec. 31).
“Now we have them both in orbit. What a great feeling!!!!” NASA manager Jim Green told Universe Today just minutes after the thruster firing was done. Green is NASA’s Director of Planetary Science and witnessed the events inside Mission Control at the Jet Propulsion Laboratory (JPL) in Pasadena, Ca.
“It’s the best New Year’s ever!!” Green gushed with glee.
The new lunar arrivals of GRAIL-A and GRAIL-B capped a perfect year for NASA’s Planetary Science research in 2011.
“2011 began the Year of the Solar System – which is a Mars year (~670 Earth days long)… and includes Grail B insertion, Dawn leaving Vesta this summer … And the landing of MSL! ,” Green said.
“Cheers in JPL mission control as everything is looking good for GRAIL-B. It’s going to be a great 2012!!” JPL tweeted shortly after confirming the burn successfully placed GRAIL-B into the desired elliptical orbit.
After years of hard work, GRAIL principal investigator Maria Zuber of MIT told Universe Today that she was very “relieved”, soon after hearing the good news at JPL Mission Control.
“Since GRAIL was originally selected I’ve believed this day would come,” Zuber told me shortly after the GRAIL-B engine firing was declared a success on New Year’s Day.
“But it’s difficult to convey just how relieved I am right now. Time for the Science Team to start their engines !”
At 2:43 p.m. PST (5:43 p.m. EST) on New Year’s Day, the main thruster aboard GRAIL-B automatically commenced firing to slow down the spacecraft’s approach speed by about 430 MPH (691 kph) and allow it to be captured into orbit by the Moon’s gravity. The preprogrammed maneuver lasted about 39 minutes and was nearly identical to the GRAIL-A firing 25 hours earlier.
The hydrazine fueled main thrusters placed the dynamic spacecraft duo into near-polar, highly elliptical orbits.
Over the next two months, engineers will trim the orbits of both spacecraft to a near-polar, near-circular formation flying orientation. Their altitudes will be lowered to about 34 miles (55 kilometers) and the orbital periods trimmed from their initial 11.5 hour duration to about two hours.
The science phase begins in March 2012. For 82 days, the mirror image GRAIL-A and GRAIL-B probes will be flying in tandem with an average separation of about 200 kilometers as the Moon rotates beneath.
“GRAIL is a Journey to the Center of the Moon,” Zuber explained at a media briefing. “It will use exceedingly precise measurements of gravity to reveal what the inside of the Moon is like.”
As one satellite follows the other, in the same orbit, they will perform high precision range-rate measurements to precisely measure the changing distance between each other to within 1 micron, the width of a red blood cell, using a Ka-band instrument.
When the first satellite goes over a higher mass concentration, or higher gravity, it will speed up slightly. And that will increase the distance. Then as the second satellite goes over, that distance will close again.
The data returned will be translated into gravitational field maps of the Moon that will help unravel information about the makeup of the Moon’s mysterious core and interior composition. GRAIL will gather three complete gravity maps over the three month mission.
“There have been many missions that have gone to the Moon, orbited the Moon, landed on the Moon, brought back samples of the Moon,” said Zuber. “But the missing piece of the puzzle in trying to understand the Moon is what the deep interior is like.”
“Is there a core? How did the core form? How did the interior convect? What are the impact basins on the near-side flooded with magma and give us this Man-in-the-Moon shape whereas the back side of the Moon doesn’t have any of this? These are all mysteries that despite the fact we’ve studied the Moon before, we don’t understand how that has happened. GRAIL is a mission that is going to tell us that.”
“We think the answer is locked in the interior,” Zuber elaborated.
How will the twins be oriented in orbit to gather the data ?
“The probes will be pointed at one another to make the highly precise measurements,” said GRAIL co-investigator Sami Asmar of JPL to Universe Today. “The concept has heritage from the US/German GRACE earth orbiting satellites which mapped Earth’s gravity field. GRACE required the use of GPS satellites for exactly knowing the position, but there is no GPS at the Moon. So GRAIL was altered to compensate for no GPS at the Moon.”
GRAIL will map the gravity field by 100 to 1000 times better than ever before.
“We will learn more about the interior of the Moon with GRAIL than all previous lunar missions combined,” says Ed Weiler, the recently retired NASA Associate Administrator of the Science Mission Directorate in Washington, DC.
The GRAIL twins blasted off from Florida mounted side by side atop a Delta II booster on September 10, 2011 and took a circuitous 3.5 month low energy path to the Moon to minimize the overall costs.
