Last, Best Look at Pluto’s Far Side and Four Perplexing Spots: 2 Days Out from Flyby

New Horizons' last look at Pluto's Charon-facing hemisphere reveals the highest resolution view of four intriguing darks spots for decades to come. This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto. Credit: NASA/JHUAPL/SWRI

New Horizons’ last look at Pluto’s Charon-facing hemisphere reveals the highest resolution view of four intriguing darks spots for decades to come. This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto. Credit: NASA/JHUAPL/SWRI
Story updated[/caption]

Today (July 11) we got our last, best and clearest look at a quartet of perplexing dark spots on Pluto’s far side from NASA’s New Horizons spacecraft – now just two days and two million miles (4 million km) out from history’s first ever up close flyby of the Pluto system on Tuesday, July 14.

The four puzzling spots (see above) are located on the hemisphere of Pluto which always faces its largest moon, Charon, and have captivated the scientists and public alike. Pluto and Charon are gravitationally locked with an orbital period of 6.4 days.

Over only the past few days, we are finally witnessing an amazing assortment of geological wonders emerge into focus from these never before seen worlds – as promised by the New Horizons team over a decade ago.

Be sure to take a good hard look at the image, because these spots and Pluto’s Charon-facing hemisphere will not be visible to New Horizons cameras and spectrometers during the historic July 14 encounter as the spacecraft whizzes by the binary worlds at speeds of some 30,800 miles per hour (more than 48,600 kilometers per hour) for their first up close reconnaissance.

And it’s likely to be many decades before the next visitor from Earth arrives at the frigid worlds at the far flung reaches of our solar system for a longer look, hopefully from orbit.

“The [July 11] image is the last, best look that anyone will have of Pluto’s far side for decades to come,” said New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, in a statement.

The image of the mysterious spots was taken earlier today (July 11) by New Horizons Long Range Reconnaissance Imager (LORRI) at a distance of 2.5 million miles (4 million kilometers) from Pluto, and just released by NASA. The image resolution is 10 miles per pixel. One week ago it was only 40 miles per pixel.

They were first seen only in very recent LORRI images as Pluto’s disk finally was resolved and are located in a Missouri sized area about 300 miles (480 kilometers) across and above the equatorial region.

But until today they were still rather fuzzy – see image below from July 3! What a difference a few million miles (km) makes!

Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission.  Credit: NASA/JHUAPL/SWRI
Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission. Credit: NASA/JHUAPL/SWRI

“The Pluto system is totally unknown territory,” said Dr. John Spencer, New Horizons co-investigator at today’s (July 11) daily live briefing from NASA and the New Horizons team.

“Pluto is like nowhere we’ve even been before. It is unlike anything we’ve visited before.”

Now, with the $700 million NASA planetary probe millions of miles closer to the double planet, the picture resolution has increased dramatically and the team can at least speculate.

Researchers say the quartet of “equally spaced” dark splotches are “suggestive of polygonal shapes” and the “boundaries between the dark and bright terrains are irregular and sharply defined.”

“It’s weird that they’re spaced so regularly,” says New Horizons program scientist Curt Niebur at NASA Headquarters in Washington.

However their nature remains “intriguing” and truly “unknown.”

“We can’t tell whether they’re plateaus or plains, or whether they’re brightness variations on a completely smooth surface,” added Jeff Moore of NASA’s Ames Research Center, Mountain View, California.

“It’s amazing what we are seeing now in the images, showing us things we’ve never seen before,” said Spencer.

“Every day we see things we never knew before. We see these crazy black and white patterns. And we have no idea what these mean.”

Answering these questions and more is what the encounter is all about.

Pluto is just chock full of mysteries, with new ones emerging every day as New Horizons at last homes in on its quarry, and the planet grows from a spot to an enlarging disk with never before seen surface features, three billion miles from Earth after an interplanetary journey of some nine and a half years.

“We see circular things and wonder are those craters? Or are they something else,” Spencer elaborated.

“We saw circular features on Neptune’s moon Triton that are not craters. So we should know in a few days . But right now we are just having an awful lot of fun just speculating. It’s just amazing.”

Until a few days ago, we didn’t know that “the other Red Planet” had a big bright heart and a dark ‘whale-shaped’ feature – see my earlier articles; here and here.

Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations.   The LORRI image has been combined with lower-resolution color information from the Ralph instrument.   Credits: NASA-JHUAPL-SWRI
Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations. The LORRI image has been combined with lower-resolution color information from the Ralph instrument. Credits: NASA-JHUAPL-SWRI

“When we combine images like this of the far side with composition and color data the spacecraft has already acquired but not yet sent to Earth, we expect to be able to read the history of this face of Pluto,” Moore explained.

New Horizons will swoop to within about 12,500 kilometers (nearly 7,750 miles) of Pluto’s surface and about 17,900 miles (28,800 kilometers) from Charon during closest approach at approximately 7:49 a.m. EDT (11:49 UTC) on July 14.

The probe was launched back on Jan. 19, 2006 on a United Launch Alliance Atlas V rocket on a 9 year voyage of over 3.6 billion miles (5.7 billion km).

Pluto is the last of the nine classical planets to be explored up close and completes the initial the initial reconnaissance of the solar system nearly six decades after the dawn of the space age. It represents a whole new class of objects.

“Pluto is a member of a whole new family of objects,” said Jim Green, director of Planetary Science, NASA Headquarters, Washington, in today’s live Pluto update.

“We call that the Kuiper Belt. And it is the outer solar system.”

New Horizons is equipped with a suite of seven science instruments gathering data during the approach and encounter phases with the Pluto system.