So when you next look at the sky tonight and in the coming weeks just imagine those mirror image GRAIL twins circling about seeeking to determine how we all came to be !
Cheers erupted after the first of NASA’s twin $496 Million Moon Mapping probes entered orbit on New Year’s Eve (Dec. 31) upon completion of the 40 minute main engine burn essential for insertion into lunar orbit. The small GRAIL spacecraft will map the lunar interior with unprecedented precision to deduce the Moon’s hidden interior composition.
“Engines stopped. It’s in a great initial orbit!!!! ”
NASA’s Jim Green told Universe Today, just moments after verification of a successful engine burn and injection of the GRAIL-A spacecraft into an initial eliptical orbit. Green is the Director of Planetary Science at NASA HQ and was stationed inside Mission Control at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Ca (see photos below).
“Pop the bubbly & toast the moon! NASA’s GRAIL-A spacecraft is in lunar orbit,” NASA tweeted shortly after verifying the critical firing was done. “Burn complete! GRAIL-A is now orbiting the moon and awaiting the arrival of its twin GRAIL-B on New Year’s Day.”
The firing of the hydrazine fueled thruster was concluded at 5 PM EST (2 PM PST) today, Dec. 31, 2011 and was the capstone to a stupendous year for science at NASA.
“2011 was definitely the best year ever for NASA Planetary Science,” Green told me today. “2011 was the “Year of the Solar System”.
“GRAIL-A is in a highly elliptical polar orbit that takes about 11.5 hours to complete.”
“We see about the first eight to ten minutes of the start of the burn as it heads towards the Moon’s southern hemisphere, continues as GRAIL goes behind the moon and the burn ends about eight minutes or so after it exits and reappears over the north polar region.”
“So we watch the beginning of the burn and the end of the burn via the Deep Space Network (DSN). The same thing will be repeated about 25 hours later with GRAIL-B on New Year’s Day [Jan 1, 2012],” Green explained.
The orbit is approximately 56-miles (90-kilometers) by 5,197-miles (8,363-kilometers around the moon. The probe barreled towards the moon at 4400 MPH and skimmed to within about 68 miles over the South Pole.
“My resolution for the new year is to unlock lunar mysteries and understand how the moon, Earth and other rocky planets evolved,” said Maria Zuber, GRAIL principal investigator at the Massachusetts Institute of Technology in Cambridge. “Now, with GRAIL-A successfully placed in orbit around the moon, we are one step closer to achieving that goal.”
Zuber witnessed the events in Mission Control along with JPL Director Charles Elachi (see photos).
The mirror twin, known as GRAIL-B, was less than 30,000 miles (48,000 km) from the moon as GRAIL A achieved orbit and closing at a rate of 896 mph (1,442 kph). GRAIL-B’s insertion burn is slated to begin on New Year’s Day at 2:05 p.m. PST (5:05 p.m. EST) and will last about 39 minutes.
GRAIL-B is about 25 hours behind GRAIL-A, allowing the teams enough time to rest and prepare, said David Lehman, GRAIL project manager at JPL.
“With GRAIL-A in lunar orbit we are halfway home,” said Lehman. “Tomorrow may be New Year’s everywhere else, but it’s another work day around the moon and here at JPL for the GRAIL team.”
Engineers will then gradually lower the tandem flying satellites into a near-polar near-circular orbital altitude of about 34 miles (55 kilometers) with an average separation of about 200 km. The 82 day science phase will begin in March 2012.
“GRAIL will globally map the moon’s gravity field to high precision to deduce information about the interior structure, density and composition of the lunar interior. We’ll evaluate whether there even is a solid or liquid core or a mixture and advance the understanding of the thermal evolution of the moon and the solar system,” explained GRAIL co-investigator Sami Asmar to Universe Today. Asmar is from JPL.
New names for the dynamic duo may be announced on New Year’s Day. Zuber said that the winning names of a student essay contest drew more than 1000 entries.
The GRAIL team is making a major public outreach effort to involve school kids in the mission and inspire them to study science. Each spacecraft carries 4 MoonKAM cameras. Middle school students will help select the targets.
“Over 2100 Middle schools have already signed up to participate in the MoonKAM project,” Zuber told reporters.
“We’ve had a great response to the MoonKAM project and we’re still accepting applications.”
MoonKAM is sponsored by Dr. Sally Ride, America’s first female astronaut. The first images are expected after the science mission begins in March 2012.
The GRAIL twins blasted off from Florida on September 10, 2011 for a 3.5 month low energy path to the moon so a smaller booster rocket could be used to cut costs.
In less than three days, NASA will deliver a double barreled New Year’s package to our Moon when an unprecedented pair of science satellites fire up their critical braking thrusters for insertion into lunar orbit on New Year’s Eve and New Year’s Day.
NASA’s dynamic duo of GRAIL probes are “GO” for Lunar Orbit Insertion said the mission team at a briefing for reporters today, Dec. 28. GRAIL’s goal is to exquisitely map the moons interior from the gritty outer crust to the depths of the mysterious core with unparalled precision.
“GRAIL is a Journey to the Center of the Moon”, said Maria Zuber, GRAIL principal investigator from the Massachusetts Institute of Technology (MIT) in Cambridge at the press briefing.
This newfound knowledge will fundamentally alter our understanding of how the moon and other rocky bodies in our solar system – including Earth – formed and evolved over 4.5 Billion years time.
After a three month voyage of more than 2.5 million miles (4 million kilometers) since launching from Florida on Sept. 10, 2011, NASA’s twin GRAIL spacecraft, dubbed Grail-A and GRAIL-B, are now on final approach and are rapidly closing in on the Moon following a trajectory that will hurl them low over the south pole and into an initially near polar elliptical lunar orbit lasting 11.5 hours.
As of today, Dec. 28, GRAIL-A is 65,860 miles (106,000 kilometers) from the moon and closing at a speed of 745 mph (1,200 kph). GRAIL-B is 79,540 miles (128,000 kilometers) from the moon and closing at a speed of 763 mph (1,228 kph).
The lunar bound probes are formally named Gravity Recovery And Interior Laboratory (GRAIL) and each one is the size of a washing machine.
The long-duration trajectory was actually beneficial to the mission controllers and the science team because it permitted more time to assess the spacecraft’s health and check out the probes single science instrument – the Ultra Stable Oscillator – and allow it to equilibrate to a stable operating temperature long before it starts making the crucial science measurements.
The duo will arrive 25 hours apart and be placed into orbit starting at 1:21 p.m. PST (4:21 p.m. EST) for GRAIL-A on Dec. 31, and 2:05 p.m. PST (5:05 p.m. EST) on Jan. 1 for GRAIL-B, said David Lehman, project manager for GRAIL at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif.
“The GRAIL A burn will last 40 minutes and the GRAIL-B burn will last 38 minutes. One hour after the burn we will know the results and make an announcement,” Lehman explained.
The thrusters must fire on time and for the full duration for the probes to achieve orbit. The braking maneuver is preprogrammed and done completely automatically.
Over the next few weeks, the altitude of the spacecraft will be gradually lowered to 34 miles (55 kilometers) into a near-polar, near-circular orbit with an orbital period of two hours. The science phase will then begin in March 2012.
“So far there have been over 100 missions to the Moon and hundreds of pounds of rock have been returned. But there is still a lot we don’t know about the Moon even after the Apollo lunar landings,” explained Zuber.
“We don’t know why the near side of the Moon is different from the far side. In fact we know more about Mars than the Moon.”
GRAIL’s science collection phase will last 82 days. The two spacecraft will transmit radio signals that will precisely measure the distance between them to within a few microns, less than the width of a human hair.
As they orbit in tandem, the moons gravity will change – increasing and decreasing due to the influence of both visible surface features such as mountains and craters and unknown concentrations of masses hidden beneath the lunar surface. This will cause the relative velocity and the distance between the probes to change.
The resulting data will be translated into a high-resolution map of the Moon’s gravitational field and also enable determinations of the moon’s inner composition.
The GRAIL mission may be extended for another 6 months if the solar powered probes survive a power draining and potentially deadly lunar eclipse due in June 2012.
Engineers would significantly lower the orbit to an altitude of barely 15 to 20 miles above the surface to gain even further insights into the lunar interior.
The twin probes are also equipped with 4 cameras each – named MoonKAM – that will be used by middle school students to photograph student selected targets.
The MoonKAM project is led Dr. Sally Ride, America’s first woman astronaut as a way to motivate kids to study math and science.
JPL manages the GRAIL mission for NASA.
Stay tuned for Universe Today updates amidst the News Year’s festivities.