Graphic shows data gathered by New Horizons particle and plasma science instruments from 2 million miles out on July 11, 2015.  Credit: NASA/JHUAPL/SWRI
Graphic shows data gathered by New Horizons particle and plasma science instruments from 2 million miles out on July 11, 2015. Credit: NASA/JHUAPL/SWRI

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Tantalizing signs of geology on Pluto are revealed in this image from New Horizons taken on July 9, 2015 from 3.3 million miles (5.4 million km) away. This annotated version shows the large dark feature nicknamed "the whale" that straddles Pluto's equator, a swirly band and a curious polygonal outline. At lower is a reference globe showing Pluto’s orientation in the image, with the equator and central meridian in bold. Credit:  NASA-JHUAPL-SWRI
Tantalizing signs of geology on Pluto are revealed in this image from New Horizons taken on July 9, 2015 from 3.3 million miles (5.4 million km) away. This annotated version shows the large dark feature nicknamed “the whale” that straddles Pluto’s equator, a swirly band and a curious polygonal outline. At lower is a reference globe showing Pluto’s orientation in the image, with the equator and central meridian in bold. Credit: NASA-JHUAPL-SWRI

New Horizons Exits Safe Mode, Operating Flawlessly for Upcoming Pluto Encounter

Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission. Credit: NASA/JHUAPL/SWRI

Latest color image of Pluto taken on July 3, 2015 shows 4 mysterious dark spots.
Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission. Credit: NASA/JHUAPL/SWRI
Story updated[/caption]

Despite some hair-raising and unplanned 4th of July fireworks of sorts in deep space which caused NASA’s Pluto bound New Horizons spacecraft to enter “safe mode” due to a computer glitch and temporarily halt all science operations over the weekend, the spacecraft is now fully back on track, “healthy” and working “flawlessly” and set to resume all planned research investigations on Tuesday, July 7, NASA and top mission managers announced at a media briefing held this afternoon, Monday, July 6.

It’s now just exactly one week before the once-in-a-lifetime opportunity for a fast flyby encounter of the ever intriguing binary planet, at the far flung reaches of the solar system. And the great news could not come soon enough given the proximity of the flyby.

“The spacecraft is in excellent health and back in operation. New Horizons is barreling towards the Pluto system,” stated Jim Green, director of Planetary Science, NASA Headquarters, Washington, at the start of today’s news media briefing.

The $700 million mission remains on track to conduct the complex close flyby science sequence in its entirety, as planned over the next week, including the July 14 flyby of Pluto, despite the scary safe mode episode.

“The New Horizons spacecraft and science payload are now operating flawlessly,” Alan Stern, New Horizons principal investigator, Southwest Research Institute, Boulder, Colorado, announced at the media briefing.

NASA unexpectedly lost contact with the New Horizons spacecraft on Saturday, July 4, at about 1:30 p.m. EDT after it suffered a memory related software anomaly and executed a protective operation known as “safe mode.” An anomaly investigation team was formed immediately.

“It’s really a historic time, but also fraught with many decisions and challenges on the way to the July 14 Pluto system encounter,” Green said.

The mission team quickly worked to reestablish contact with the piano shaped spacecraft about 90 minutes after the signal was lost.

“On Saturday we lost contact with the spacecraft. The New Horizons team immediately went into action. Within 90 minutes the signal was reacquired by the team, with the spacecraft in safe mode. They soon found the root cause and corrective actions were immediately taken to get the spacecraft back in business.”

The team worked tirelessly and diligently day and night over the holiday weekend to recover New Horizons back to full operation quickly and in time for the flyby encounter of Pluto on July 14, set for approximately 7:49 a.m. EDT (11:49 UTC) on July 14, said Glen Fountain, New Horizons project manager, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland.

There are no second chances.

This trio of images are the most recent high-resolution views of Pluto sent by NASA’s New Horizons spacecraft, including one showing the four mysterious dark spots on Pluto that have captured the imagination of the world. The Long Range Reconnaissance Imager (LORRI) obtained these three images between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode. Credit: NASA/JHUAPL/SWRI
This trio of images are the most recent high-resolution views of Pluto sent by NASA’s New Horizons spacecraft, including one showing the four mysterious dark spots on Pluto that have captured the imagination of the world. The Long Range Reconnaissance Imager (LORRI) obtained these three images between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode. Credit: NASA/JHUAPL/SWRI

The software glitch occurred a day after new operating software was uploaded to New Horizons last Friday.

The spacecraft was trying to do two things at once on Saturday, compressing science data and writing command sequences while using up too much flash memory, explained Fountain.

“The computer was trying to do these two things at the same time, and the two were more than the processor could handle,” Fountain said.

“So the processor said ‘I’m overloaded.’ Then the spacecraft did exactly what it was supposed to do. It then switched to the backup computer and went into safe mode. At that point, we lost the downlink from the primary computer. We realized quickly what happened and put a recovery plan in place and recovered.”

Artist view of New Horizons passing Pluto and three of its moons. The ship is about the size of a grand piano and kept warm in the cold of the outer Solar System by  heat release from the radioactive decay of plutonium within the probe's RTGs (Radioisotope  Thermoelectric Generator). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Artist view of New Horizons passing Pluto and three of its moons. The ship is about the size of a grand piano and kept warm in the cold of the outer Solar System by heat release from the radioactive decay of plutonium within the probe’s RTGs (Radioisotope Thermoelectric Generator). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

At this moment New Horizons is about 3 billion miles (4.9 billion km) from Earth and less than 6 million miles (9 million km) away from unmasking the secrets of tantalizing Pluto, Charon, its largest moon with which it forms a double planet system, and its four tiny and recently discovered moons. Charon is half the size of Pluto.

The round trip time for signals traveling at the speed of light is 8.5 hours. So it’s a very long time before commands from Earth can reach the spacecraft and for the team to determine their outcome. So the probe has to be able to operate on its own without direction from Earth during the intense and brief flyby period.

Pluto is the most distant and last unexplored planet in our Solar System, and therefore presents enormous complexities to those bold enough to dare the mightiest things.

“We expect a nominal flyby of Pluto from every indication now,” said Alan Stern, New Horizons principal investigator, Southwest Research Institute, Boulder, Colorado, announced at the media briefing.

“This object is unlike any other that we have observed,” Stern said. “Both Pluto and Charon are already surprising us.”

Less than 1 percent of the planned data was lost in the three days that the science instruments were shut off.

“It’s more important to focus on the later science during the flyby,” Stern elaborated.