NASA’s long lived Opportunity rover has discovered the most scientifically compelling evidence yet for the flow of liquid water on ancient Mars. The startling revelation comes in the form of a bright vein of the mineral gypsum located at the foothills of an enormous crater named Endeavour, where the intrepid robot is currently traversing. See our mosaic above, illustrating the exact spot.
Update: ‘Homestake’ Opportunity Mosaic above has just been published on Astronomy Picture of the Day (APOD) – 12 Dec 2011 (by Ken Kremer and Marco Di Lorenzo)
Researchers trumpeted the significant water finding this week (Dec. 7) at the annual winter meeting of the American Geophysical Union (AGU) in San Francisco.
“This gypsum vein is the single most powerful piece of evidence for liquid water at Mars that has been discovered by the Opportunity rover,” announced Steve Squyres of Cornell University, Ithaca, N.Y., Principal Investigator for Opportunity, at an AGU press conference.
The light-toned vein is apparently composed of the mineral gypsum and was deposited as a result of precipitation from percolating pools of liquid water which flowed on the surface and subsurface of ancient Mars, billions of years ago. Liquid water is an essential prerequisite for life as we know it.
“This tells a slam-dunk story that water flowed through underground fractures in the rock,” said Squyres. “This stuff is a fairly pure chemical deposit that formed in place right where we see it. That can’t be said for other gypsum seen on Mars or for other water-related minerals Opportunity has found. It’s not uncommon on Earth, but on Mars, it’s the kind of thing that makes geologists jump out of their chairs.”
The light-toned vein is informally named “Homestake”, and was examined up close by Opportunity’s cameras and science instruments for several weeks this past month in November 2011, as the rover was driving northwards along the western edge of a ridge dubbed ‘Cape York’ – which is a low lying segment of the eroded rim of Endeavour Crater.
Veins are a geologic indication of the past flow of liquid water
Opportunity just arrived at the rim of the 14 mile (22 kilometere) wide Endeavour Crater in mid-August 2011 following an epic three year trek across treacherous dune fields from her prior investigative target at the ½ mile wide Victoria Crater.
“It’s like a whole new mission since we arrived at Cape York,” said Squyres.
‘Homestake’ is a very bright linear feature.
“The ‘Homestake’ vein is about 1 centimeter wide and 40 to 50 centimeters long,” Squyres elaborated. “It’s about the width of a human thumb.”
Homestake protrudes slightly above the surrounding ground and bedrock and appears to be part of a system of mineral veins running inside an apron (or Bench) that in turn encircles the entire ridge dubbed Cape York.
In another first, no other veins like these have been seen by Opportunity throughout her entire 20 miles (33 kilometers) and nearly eight year long Martian journey across the cratered, pockmarked plains of Meridiani Planum, said Squyres.
The veins have also not been seen in the higher ground around the rim at Endeavour crater.
“We want to understand why these veins are in the apron but not out on the plains,” said the mission’s deputy principal investigator, Ray Arvidson, of Washington University in St. Louis. “The answer may be that rising groundwater coming from the ancient crust moved through material adjacent to Cape York and deposited gypsum, because this material would be relatively insoluble compared with either magnesium or iron sulfates.”
Opportunity was tasked to engage her Microscopic Imager and Alpha Particle X-ray Spectrometer (APXS) mounted on the terminus of the rover’s arm as well as multiple filters of the mast mounted Panoramic Camera to examine ‘Homestake’.
“The APXS spectrometer shows ’Homestake’ is chock full of Calcium and Sulfur,” Squyres gushed.
The measurements of composition with the APXS show that the ratio points to it being relatively pure calcium sulfate, Squyres explained. “One type of calcium sulfate is gypsum.”
Calcium sulfate can have varying amounts of water bound into the minerals crystal structure.
The rover science team believes that this form of gypsum discovered by Opportunity is the dihydrate; CaSO4•2H2O. On Earth, gypsum is used for making drywall and plaster of Paris.
The gypsum was formed in the exact spot where Opportunity found it – unlike the sulfate minerals previously discovered which were moved around by the wind and other environmental and geologic forces.
“There was a fracture in the rock, water flowed through it, gypsum was precipitated from the water. End of story,” Squyres noted. “There’s no ambiguity about this, and this is what makes it so cool.”
At Homestake we are seeing the evidence of the ground waters that flowed through the ancient Noachian rocks and the precipitation of the gypsum, which is the least soluble of the sulfates, and the other magnesium and iron sulfates which Opportunity has been driving on for the last 8 years.
“Here, both the chemistry, mineralogy, and the morphology just scream water,” Squyres exclaimed. “This is more solid than anything else that we’ve seen in the whole mission.”
It’s inconceivable that the vein is something else beside gypsum, said Squyres.
As Opportunity drove from the plains of Meridiani onto the rim of Endeavour Crater and Cape York, it crossed a geologic boundary and arrived at a much different and older region of ancient Mars.
The evidence for flowing liquid water at Endeavour crater is even more powerful than the silica deposits found by Spirit around the Home Plate volcanic feature at Gusev Crater a few years ago.
“We will look for more of these veins in the [Martian] springtime,” said Squyres.
If a bigger, fatter vein can be found, then Opportunity will be directed to grind into it with her still well functioning Rock Abrasion Tool, or RAT.
Homestake was crunched with the wheels – driving back and forth over the vein – to break it up and expose the interior. Opportunity did a triple crunch over Homestake, said Arvidson.
Homestake was found near the northern tip of Cape York, while Opportunity was scouting out a “Winter Haven” location to spend the approaching Martian winter.
Arvidson emphasized that the team wants Opportunity to be positioned on a northerly tilted slope to catch the maximum amount of the sun’s rays to keep the rover powered up for continuing science activities throughout the fast approaching Martian winter.
“Martian winter in the southern hemisphere starts on March 29, 2012. But, Solar power levels already begin dropping dramatically months before Martian winter starts,” said Alfonso Herrera to Universe Today, Herrera is a Mars rover mission manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.
“Opportunity is in excellent health,” said Bruce Banerdt, the Project Scientist for the Mars rover mission at JPL.
“This has been a very exciting time. We’ll head back south in the springtime and have a whole bunch of things to do with a very capable robot,” Squyres concluded.
Meanwhile, NASA’s next leap in exploring potential Martian habitats for life – the car sized Curiosity Mars Science Lab rover – is speeding towards the Red Planet.
Read Ken’s continuing features about Opportunity starting here:
NASA’s Curiosity Mars Science Lab (MSL) rover is speeding away from Earth on a 352-million-mile (567-million-kilometer) journey to Mars following a gorgeous liftoff from Cape Canaveral Air Force Station, Florida aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. EST on Nov. 26.
Enjoy the gallery of Curiosity launch images collected here from the Universe Today team and local photographers as well as NASA and United Launch Alliance.
The historic voyage of the largest and most sophisticated Martian rover ever built by humans seeks to determine if Mars ever offered conditions favorable for the genesis of microbial life.
“We are very excited about sending the world’s most advanced scientific laboratory to Mars,” NASA Administrator Charles Bolden said. “MSL will tell us critical things we need to know about Mars, and while it advances science, we’ll be working on the capabilities for a human mission to the Red Planet and to other destinations where we’ve never been.”
The mission will pioneer a first of its kind precision landing technology and a sky- crane touchdown to deliver the car sized rover to the foothills of a towering and layered mountain inside Gale Crater on Aug. 6, 2012.
Curiosity is packed to the gills with 10 state of the art science instruments that are seeking the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.
The robot is equipped with a drill and scoop at the end of its robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover.
The 1 ton Curiosity rover sports a science payload that’s 15 times heavier than NASA’s previous set of rovers – Spirit and Opportunity – which landed on Mars in 2004. Some of the tools are the first of their kind on Mars, such as a laser-firing instrument for checking the elemental composition of rocks from a distance, and an X-ray diffraction instrument for definitive identification of minerals in powdered samples.
Launch Video – Credit: Matthew Travis/Spacearium
Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
Atop a towering inferno of sparkling flames and billowing ash, Humankinds millennial long quest to ascertain “Are We Alone ?” soared skywards today (Nov. 26) with a sophisticated spaceship named ‘Curiosity’ – NASA’s newest, biggest and most up to date robotic surveyor that’s specifically tasked to hunt for the ‘Ingredients of Life’ on Mars, the most ‘Earth-like’ planet in our Solar System.
Curiosity’s noble goal is to meticulously gather and sift through samples of Martian soil and rocks in pursuit of the tell-tale signatures of life in the form of organic molecules – the carbon based building blocks of life as we know it – as well as clays and sulfate minerals that may preserve evidence of habitats and environments that could support the genesis of Martian microbial life forms, past or present.