“There is zero impact to the primary Group 1 highest-priority science objectives. And a minor impact to Group 2 and Group 3 objectives,” Stern elaborated.

“This is a speed bump in terms of the total return that we expect from this flyby.”

“I’m pleased that our mission team quickly identified the problem and assured the health of the spacecraft,” noted Green. “Now, with Pluto in our sights, we’re on the verge of returning to normal operations and going for the gold.”

Credit: NASA/JHUAPL/SWRI
New Horizons trajectory map to Pluto. Credit: NASA/JHUAPL/SWRI

The team said this type of software update will not be repeated and a similar type safe mode event should not recur.

Fountain said that during the encounter period, the probe can switch itself to exit safe mode event within about 7 minutes, depending on the situation, and minimize any science data losses.

New Horizons will swoop to within about 12,500 kilometers (nearly 7,800 miles) of Pluto’s surface.

It will zoom past Pluto at speeds of some 30,000 miles per hour (more than 48,000 kilometers per hour).

Today the team also released the best yet images of Pluto that were taken by the Long Range Reconnaissance Imager (LORRI). The trio of images were between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode.

The images show varying and enigmatic surface features on the different hemispheres of Pluto.

They also show the four mysterious dark spots on Pluto that have captured the imagination of the scientists and the world.

Their nature remains unknown at this time.

The probe was launched back in 2006 on a United Launch Alliance Atlas V rocket.

“We are on our way to Pluto!” Green exclaimed.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Animation of Pluto rotating from photos taken by New Horizons two weeks before the flyby. Credit:
Animation of Pluto rotating from photos taken by New Horizons two weeks before the flyby. Credit:

New Horizons, Approaching Pluto, Detects Signs of Polar Caps

The overview of the New Horizon journey to the binary system of Pluto and Charon. The NASA probe is now surpassing Hubble imagery. (Photo Credit: NASA/New Horizons)

http://imgur.com/a0fpALp

The latest set of images from the long range imager, LORRI, on New Horizons now reveals surface features. At a press conference today, exhilarated NASA scientists discussed what the images are now suggesting. (Photo  Credit: NASA/New Horizons)

Today, a trio of NASA scientists expressed their exhilaration with the set of new Pluto images released by the New Horizons team. “Land Ho” exclaimed Dr.  Alan Stern as he first tried to explain where they are on their long journey. Nearly 500 years ago, not even Magellan on a three year journey to circumnavigate the Earth waited so long. A ten year journey is beginning to reveal fascinating new details of the dwarf planet Pluto, once the ninth planet of our Solar System. The latest images show surface features on Pluto suggesting polar caps.

A team effort that Dr. Weaver said called upon leading experts to resolve these newest details of Pluto’s surface. The inset at left shows schematically the geographic relationship of the two bodies as they orbit each other. The inset at right shows surface details at 3x maximum resolution. (Photo Credit: NASA/New Horizons)

The NASA press conference took place this afternoon, anchored by Dr. John Grunsfeld, Associate Administrator for the Science Mission Directorate who quickly turned over the discussion to the project scientist of the New Horizons mission, Dr. Alan Stern from the Southwest Research Institute of San Antonio, Texas. Grunsfeld began by stating NASA’s mission – “to explore, discover and inspire” and added that New Horizons is certainly executing these prime objectives.

The overview of the New Horizon journey to the binary system of Pluto and Charon. The NASA probe is now surpassing Hubble imagery. (Photo Credit: NASA/New Horizons)
The overview of the New Horizon journey to the binary system, Pluto and Charon, and beyond. The NASA probe is now surpassing Hubble imagery. (Photo Credit: NASA/New Horizons)

Alan Stern started off by expressing his excitement with the latest results from the long range telescope on board New Horizons, LORRI, but emphasized he represents a team effort, the culmination of decades of work.

With just 11 weeks remaining and now 98% of the way to Pluto, the latest set of images from LORRI have now revealed details better than the best that was previously attainable – from the Hubble Space Telescope. Most incredible are indications of polar caps on the dwarf planet Pluto.

Pluto
Until now, the Hubble space telescope had shown tantalizing but mottled features of the surface of Pluto (Photo Credit: NASA)

Dr. Stern, stated that the 25th Anniversay of the Hubble mission has also functioned as a segue to what is about to unfold from New Horizons. Until now, the best images of Pluto’s surface had been wrestled out of images from Hubble with computer processing. Yet, at the present distance New Horizons remains, his team is still relying on image processing to reveal these first surface details.

The gravitational tug of war of the unique binary system has forced both small bodies to forever face each other, similar to how our Moon always faces the Earth. (Photo Credit: NASA/New Horizons)

Dr. Stern stated how remarkable the Pluto-Charon system is. The earlier set of LORRI images from 2014 had shown the gravitational dance of the two small bodies. He stated that they are truly a binary system and a type we have never explored before. Pluto-Charon is a dual synchronous, tidally locked system. Dr. Stern explained that the Earth, close-in to the Sun, and their space probe New Horizons, now on its final approach, is viewing the sunlit side of Pluto and Charon.

The system is tipped over relative to its orbital plane around the Sun. Dr. Stern stated, “it is like watching Pluto rotate on a spit.” He said that we are nearly seeing it face on; similar to an observer hovering far above the Earth’s polar cap and looking down upon the Earth-Moon system. The orbits of the two bodies, as seen in the LORRI image sequence (animations, above), appear elliptical (oval), however, due to the extreme and final state of this binary system, the orbits are perfect circles; the eccentricities are zero! New Horizons is just approaching slightly off center.

Images of the New Horion space probe shows its compactness, necessarily to minimize weight, volume, power demands and achieve the high velocity necessary to reach Pluto in nine years. Af left the instruments are shown included the long range imager, LORRI. (Photo Credit: NASA/New Horizons)
Images of the New Horion space probe shows its compactness, necessarily to minimize weight, volume, power demands and achieve the high velocity necessary to reach Pluto in nine years. Af left the instruments are shown included the long range imager, LORRI. (Photo Credit: NASA/New Horizons)

Dr. Stern continued and explained how this latest set is now showing surface features on Pluto. The features “are suggesting the presence of polar caps”, however he also emphasized that it remains only suggestive until New Horizons can deliver more details, that is, higher resolution, color imagery from the Ralph imager and spectroscopic data (Ralph and Alice imaging spectrometers) to reveal composition. Dr. Stern turned over the press conference to Dr. Hal Weaver of John Hopkins’ Applied Physics Laboratory, the lead scientist for the LORRI instrument.