The Atlas V booster carrying Curiosity to the Red Planet vaulted off the launch pad on 2 million pounds of thrust and put on a spectacular sky show for the throngs of spectators who journeyed to the Kennedy Space Center from across the globe, crowded around the Florida Space Coast’s beaches, waterways and roadways and came to witness firsthand the liftoff of the $2.5 Billion Curiosity Mars Science Lab (MSL) rover.
The car sized Curiosity rover is the most ambitious, important and far reaching science probe ever sent to the Red Planet – and the likes of which we have never seen or attempted before.
“Science fiction is now science fact,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the post launch briefing for reporters at KSC. “We’re flying to Mars. We’ll get it on the ground… and see what we find.”
“’Ecstatic’ – in a word, NASA is Ecstatic. We have started a new Era in the Exploration of Mars with this mission – technologically and scientifically. MSL is enormous, the equivalent of 3 missions frankly.”
“We’re exactly where we want to be, moving fast and cruising to Mars.”
NASA is utilizing an unprecedented, rocket powered precision descent system to guide Curiosity to a pinpoint touch down inside the Gale Crater landing site, with all six wheels deployed.
Gale Crater is 154 km (96 mi) wide. It is dominated by layered terrain and an enormous mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of ancient or extant Martian life.
“I hope we have more work than the scientists can actually handle. I expect them all to be overrun with data that they’ve never seen before.”
“The first images from the bottom of Gale Crater should be stunning. The public will see vistas we’ve never seen before. It will be like sitting at the bottom of the Grand Canyon,” said McCuistion.
The 197 ft tall Atlas booster’s powerful liquid and solid fueled engines ignited precisely on time with a flash and thunderous roar that grew more intense as the expanding plume of smoke and fire trailed behind the rapidly ascending rockets tail.
The Atlas rockets first stage is comprised of twin Russian built RD-180 liquid fueled engines and four US built solid rocket motors.
The engines powered the accelerating climb to space and propelled the booster away from the US East Coast as it majestically arced over in between broken layers of clouds. The four solids jettisoned 1 minute and 55 seconds later. The liquid fueled core continued firing until its propellants were expended and dropped away at T plus four and one half minutes.
The hydrogen fueled Centaur second stage successfully fired twice and placed the probe on an Earth escape trajectory at 22,500 MPH.
The Atlas V initially lofted the spacecraft into Earth orbit and then, with a second burst from the Centaur, pushed it out of Earth orbit into a 352-million-mile (567-million-kilometer) journey to Mars.
MSL spacecraft separation of the solar powered cruise stage stack from the Centaur upper stage occurred at T plus 44 minutes and was beautifully captured on a live NASA TV streaming video feed.
“Our spacecraft is in excellent health and it’s on its way to Mars,” said Pete Theisinger, Mars Science Laboratory Project Manager from the Jet Propulsion Laboratory in California at the briefing. “I want to thank the launch team, United Launch Alliance, NASA’s Launch Services Program and NASA’s Kennedy Space Center for their help getting MSL into space.”
“The launch vehicle has given us a first rate injection into our trajectory and we’re in cruise mode. The spacecraft is in communication, thermally stable and power positive.”
“I’m very happy.”
“Our first trajectory correction maneuver will be in about two weeks,” Theisinger added.
“We’ll do instrument checkouts in the next several weeks and continue with thorough preparations for the landing on Mars and operations on the surface.”
Curiosity is a 900 kg (2000 pound) behemoth. She measures 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as Spirit and Opportunity, NASA’s prior set of twin Martian robots.
NASA was only given enough money to build 1 rover this time.
“We are ready to go for landing on the surface of Mars, and we couldn’t be happier,” said John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology at the briefing. “I think this mission will be a great one. It is an important next step in NASA’s overall goal to address the issue of life in the universe.”
Curiosity is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times more than its predecessor’s science payloads.
A drill and scoop located at the end of the robotic arm will gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover. A laser will zap rocks to determine elemental composition.
“We are not a life detection mission.”
“It is important to distinguish that as an intermediate mission between the Mars Exploration Rovers, which was the search for water, and future missions, which may undertake life detection.”
“Our mission is about looking for ancient habitable environments – a time on Mars which is very different from the conditions on Mars today.”
“The promise of Mars Science Laboratory, assuming that all things behave nominally, is we can deliver to you a history of formerly, potentially habitable environments on Mars,” Grotzinger said at the briefing. “But the expectation that we’re going to find organic carbon, that’s the hope of Mars Science Laboratory. It’s a long shot, but we’re going to try.”
Today’s liftoff was the culmination of about 10 years of efforts by the more than 250 science team members and the diligent work of thousands more researchers, engineers and technicians spread around numerous locations across the United States and NASA’s international partners including Canada, Germany, Russia, Spain and France.
“Scientists chose the site they wanted to go to for the first time in history, because of the precision engineering landing system. We are going to the very best place we could find, exactly where we want to go.”
“I can’t wait to get on the ground,” said Grotzinger.
Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
[/caption]‘Mars Trek – Curiosity’s Search for Undiscovered Life’ has its galaxy wide premiere Saturday morning Nov. 26 at 10:02 a.m. EST – live on NASA TV.
NASA’s quest ‘In Search of Life’ takes a bold leap in less than 12 hours with the Nov. 26 blastoff of “Curiosity”, the most complex and scientifically advanced robotic explorer ever sent to survey the surface of another world. The 103 minute launch window closes at 11:45 a.m. EST.
Curiosity and the United Launch Alliance Atlas V rocket that will thrust her to the Red Planet are poised for liftoff after being rolled out to Space Launch Complex 41 around 8 a.m. this morning under the watchful eyes of ground crews, mission scientists, reporters and photographers.
Universe Today was there – reporting live on all the history making and thrilling events !
Launch day weather remains favorable, with only a 30 percent chance of conditions prohibiting liftoff, said Air Force meteorologists. A low cloud ceiling is the sole concern at this time.
The 1.2 million pound booster was pushed 1800 feet along rail tracks by twin diesel powered trackmobiles from the prelaunch preparation and assembly gantry inside the Vertical Integration Facility out to launch pad 41 at Cape Canaveral Air Force Station.
The 197 foot tall booster is equipped with 4 strap on solid rocket motors and generates some 2 million pounds of liftoff thrust according to Vernon Thorp, Atlas Program manager for ULA.
Curiosity is NASA’s next Mars rover and also quite possibly the last US built Mars rover due to severe cuts to NASA planetary science budget.
After an eight and one half month and 354 million mile (570 million km) interplanetary journey, Curiosity will slam into the thin Martian atmosphere at 13,000 MPH and utilize an unprecedented rocket powered pinpoint landing system known as the Sky Crane to touch down with all six wheels deployed inside Gale Crater.
Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of past or present Martian life.
Curiosity is packed with 10 state-of-the-art science experiments that will search for organic molecules and clay minerals, potential markers for signs of Martian microbial life and habitable zones.
Immediately after touchdown, the 1 ton rover will transmit telemetry so that engineers back on Earth can assess the rover’s status.
“When we first land we want to ascertain the integrity and health of the vehicle and look at the surrounding terrain, said Pete Theisinger, MSL project manager from the Jet Propulsion Laboratory in Pasadena, Calif., at the briefing.
“The rover’s mast will be deployed on the second day and we’ll get pictures.”
“Shortly thereafter we will begin our science investigations. The radiation (RAD) and subsurface hydrogen detection (DAN) instruments will start right away since they are passive.”
The rover will drive inside the first week.
“The cameras will be used to select targets. We will go up to the valuable targets. With the cameras and instruments we will determine which ones to sample” said Theisinger.
“Then we’ll deploy the arm which contains scientific equipment and collect samples with a percussion drill. The samples will be injected into the two science instruments for analysis that are located on the rover.”
“The SAM and ChemMin instruments will look for organic molecules and isotope ratios as well as identify and quantify the minerals in the rock and soil samples. It could be up to 2 to 3 months before we take the first samples,” explained Theisinger.
MSL is powered by a nuclear battery and is expected to operate for a minimum of one Martian year, equivalent to 687 days on Earth. NASA hopes the 6 foot tall rover will last alot longer.
Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
NASA’s Curiosity Mars rover, the most technologically complex and scientifically capable robot built by humans to explore the surface of another celestial body, is poised to liftoff on Nov. 26 and will enable a quantum leap in mankind’s pursuit of Martian microbes and signatures of life beyond Earth.
“The Mars Science Lab and the rover Curiosity is ‘locked and loaded’, ready for final countdown on Saturday’s launch to Mars,” said Colleen Hartman, assistant associate administrator in NASA’s Science Mission Directorate, at a pre-launch media briefing at the Kennedy Space Center (KSC).