LORRI, the Long Range Reconnaissance Imager, in details of a schematic. (Credit: NASA/New Horizons)
LORRI, the Long Range Reconnaissance Imager, shown through details of a schematic. (Credit: NASA/New Horizons)

LORRI as Dr. Weaver explained is a state-of-the-art instrument. A fixed focus telescopic camera, functional from room temp down to 180 degees Fahrenheit below zero and utilizes an 8 inch primary mirror. The optical quality is extraordinary but the light gathering power is the same as one has in an amateur 8 inch telescope such as offered by Meade or Celestron. Still further, Dr. Weaver stated that LORRI is also extremely efficient and ligthweight, using less than 5 watts of power and weighing less than 20 lbs.

New York City's Manhattan is shown as an example of the resolving power the Ralph multi-spectral imager will have at closest approach to Pluto and Charon (Photo Credit: NASA/New Horizons)
New York City’s Manhattan is shown as an example of the resolving power the Ralph multi-spectral imager will have at closest approach to Pluto and Charon (Photo Credit: NASA/New Horizons)

Dr. Weaver explained how the raw images from LORRI are presently little more than blotches of light, unspectacular at first glance, but with image processing, the details discussed today are revealed. The New Horizons team employed world-class experts in the technique of Image Deconvolution. It was again Hubble that spawned “a cottage industry”, over 20 years ago, including one expert – Todd Lauer of the National Optical Astronomy Observatory. Lauer and others took on the challenge of extracting quality imagery from the Hubble space telescope as it struggled with the astigmatism accidentally built into its optical system. A NASA Space Shuttle mission delivered and inserted a corrective lens into Hubble which has made its 25 years of service possible.

Without the imaging processing technique of deconvolution, the latest images of Pluto are mere blotches. Dr. Weaver credited experts born from the Hubble astigmatism from 20 years ago. (Photo Credit: NASA/New Horizons)
Without the imaging processing technique of deconvolution, the latest images of Pluto are mere blotches. Dr. Weaver credited experts born from the Hubble astigmatism from 20 years ago. (Photo Credit: NASA/New Horizons)

And the New Horizons’ processed images are now slightly better than Hubble and will just get much better. From the Q&A with the press. Weaver explained that while the images show more detail, Earth-based and Hubble images remain more light sensitive. Hubble sets an upper limit to the size of any remaining moons to be discovered. Weaver stated that by June, New Horizons’ LORRI will exceed the light sensitivity limits of Hubble. If there are more moons to be found, June will be the month.

An artist's illustration of Pluto. With a tenuous atmosphere that has so far defied explanations, New Horizons is altogether revealing a light red - peach - colored surface but with large contrasting areas of white and dark red. (Illust. Credit: NASA/New Horizons)
An artist’s illustration of Pluto. With a tenuous atmosphere that has so far defied explanations, New Horizons is altogether revealing a light red – peach – colored surface but with large contrasting areas of white and dark red. (Illust. Credit: NASA/New Horizons)

Through the Q&A, Dr. Stern stated that an extraordinary aspect of Pluto’s atmosphere is that the planet’s atmosphere has continued to expand despite having passed a point in its orbit at which it should be freezing and condensing onto its surface. The atmosphere expanded 200 to 300% in the last decade. With the limited observations, Stern and other Pluto experts surmise that there is a lag in the climate akin to how our hottest months lag the beginning of Summer by a couple of months. Perhaps, a latent heat stored up in the near surface has continued to vaporize frozen gases thus building up the atmosphere more than first expected.

The composition of the dwarf planet’s surface was discussed. Most evident in Earth-based spectroscopy is that there is molecular nitrogen, carbon monoxide and methane. Stern stated they these species of molecules could explain the bright and dark spots of the surface. However, he emphasized that Pluto is composed of 70% rock by mass and the remaining is ice. Charon stands in remarkable contrast to Pluto. Chraon has primarily water and ammonia hydrates on its surface; no detectable atmosphere (so far). Charon’s appearance is much more uniform and bland. Altogether, Stern said that experts call this the Pluto-Charon dichotomy.

The final approach to Pluto is just the beginning of the story of New Horizons' primary targets. The press conference illustration explains near-term plans. (Illust. Credit: NASA/New Horizons)
The present approach at 60 million miles to Pluto is just the beginning of the story of New Horizons’ study of the primary targets. This press conference illustration explains near-term plans. (Illust. Credit: NASA/New Horizons)

Dr. Stern near the end of the press conference restated that this is truly “my meet Pluto moment.” New Horizons is like a plane on its final approach to touchdown but New Horizons cannot slow down. There are no retro-rockets, no propulsion onboard that can slow down the probe on its trek to escape the gravity of the Sun. The probe will join the Pioneer and Voyager space probes as the only Human-made objects to leave the Solar System. With its final approach, with every day, Pluto and Charon closes in as Dr. Stern and Dr. Weaver explained, Pluto’s image will fill the full breadth of the imaging detector. Details on its surface will be equivalent to high resolution images of New York’s Manhattan (figure, above) showing details such as the ponds in Central Park.

To continue following the latest release of images from New Horizons go to http://www.nasa.gov/newhorizons/lorri-gallery.

The End is Near: NASA’s MESSENGER Now Running on Fumes

The MESSENGER spacecraft has been in orbit around Mercury since March 2011. Image Credit: NASA/JHU APL/Carnegie Institution of Washington

For more than four years NASA’s MESSENGER spacecraft has been orbiting our solar system’s innermost planet Mercury, mapping its surface and investigating its unique geology and planetary history in unprecedented detail. But the spacecraft has run out of the fuel needed to maintain its extremely elliptical – and now quite low-altitude – orbit, and the Sun will soon set on the mission when MESSENGER makes its fatal final dive into the planet’s surface at the end of the month.

On April 30 MESSENGER will impact Mercury, falling down to its Sun-baked surface and colliding at a velocity of 3.9 kilometers per second, or about 8,700 mph. The 508-kilogram spacecraft will create a new crater on Mercury about 16 meters across.

The impact is estimated to occur at 19:25 UTC, which will be 3:25 p.m. at the John Hopkins University Applied Physics Lab in Laurel, Maryland, where the MESSENGER operations team is located. Because the spacecraft will be on the opposite side of Mercury as seen from Earth the impact site will not be in view.

Postcards from the (Inner) Edge: MESSENGER Images of Mercury

MESSENGER captures image of curious "hollows" around a crater peak
MESSENGER image of “hollows” around a crater’s central peak – one of the many unique discoveries the mission made about Mercury. Read more here.

But while it’s always sad to lose a dutiful robotic explorer like MESSENGER, its end is bittersweet; the mission has been more than successful, answering many of our long-standing questions about Mercury and revealing features of the planet that nobody even knew existed. The data MESSENGER has returned to Earth – over ten terabytes of it – will be used by planetary scientists for decades in their research on the formation of Mercury as well as the Solar System as a whole.

“For the first time in history we now have real knowledge about the planet Mercury that shows it to be a fascinating world as part of our diverse solar system,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate. “While spacecraft operations will end, we are celebrating MESSENGER as more than a successful mission. It’s the beginning of a longer journey to analyze the data that reveals all the scientific mysteries of Mercury.”

View the top ten science discoveries from MESSENGER here.

On April 6 MESSENGER used up the last vestiges of the liquid hydrazine propellant in its tanks, which it needed to make course corrections to maintain its orbit. But the tanks also hold gaseous helium as a pressurizer, and system engineers figured out how to release that gas through the complex hydrazine nozzles and keep MESSENGER in orbit for a few more weeks.

Earth and the Moon imaged by the MESSENGER spacecraft on Oct. 8, 2014
Earth and the Moon imaged by MESSENGER on Oct. 8, 2014. Credit: NASA/JHU APL/Carnegie Institution of Washington.

On April 24, though, even those traces of helium will be exhausted after a sixth and final orbit correction maneuver. From that point on MESSENGER will be coasting – out of fuel, out of fumes, and out of time.

“Following this last maneuver, we will finally declare MESSENGER out of propellant, as this maneuver will deplete nearly all of our remaining helium gas,” said Mission Systems Engineer Daniel O’Shaughnessy. “At that point, the spacecraft will no longer be capable of fighting the downward push of the Sun’s gravity.

“After studying the planet intently for more than four years, MESSENGER’s final act will be to leave an indelible mark on Mercury, as the spacecraft heads down to an inevitable surface impact.”

Read more: Five Mercury Secrets Revealed by MESSENGER

But MESSENGER scientists and engineers can be proud of the spacecraft that they built, which has proven itself more than capable of operating in the inherently challenging environment so close to our Sun.

“MESSENGER had to survive heating from the Sun, heating from the dayside of Mercury, and the harsh radiation environment in the inner heliosphere, and the clearest demonstration that our innovative engineers were up to the task has been the spacecraft’s longevity in one of the toughest neighborhoods in our Solar System,” said MESSENGER Principal Investigator Sean Solomon. “Moreover, all of the instruments that we selected nearly two decades ago have proven their worth and have yielded an amazing series of discoveries about the innermost planet.”

True color image of Mercury (MESSENGER)
True-color image of Mercury made from MESSENGER data. Credit: NASA/JHU APL/Carnegie Institution of Washington.

The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft launched on August 3, 2004, and traveled over six and a half years before entering orbit about Mercury on March 18, 2011 – the first spacecraft ever to do so. Learn more about the mission’s many discoveries here.

The video below was released in 2013 to commemorate MESSENGER’s second year in orbit and highlights some of the missions important achievements.

Source: NASA and JHUAPL

Are you an educator? Check out some teaching materials and shareables on the MESSENGER community page here.

2015: NASA’s Year of the Dwarf Planet

Two spacecraft, Dawn and New Horizon will reach their final objectives in 2015 - Dwarf Planets - Ceres and Pluto. (Credit: NASA, Illustration - T.Reyes)

Together, the space probes Dawn and New Horizons have been in flight for a collective 17 years. One remained close to home and the other departed to parts of the Solar System of which little is known. They now share a common destination in the same year: dwarf planets.

At the time of these NASA probes’ departures, Ceres had just lost its designation as the largest asteroid in our Solar System. Pluto was the ninth planet. Both probes now stand to deliver measures of new data and insight that could spearhead yet another revision of the definition of planet.

A comparison of the trajectories of New Horizon (left) and the Dawn missions (right). (Credit: NASA/JPL, SWRI, Composite- T.Reyes)
A comparison of the trajectories of New Horizons (left) and the Dawn missions (right). (Credit: NASA/JPL, SWRI, Composite- T.Reyes)

Certainly, NASA’s Year of the Dwarf Planet is an unofficial designation and NASA representatives would be quick to emphasize another dozen or more missions that are of importance during the year 2015. However, these two missions could determine the fate of billions or more small bodies just within our galaxy, the Milky Way.

If Ceres and Pluto are studied up close – mission success is never a sure thing – then what is observed could lead to a new, more certain and accepted definition of planet, dwarf planet, and possibly other new definitions.

The New Horizons mission became the first mission of NASA’s New Frontiers program, beginning development in 2001. The probe was launched on January 19, 2006, atop an Atlas V 551 (5 solid rocket boosters plus a third stage). Utilizing more compact and lightweight electronics than its predecessors to the outer planets – Pioneer 10 & 11, and Voyager 1 & 2 – the combination of reduced weight, a powerful launch vehicle, plus a gravity assist from Jupiter has lead to a nine year journey. On December 6, 2014, New Horizons was taken out of hibernation for the last time and now remains powered on until the Pluto encounter.

This "movie" of Pluto and its largest moon, Charon b yNASA's New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies - resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto's surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
This “movie” of Pluto and its largest moon, Charon, by NASA’s New Horizons spacecraft taken in July 2014 clearly shows that the barycenter – the center of mass of the two bodies – resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto’s surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

The arrival date of New Horizon is July 14, 2015. A telescope called the Long Range Reconnaissance Imager (LORRI) has permitted the commencement of observations while still over 240 million kilometers (150 million miles) from Pluto. The first stellar-like images were taken while still in the Asteroid belt in 2006.

Pluto was once the ninth planet of the Solar System. From its discovery in 1930 by Clyde Tombaugh until 2006, it maintained this status. In that latter year, the International Astronomical Union undertook a debate and then a membership vote that redefined what a planet is. The change occurred 8 months after New Horizons’ launch. There were some upset mission scientists, foremost of which was the principal investigator, Dr. Alan Stern, from the Southwest Research Institute in San Antonio, Texas. In a sense, the rug had been pulled from under them.

A gentleman’s battle ensued between opposing protagonists Dr. Stern and Dr. Michael Brown from Caltech. In 2001, Dr. Brown’s research team began to discover Kuiper belt objects (Trans-Neptunian objects) that rivaled the size of Pluto. Pluto suddenly appeared to be one of many small bodies that could likely number in the trillions within just one galaxy – ours. According to Dr. Brown, there could be as many as 200 objects in our Solar System similar to Pluto that, under the old definition, could be defined as planets. Dr. Brown’s work was the straw that broke the camel’s back – that is, it led to the redefinition of planet, and the native of Huntsville, Alabama, went on to write a popular book, How I Killed Pluto and Why It Had It Coming.

Dr. Stern’s story involving Pluto and planetary research is a longer and more circuitous one. Stern was the Executive Director of the Southwest Research Institute’s Space Science and Engineering Division and then accepted the position of Associate Administrator of NASA’s Science Mission Directorate in 2007. Clearly, after a nine year journey, Stern is now fully committed to New Horizons’ close encounter. More descriptions of the two protagonists of the Pluto debate will be included in a follow on story.

Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. (Image credit: NASA/JPL)
Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta, and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. (Image credit: NASA/JPL)

The JPL and Orbital Science Corporation developed Dawn space probe began its journey to the main asteroid belt on September 27, 2007. It has used gravity assists and flew by the planet Mars. Dawn spent 14 months surveying Vesta, the 4th largest asteroid of the main belt (assuming Ceres is still considered the largest). While New Horizons has traveled over 30 Astronomical Units (A.U.) – 30 times the distance from the Earth to the Sun – Dawn has remained closer and required reaching a little over 2 A.U. to reach Vesta and now 3 A.U. to reach Ceres.

The Dawn mission had the clear objective of rendezvous and achieving orbit with two asteroids in the main belt between Mars and Jupiter. Dawn was also sent packing the next generation of Ion Propulsion. It has proven its effectiveness very well, having used ion propulsion for the first time to achieve an orbit. Pretty simple, right? Not so fast.

As Dawn was passing critical design reviews during development, the redefinition of planet lofted its second objective – the asteroid 1 Ceres – to a new status. While Pluto was demoted, Ceres was promoted from its scrappy status of biggest of the asteroids – the debris, the leftovers of our solar system’s development – to dwarf planet. Even 4 Vesta is now designated a proto-planet.

Artist rendition of Dawn spacecraft orbiting Vesta(Credit: NASA/JPL-Caltech)
Artist rendition of Dawn spacecraft orbiting Vesta. (Credit: NASA/JPL-Caltech)

So now the stage is set. Dawn will arrive first at a dwarf planet – Ceres – in April. With a small, low gravity body and ion propulsion, the arrival is slow and cautious. If the two missions fair well and achieve their goals, 2015 is likely to become a pivotal year in the debate over the classification of non-stellar objects throughout the universe.

Just days ago, at the American Geophysical Union Conference in San Francisco, Dr. Stern and team described the status and more details of the goals of New Horizons. Since arriving, more moons of Pluto have been discovered. There is the potential that faint rings exist and Pluto may even harbor an interior ocean due to the tidal forces from its largest moon, Charon. And Dawn mission scientists have seen the prospects for Ceres’ change. Not just the status, the latest Hubble images of Ceres is showing bright spots which could be water ice deposits and could also harbor an internal ocean.

The Solar System is becoming a more crowded place. This picture shows the sizes of dwarf planets Pluto, Ceres, Eris, and Makemake as compared to Earth and Earth's Moon, here called "Luna." None of the distances between objects are to scale. (Credit: NASA)
The Solar System is becoming a more crowded place. This picture shows the sizes of dwarf planets Pluto, Ceres, Eris, and Makemake as compared to Earth and Earth’s Moon, here called “Luna.” None of the distances between objects are to scale. (Credit: NASA)

So other NASA missions notwithstanding, this is the year of the dwarf planet. NASA will provide Humanity with its first close encounters with the most numerous of small round – by their self-gravity – bodies in the Universe. They are now called dwarf planets but ask Dr. Stern and company, the public, and many other planetary scientists and you will discover that the jury is still out.

References:

JHU/APL New Horizons Mission Home Page

NASA Dawn Mission Home Page

Related Universe Today articles:

NASA’s New Horizons

NASA’s Dawn Mission

MESSENGER Completes Second Burn to Maintain Mercury Orbit

Illustration of MESSENGER in orbit around Mercury (NASA/JPL/APL)

A little over a week before NASA’s MAVEN spacecraft fired its rockets to successfully enter orbit around Mars, MESSENGER performed a little burn of its own – the second of four orbit correction maneuvers (OCMs) that will allow it to remain in orbit around Mercury until next March. Although it is closing in on the end of its operational life it’s nice to know we still have a few more months of images and discoveries from MESSENGER to look forward to!

MESSENGER's orientation after the start of orbit correction maneuver 10 (OCM-10). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
MESSENGER’s orientation after the start of orbit correction maneuver 10 (OCM-10). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

The first OCM burn was performed on June 17, raising MESSENGER’s orbit from 115 kilometers (71.4 miles) to 156.4 kilometers (97.2 miles) above the surface of Mercury. That was the ninth OCM of the MESSENGER mission, and at 11:54 a.m. EDT on Sept. 12, 2014, the tenth was performed.

Read more: Mercury’s Ready for Its Close-up, Mr. MESSENGER

According to the mission news article:

At the time of this most recent maneuver, MESSENGER was in an orbit with a closest approach of 24.3 kilometers (15.1 miles) above the surface of Mercury. With a velocity change of 8.57 meters per second (19.17 miles per hour), the spacecraft’s four largest monopropellant thrusters (with a small contribution from four of the 12 smallest monopropellant thrusters) nudged the spacecraft to an orbit with a closest approach altitude of 94 kilometers (58.4 miles). This maneuver also increased the spacecraft’s speed relative to Mercury at the maximum distance from Mercury, adding about 3.2 minutes to the spacecraft’s eight-hour, two-minute orbit period.

OCM-10 lasted for 2 1/4 minutes and added 3.2 minutes to the spacecraft’s 8-hour, 2-minute-long orbit. (Source)

The next two burns will occur on October 24 and January 21.

After its two final successful burns MESSENGER will be out of propellant, making any further OCMs impossible. At the planned end of its mission MESSENGER will impact Mercury’s surface in March of 2015.

WATCH: A Tribute to MESSENGER

Built and operated by The Johns Hopkins University Applied Physics Laboratory (JHUAPL), MESSENGER launched from Cape Canaveral Air Force Station on August 3, 2004. It entered orbit around Mercury on March 18, 2011, the first spacecraft ever to do so. Since then it has performed countless observations of our Solar System’s innermost planet and has successfully mapped 100% of its surface. Check out the infographic below showing some of the amazing numbers racked up by MESSENGER since its launch ten years ago, and read more about the MESSENGER mission here.

"MESSENGER by the Numbers" - and infographic by NASA
“MESSENGER by the Numbers” – an infographic by NASA

 

Mercury’s Ready For Its Close-Up, Mr. MESSENGER

One of the highest-resolution images of Mercury's surface ever acquired.

Are you ready for a good close look at Mercury? At an incredible 5 meters per pixel, this is one of the highest-resolution images of Mercury’s surface ever captured. It was acquired on March 15 with the MESSENGER spacecraft’s MDIS (Mercury Dual Imaging System) instrument and shows an 8.3-km (5.2-mile) -wide section of Mercury’s north polar region, speckled with small craters and softly rolling hills.

Because MESSENGER was moving so quickly relative to the targeted area it was imaging, a short exposure time was necessary to avoid blurring. As a result the image appears a bit grainy. See the original map projection here.

Wondering what the next-best image was of Mercury? Find out below:

The previous record for most extreme close-up of Mercury was held by this image:

7 meter/pixel targeted observation of Mercury by the MESSENGER spacecraft
7 meter/pixel targeted observation of Mercury by the MESSENGER spacecraft

It was acquired as a targeted observation by MESSENGER’s Narrow-Angle Camera on April 30, 2012, and has a resolution of 7 meters/pixel. It shows an impact melt-covered area about 11 km (7 miles) across near Gaugin crater.

(Although Mercury’s surface may at first appear strikingly similar to the Moon’s, it’s been known since the Mariner 10 mission that the two worlds are very different at fundamental geologic and compositional levels. Read more on that here.)

Images like these are extremely special; during the first two years of MESSENGER’s mission in orbit around Mercury, over 150,000 images were acquired but only five images had resolutions better than 10 meters per pixel.

Artist's impression of MESSENGER orbiting Mercury
Artist’s impression of MESSENGER orbiting Mercury

On April 20, 2014, MESSENGER completed its 3,000th orbit of Mercury (3,075 to date) and is steadily moving into an even lower-altitude orbit. MESSENGER now comes within less than 200 km (124 miles) of the planet’s surface when it passes over its north pole every eight hours… that’s less than half the altitude of the Space Station!

Orbiting at such a low altitude and so often will allow MESSENGER to examine Mercury’s surface in unprecedented detail. Now that 100% of the planet has been successfully mapped by MESSENGER it can spend its second — and last — extended mission investigating specific scientific targets.

Watch: A Tribute to MESSENGER 

“The final year of MESSENGER’s orbital operations will be an entirely new mission,” said Sean Solomon, Principal Investigator for MESSENGER. “With each orbit, our images, our surface compositional measurements, and our observations of the planet’s magnetic and gravity fields will be higher in resolution than ever before. We will be able to characterize Mercury’s near-surface particle environment for the first time. Mercury has stubbornly held on to many of its secrets, but many will at last be revealed.”

Read more in a recent news release from the MESSENGER team here.

Want to explore a high-res map of Mercury and see where MESSENGER is right now? Click here.

Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Twin NASA Probes Find “Zebra Stripes” in Earth’s Radiation Belt

Illustration of the twin Van Allen Probes (formerly Radiation Belt Storm Probes) in orbit (JHUAPL/NASA)

Earth’s inner radiation belt displays a curiously zebra-esque striped pattern, according to the latest findings from NASA’s twin Van Allen Probes. What’s more, the cause of the striping seems to be the rotation of the Earth itself — something that was previously thought to be impossible.

“…it is truly humbling, as a theoretician, to see how quickly new data can change our understanding of physical properties.”

– Aleksandr Ukhorskiy, Johns Hopkins University Applied Physics Laboratory

Our planet is surrounded by two large doughnut-shaped regions of radiation called the Van Allen belts, after astrophysicist James Van Allen who discovered their presence in 1958. (Van Allen died at the age of 91 in 2006.) The inner Van Allen belt, extending from about 800 to 13,000 km (500 to 8,000 miles) above the Earth, contains high-energy electrons and protons and poses a risk to both spacecraft and humans, should either happen to spend any substantial amount of time inside it.

Read more: Surprising Third Radiation Belt Found Around Earth

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) is a time-of-flight versus energy spectrometer (JHUAPL)
The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) is a time-of-flight versus energy spectrometer (JHUAPL)

Launched aboard an Atlas V rocket from Cape Canaveral AFS on the morning of Aug. 30, 2012, the Van Allen Probes (originally the Radiation Belt Storm Probes) are on a two-year mission to investigate the belts and find out how they behave and evolve over time.

One of the instruments aboard the twin probes, the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE), has detected a persistent striped pattern in the particles within the inner belt. While it was once thought that any structures within the belts were the result of solar activity, thanks to RBSPICE it’s now been determined that Earth’s rotation and tilted magnetic axis are the cause.

“It is because of the unprecedented high energy and temporal resolution of our energetic particle experiment, RBSPICE, that we now understand that the inner belt electrons are, in fact, always organized in zebra patterns,” said Aleksandr Ukhorskiy of the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Md., co-investigator on RBSPICE and lead author of the paper. “Furthermore, our modeling clearly identifies Earth’s rotation as the mechanism creating these patterns. It is truly humbling, as a theoretician, to see how quickly new data can change our understanding of physical properties.”

The model of the formation of the striped patterns is likened to the pulling of taffy.

RBSPICE data of stripes within the inner Van Allen belt (Click for animation) Credit: A. Ukhorskiy/JHUAPL
RBSPICE data of stripes within the inner Van Allen belt (Click for animation) Credit: A. Ukhorskiy/JHUAPL

“If the inner belt electron populations are viewed as a viscous fluid,” Ukhorskiy said, “these global oscillations slowly stretch and fold that fluid, much like taffy is stretched and folded in a candy store machine.”

“This finding tells us something new and important about how the universe operates,” said Barry Mauk, a project scientist at APL and co-author of the paper. “The new results reveal a new large-scale physical mechanism that can be important for planetary radiation belts throughout the solar system. An instrument similar to RBSPICE is now on its way to Jupiter on NASA’s Juno mission, and we will be looking for the existence of zebra stripe-like patterns in Jupiter’s radiation belts.”

Jupiter’s Van Allen belts are similar to Earth’s except much larger; Jupiter’s magnetic field is ten times stronger than Earth’s and the radiation in its belts is a million times more powerful (source). Juno will arrive at Jupiter in July 2016 and spend about a year in orbit, investigating its atmosphere, interior, and magnetosphere.

Thanks to the Van Allen Probes. Juno now has one more feature to look for in Jupiter’s radiation belts.

“It is amazing how Earth’s space environment, including the radiation belts, continue to surprise us even after we have studied them for over 50 years. Our understanding of the complex structures of the belts, and the processes behind the belts’ behaviors, continues to grow, all of which contribute to the eventual goal of providing accurate space weather modeling.”

– Louis Lanzerotti, physics professor at the New Jersey Institute of Technology and principal investigator for RBSPICE

The team’s findings have been published in the March 20 issue of the journal Nature.

The Van Allen Probes are the second mission in NASA’s Living With a Star program, managed by NASA’s Goddard Space Flight Center in Greenbelt, MD. The program explores aspects of the connected sun-Earth system that directly affect life and society.

Source: Van Allen Probes news release

Comets Encke and ISON Spotted from Mercury

MESSENGER wide-angle camera images of comets Encke and ISON

Two comets currently on their way toward the Sun have been captured on camera from the innermost planet. The MESSENGER spacecraft in orbit around Mercury has spotted the well-known short-period comet Encke as well as the much-anticipated comet ISON, imaging the progress of each over the course of three days. Both comets will reach perihelion later this month within a week of each other.

While Encke will most likely survive its close encounter to continue along its 3.3-year-long lap around the inner Solar System, the fate of ISON isn’t nearly as certain… but both are making for great photo opportunities!

The figure above shows, on the left, images of comet 2P/Encke on three successive days from Nov. 6 to Nov. 8; on the right, images of C/2012 S1 (ISON) are shown for three successive days from Nov. 9 to Nov. 11. Both appear to brighten a little bit more each day.

MESSENGER image of ISON from Nov. 10 (enlarged detail)
MESSENGER image of ISON from Nov. 10 (enlarged detail)

MESSENGER is viewing these comets from a vantage point that is very different from that of observers on Earth. Comet Encke was approximately 0.5 AU from the Sun and 0.2 AU from MESSENGER when these images were taken; the same distances were approximately 0.75 AU and 0.5 AU, respectively, for ISON. More images will be obtained starting on November 16 when the comets should be both brighter and closer to Mercury. (Source: MESSENGER featured image article.)

Encke will reach its perihelion on Nov. 21; ISON on Nov. 28.

Read more: Will Comet ISON Survive Perihelion?

“We are thrilled to see that we’ve detected ISON,” said Ron Vervack, of the Johns Hopkins University Applied Physics Laboratory, who is leading MESSENGER’s role in the ISON observation campaign. “The comet hasn’t brightened as quickly as originally predicted, so we wondered how well we would do. Seeing it this early bodes well for our later observations.”

Comet 2P/Encke on October 30, 2013. The coma is partially obscuring the small barred spiral galaxy NGC 4371. Credit and copyright: Damian Peach.
Comet 2P/Encke photographed on October 30 by  Damian Peach.

Unlike ISON, Encke has been known for quite a while. It was discovered in 1786 and recognized as a periodic comet in 1819. Its orbital period is 3.3 years — the shortest period of any known comet — and November 21 will mark its 62nd recorded perihelion. (Source)

Read more: How to See This Season’s “Other” Comet: 2P/Encke

“Encke has been on our radar for a long time because we’ve realized that it would be crossing MESSENGER’s path in mid-November of this year,” Vervack explained. “And not only crossing it, but coming very close to Mercury.”

These early images of both comets are little more than a few pixels across, Vervack said, but he expects improved images next week when the comets make their closest approaches to MESSENGER and Mercury.

“By next week, we expect Encke to brighten by approximately a factor of 200 as seen from Mercury, and ISON by a factor of 15 or more,” Vervack said. “So we have high hopes for better images and data.”

– Ron Vervack, JHUAPL

Read more about the MESSENGER cometary observation campaign in the full news release here.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/Southwest Research Institute