The $2.5 Billion robotic explorer remains on track for an on time liftoff aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. on Nov. 26 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
NASA managers and spacecraft contractors gave the “Go-Ahead” for proceeding towards Saturday’s launch at the Launch Readiness Review on Wednesday, Nov. 23. The next milestone is to move the Atlas V rocket 1800 ft. from its preparation and assembly gantry inside the Vertical Integration Facility at the Cape.
“We plan on rolling the vehicle out of the Vertical Integration Facility on Friday morning [Nov. 25] ,” said NASA Launch Director Omar Baez at the briefing. “We should be on the way to the pad by 8 a.m.”
The launch window on Nov. 26 is open until 11:14 a.m. and the current weather prognosis is favorable with chances rated at 70 percent “GO”.
“The final launch rehearsal – using the real vehicle ! – went perfectly, said NASA Mars manager Rob Manning, in an exclusive interview with Universe Today. Manning is the Curiosity Chief Engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.
“I was happy.”
“The folks at KSCs Payload Handling Facility and at JPL’s cruise mission support area (CMSA) – normally a boisterous bunch – worked quietly and professionally thru to T-4 minutes and a simulated fake hold followed by a restart and a recycle (shut down) due to a sail boat floating too close to the range,” Manning told me.
Readers may recall that NASA’s JUNO Jupiter orbiter launch in August was delayed by an hour when an errant boat sailed into the Atlantic Ocean exclusion zone.
“This rover, Curiosity rover, is really a rover on steroids. It’s an order of magnitude more capable than anything we have ever launched to any planet in the solar system,” said Hartman.
“It will go longer, it will discover more than we can possibly imagine.”
Curiosity is locked atop the powerful Alliance Atlas V rocket that will propel the 1 ton behemoth on an eight and one half month interplanetary cruise from the alligator filled swamps of the Florida Space Coast to a layered mountain inside Gale Crater on Mars where liquid water once flowed and Martian microbes may once have thrived.
Curiosity is loaded inside the largest aeroshell ever built and that will shield her from the extreme temperatures and intense buffeting friction she’ll suffer while plummeting into the Martian atmosphere at 13,000 MPH (5,900 m/s) upon arrival at the Red Planet in August 2012.
The Curiosity Mars Science Lab (MSL) rover is the most ambitious mission ever sent to Mars and is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times as much as its predecessor’s science payloads.
Curiosity measures 3 meters (10 ft) in length and weighs 900 kg (2000 pounds), nearly twice the size and five times as heavy as NASA’s prior set of twin robogirls – Spirit and Opportunity.
The science team selected Gale crater as the landing site because it exhibits exposures of clays and hydrated sulfate minerals that formed in the presence of liquid water billions of years ago, indicating a wet history on ancient Mars that could potentially support the genesis of microbial life forms. Water is an essential prerequisite for life as we know it.
Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor.
The car sized rover is being targeted with a first of its kind precision rocket powered descent system to touchdown inside a landing ellipse some 20 by 25 kilometers (12.4 miles by 15.5 miles) wide and astride the towering mountain at a location in the northern region of Gale.
Curiosity’s goal is to search the crater floor and nearby mountain – half the height of Mt. Everest – for the ingredients of life, including water and the organic molecules that we are all composed of.
The robot will deploy its 7 foot long arm to collect soil and rock samples to assess their composition and determine if any organic materials are present – organics have not previously been detected on Mars.
Curiosity will also vaporize rocks with a laser to determine which elements are present, look for subsurface water in the form of hydrogen, and assess the weather and radiation environments
“After the rocket powered descent, the Sky-Crane maneuver deploys the rover and we land on the mobility system, said Pete Theisinger, MSL project manager from the Jet Propulsion Laboratory in Pasadena, Calif., at the briefing.
The rover will rover about 20 kilometers in the first year. Curiosity has no life limiting constraints. The longevity depends on the health of the rovers components and instruments.
“We’ve had our normal challenges and hiccups that we have in these kinds of major operations, but things have gone extremely smoothly and we’re fully prepared to go on Saturday morning. We hope that the weather cooperates, said Theisinger
Missions to Mars are exceedingly difficult and have been a death trap for many orbiters and landers.
“Mars really is the Bermuda Triangle of the solar system,” said Hartman. “It’s the ‘death planet,’ and the United States of America is the only nation in the world that has ever landed and driven robotic explorers on the surface of Mars. And now we’re set to do it again.”
Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here: