The next Orion crew module in line to launch to space on NASA’s Exploration Mission-1 (EM-1) has passed a critical series of proof pressure tests which confirm the effectiveness of the welds holding the spacecraft structure together.
Any leaks occurring in flight could threaten the astronauts lives.
Engineers and technicians conducted the pressure tests on the Orion EM-1 pressure vessel, which was welded together at NASA’s Michoud Assembly Facility in New Orleans and then shipped to NASA’s Kennedy Space Center in Florida just 3 months ago.
The pressure vessel is the structural backbone for the vehicles that will launch American astronauts to deep space destinations.
“This is the first mission where the Orion spacecraft will be integrated with the large Space Launch System rocket. Orion is the vehicle that’s going to take astronauts to deep space,” NASA Orion program manager Scott Wilson told Universe Today.
“The tests confirmed that the weld points of the underlying structure will contain and protect astronauts during the launch, in-space, re-entry and landing phases on the Exploration Mission 1 (EM-1), when the spacecraft performs its first uncrewed test flight atop the Space Launch System rocket,” according to a NASA statement.
After flying to KSC on Feb 1, 2016 inside NASA’s unique Super Guppy aircraft, this “new and improved” Orion EM-1 pressure vessel was moved to the Neil Armstrong Operations and Checkout (O&C) Building for final assembly by prime contractor Lockheed Martin into a flight worthy vehicle.
Since then, technicians have worked to meticulously attach hundreds of strain gauges to the interior and exterior surfaces of the vehicle to prepare for the pressure tests.
The strain gauges provide real time data to the analysts monitoring the changes during the pressurization.
Orion was moved to a test stand inside the proof pressure cell high bay and locked inside behind large doors.
Lockheed Martin engineers then incrementally increased the pressure in the proof testing cell in a series of steps over two days. They carefully monitored the results along the way and how the spacecraft reacted to the stresses induced by the pressure increases.
The maximum pressure reached was 1.25 times normal atmospheric pressure – which exceeds the maximum pressure it is expected to encounter on orbit.
“We are very pleased with the performance of the spacecraft during proof pressure testing,” said Scott Wilson, NASA manager of production operations for the Orion Program.
“The successful completion of this test represents another major step forward in our march toward completing the EM-1 spacecraft, and ultimately, our crewed missions to deep space.”
With the pressure testing satisfactorily completed, technicians will move Orion back to birdcage assembly stand for the “intricate work of attaching hundreds of brackets to the vessel’s exterior to hold the tubing for the vehicle’s hydraulics and other systems.”
To prepare for launch in 2018, engineers and technicians from NASA and prime contractor Lockheed Martin will spend the next two years meticulously installing all the systems amounting to over 100,000 components and gear required for flight.
This particular ‘Lunar Orion’ crew module is intended for blastoff to the Moon in 2018 on NASA’s Exploration Mission-1 (EM-1) atop the agency’s mammoth new Space Launch System (SLS) rocket, simultaneously under development. The pressurized crew module serves as the living quarters for the astronauts comprising up to four crew members.
EM-1 itself is a ‘proving ground’ mission that will fly an unmanned Orion thousands of miles beyond the Moon, further than any human capable vehicle, and back to Earth, over the course of a three-week mission.
The 2018 launch of NASA’s Orion on the unpiloted EM-1 mission counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago.
Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Under the 3 year, $67 million contract award, Aerojet Rocketdyne will develop the engineering development unit for an Advanced Electric Propulsion System (AEPS) with the potential for follow on flight units.
NASA hopes that the work will result in a 10 fold increase in “spaceflight transportation fuel efficiency compared to current chemical propulsion technology and more than double thrust capability compared to current electric propulsion systems.”
The SEP effort is based in part on NASA’s exploratory work on Hall ion thrusters which trap electrons in a magnetic field and uses them to ionize and accelerate the onboard xenon gas propellant to produce thrust much more efficiently than chemical thrusters.
The solar electric propulsion (SEP) system technology will afford benefits both to America’s commercial space and scientific space exploration capabilities.
For NASA, the SEP technology can be applied for expeditions to deep space such as NASA’s planned Asteroid Robotic Redirect Mission (ARRM) to snatch a boulder from the surface of an asteroid and return it to cislunar space during the 2020s, as well as to carry out the agency’s ambitious plans to send humans on a ‘Journey to Mars’ during the 2030s.
“High power SEP is a perfect example of NASA developing cross cutting technologies to enable both human and robotic deep space missions. Basically it enables high efficiency and better gas mileage,” said Steve Jurczyk, associate administrator of NASA’s Space Technology Mission Directorate (STMD) in Washington, at a media briefing.
“The advantage here is the higher power and the higher thrust.”
“Our plan right now is to flight test the higher power solar electric propulsion that Aerojet Rocketdyne will develop for us on the Asteroid Redirect Robotic Mission (ARRM), which is going to go out to an asteroid with a robotic system, grab a boulder off of an asteroid, and bring it back to a lunar orbit.”
ARRM would launch around 2020 or 2021. Astronauts would blast off several years later in NASA’s Orion crew capsule in 2025 after the robotic probes travels back to lunar orbit.
For industry, electric propulsion is used increasingly to maneuver thrusters in Earth orbiting commercial satellites for station keeping in place of fuel.
“Through this contract, NASA will be developing advanced electric propulsion elements for initial spaceflight applications, which will pave the way for an advanced solar electric propulsion demonstration mission by the end of the decade,” says Jurczyk.
“Development of this technology will advance our future in-space transportation capability for a variety of NASA deep space human and robotic exploration missions, as well as private commercial space missions.”
“This is also a critical capability for enabling human missions to Mars, with respect to delivering cargo to the surface to Mars that will allow people to live and work there on the surface. Also for combined chemical and SEP systems on a spacecraft to propel humans to Mars,” elaborated Jurczyk at the briefing.
“Another application is round trip robotic science missions to Mars to bring back samples – such as a Mars Sample Return (MSR) mission.”
The starting point is NASA’s development and technology readiness testing of a prototype 13-kilowatt Hall thruster and power processing unit at NASA’s Glenn Research Center in Cleveland.
Under the contract award Aerojet Rocketdyne aims to carry out the industrial development of “high-power solar electric propulsion into a flight-qualified system.”
They will develop, build, test and deliver “an integrated electric propulsion system consisting of a thruster, power processing unit (PPU), low-pressure xenon flow controller, and electrical harness,” as an engineering development unit.
This engineering development unit serves as the basis for producing commercial flight units.
If successful, NASA has an option to purchase up to four integrated flight units for actual space missions. Engineers from NASA Glenn and the Jet Propulsion Laboratory (JPL) will provide technical support.
“We could string together four of these engine units to get approximately 50 kilowatts of electrical propulsion capability and with that we can do significant orbital transfer operations. That then becomes the next step in deep space exploration operations that we are trying to do,” said Bryan Smith, director of the Space Flight Systems Directorate at NASA’s Glenn Research Center in Cleveland, at the media briefing.
“We hope to buy four of these units for the ARRM mission.”
What were some of NASA’s research and development (R&D) activities and further plans for Aerojet Rocketdyne?
“NASA is driving out the technology itself for feasibility. So we produced a developmental device to operate at these levels,” Smith told Universe Today during the briefing.
“Other key characteristics we were looking for is the ability to do magnetic shielding. The purpose was to allow for a long life thruster operation. We investigated attributes like thermal problems and balancing the erosion mechanisms in developmental units. So we were looking for things to get longer life and feasibility in developmental units.”
“Once we were comfortable with the feasibility in developmental units, we are now transferring the information, technology and knowhow into what is a production article, in this contract.”
Solar electric ion propulsion is already being used in NASA’s hugely successful Dawn asteroid orbiter mission.
Dawn was launched in 2007. It orbited and surveyed Vesta in 2011 and 2012 and then traveled outward to Ceres.
Dawn arrived at dwarf planet Ceres in March 2015 and is currently conducting breakthrough science at its lowest planned science mapping orbit.
A key part of the Journey to Mars, NASA will be sending cargo missions to the Red Planet to pave the way for human expeditions with the Orion crew module and Space Launch System.
Aerojet Rocketdyne states that “Solar Electric Propulsion (SEP) systems have demonstrated the ability to reduce the mission cost for NASA Human Exploration cargo missions by more than 50 percent through the use of existing flight-proven SEP systems.”
“Using a SEP tug for cargo delivery, combined with NASA’s Space Launch System and the Orion crew module, provides an affordable path for deep space exploration,” said Aerojet Rocketdyne Vice President, Space and Launch Systems, Julie Van Kleeck.
Another near term application of high power solar electric propulsion could be for NASA’s proposed Mars 2022 telecom orbiter, said Smith at the media briefing.
Other NASA technology work in progress includes development of more efficient, advanced solar array systems to generate the additional power required for the larger electric thrusters.
Orbital ATK was part of the development effort and already used some of its technology development in the ultraflex solar arrays on the recent Cygnus cargo ships delivering supplies to the ISS.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
One weld at a time, the flight hardware for NASA’s mammoth new Space Launch System (SLS) booster has at last started taking shape, promising to turn years of planning and engineering discussions into reality and a rocket that will one day propel our astronauts on a ‘Journey to Mars.’
The first actual SLS flight hardware has been assembled, leaping from engineering blueprints on computer screens to individual metallic components that technicians are feeding into NASA’s gigantic “Welding Wonder” machine at the agency’s Michoud Assembly Facility in New Orleans.
Technicians are bending metal and have now finished welding together the pieces of flight hardware forming the first major SLS flight component – namely the engine section that sits at the base of the SLS core stage.
The core stage towers over 212 feet (64.6 meters) tall, sports a diameter of 27.6 feet (8.4 m) and stores the cryogenic liquid hydrogen and liquid oxygen that feeds and fuels the boosters RS-25 engines.
SLS will be the most powerful rocket the world has ever seen. It will propel astronauts in the Orion capsule on deep space missions, first back to the Moon by around 2021, then to an asteroid around 2025 and then beyond to the Red Planet in the 2030s – NASA’s overriding and agency wide goal.
The SLS core stage welding work is carried out in the massive 170-foot-tall Vertical Assembly Center (VAC) at Michoud. Boeing is the prime contractor for the SLS core stage.
On Sept. 12, 2014, NASA Administrator Charles Bolden officially unveiled VAC as the world’s largest welder at Michoud.
“This rocket is a game changer in terms of deep space exploration and will launch NASA astronauts to investigate asteroids and explore the surface of Mars while opening new possibilities for science missions, as well,” said NASA Administrator Charles Bolden during the ribbon-cutting ceremony at Michoud.
Each of the RS-25’s engines generates some 500,000 pounds of thrust, fueled by cryogenic liquid hydrogen and liquid oxygen. They are recycled for their original use as space shuttle main engines
For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.
The SLS weld team has been busy. Technicians have already assembled a qualification version of the engine section on the Vertical Assembly Center at Michoud. Later this year it will be shipped to NASA’s Marshall Space Flight Center in Huntsville, Alabama, to undergo structural loads testing.
In March, they also completed welding of a liquid oxygen tank confidence article on the Vertical Assembly Center. And in February they welded the liquid hydrogen tank confidence article.
The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank, the intertank, the liquid hydrogen tank and the engine section.
The tanks are assembled by joining previously manufactured domes, rings and barrels components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.
The SLS core stage builds on heritage from NASA’s Space Shuttle Program and is based on the shuttle’s External Tank (ET). All 135 ET flight units were built at Michoud during the thirty year long shuttle program.
According to the current schedule, NASA plans to finish all welding for the core stage — including confidence, qualification and flight hardware — of the SLS-1 rocket sometime this summer.
Engineers are constructing the confidence and qualification hardware units to verify that the welding equipment and procedures work exactly as planned.
“The confidence will also be used in developing the application process for the thermal protection system, which is the insulation foam that gives the tank its orange color,” say NASA officials.
Altogether , the SLS first stage propulsion comprises the four RS-25 space shuttle main engines and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.
The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds.
Meanwhile the welded skeletal backbone for the Orion EM-1 mission recently arrived at the Kennedy Space Center on Feb. 1 for outfitting with all the systems and subsystems necessary for flight.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Establishing a human settlement on Mars has been the fevered dream of space agencies for some time. Long before NASA announced its “Journey to Mars” – a plan that outlined the steps that need to be taken to mount a manned mission by the 2030s – the agency’s was planning how a crewed mission could lead to the establishing of stations on the planet’s surface. And it seems that in the coming decades, this could finally become a reality.
But when it comes to establishing a permanent colony – another point of interest when it comes to Mars missions – the coming decades might be a bit too soon. Such was the message during a recent colloquium hosted by NASA’s Future In-Space Operations (FISO) working group. Titled “Selecting a Landing Site for Humans on Mars”, this presentation set out the goals for NASA’s manned mission in the coming decades.
NASA engineers have successfully test fired the first flight engine destined to power the agency’s mammoth new SLS rocket that will launch American astronauts back to the Moon and deep space for the first time in nearly five decades.
KENNEDY SPACE CENTER, FL – Nearing the final days of his history making one-year-long sojourn in orbit, space farming NASA astronaut Scott Kelly harvested the first ever crop of ‘Space Zinnias’ grown aboard the International Space Station (ISS) on a most appropriate day – Valentine’s Day, Sunday, Feb. 14, 2016.
The Obama Administration has announced its new Federal budget and is proposing to cut NASA’s Fiscal Year 2017 Budget to $19 billion by carving away significant funding for deep space exploration, whereas the overall US Federal budget actually increases to over $4.1 trillion.
This 2017 budget request amounts to almost $300 million less than the recently enacted NASA budget for 2016 and specifically stipulates deep funding cuts for deep space exploration programs involving both humans and robots, during President Obama’s final year in office.
The 2017 budget proposal would slash funding to the very programs designed to expand the frontiers of human knowledge and aimed at propelling humans outward to the Red Planet and robots to a Jovian moon that might be conducive to the formation of life.
Absent sufficient and reliable funding to keep NASA’s exploration endeavors on track, further launch delays are almost certainly inevitable – thereby fraying American leadership in space and science.
The administration is specifying big funding cuts to the ongoing development of NASA’s mammoth Space Launch System (SLS) heavy lift rocket and the state of the art Orion deep space crew capsule. They are the essential first ingredients to carry out NASA’s ambitious plans to send astronauts on deep space ‘Journey to Mars’ expeditions during the 2030s.
The overall Exploration Systems Development account for human deep space missions would be slashed about 18 percent from the 2016 funding level; from $4.0 Billion to only $3.3 Billion, or nearly $700 million.
SLS alone is reduced the most by $700 million from $2.0 billion to $1,31 billion, or a whopping 35 percent loss. Orion is reduced from $1.27 billion to $1.12 billion for a loss of some $150 million.
Make no mistake. These programs are already starved for funding and the Obama administration tried to force similar cuts to these programs in 2016, until Congress intervened.
Likewise, the Obama administration is proposing a draconian cut to the proposed robotic mission to Jupiter’s moon Europa that would surely delay the launch by at least another half a decade or more – to the late 2020s.
The Europa mission budget proposal is cut to only $49 million and the launch is postponed until the late 2020s. The mission received $175 million in funding in 2016 – amounting to a 72 percent reduction.
Furthermore there is no funding for a proposed lander and the launch vehicle changes from SLS to a far less powerful EELV – causing a year’s long increased travel time.
In order to maintain an SLS launch in approximately 2022, NASA would require a budget of about $150 million in 2017, said David Radzanowski, NASA’s chief financial officer, during a Feb. 9 teleconference with reporters.
Why is Europa worth exploring? Because Europa likely possesses a subsurface ocean of water and is a prime target in the search for life!
Overall, NASA’s hugely successful Planetary Sciences division suffers a huge and nearly 10 percent cut of $141 million to $1.51 billion – despite undeniably groundbreaking scientific successes this past year at Pluto, Ceres, Mars and more!
Altogether NASA would receive $19.025 billion in FY 2017. This totals $260 million less than the $19.285 billion appropriated in FY 2016, and thus corresponds to a reduction of 1.5 percent.
By contrast, the overall US Federal Budget will increase nearly 5 percent to approximately $4.1 trillion. Simple math demonstrates that NASA is clearly not a high priority for the administration. NASA’s share of the Federal budget comes in at less than half a cent on the dollar.
NASA’s Fiscal Year 2017 budget proposal was announced by NASA Administrator Charles Bolden during a televised ‘State of NASA’ address at the agency’s Langley Research Center in Virginia on Feb. 9.
Bolden did not dwell at all on the significant funding reductions for exploration.
“We are hitting our benchmarks with new exploration systems like the Space Launch System rocket and the Orion Crew Vehicle. A new consensus is emerging in the scientific and policy communities around our vision, timetable and plan for sending American astronauts to Mars in the 2030s.”
And he outlined some milestones ahead.
“We’ll continue to make great progress on the Space Launch System – SLS–rocket and we’re preparing for a second series of engine tests,” said Bolden.
“At the Kennedy Space Center, our teams will outfit Orion’s crew module with the spacecraft’s heat-shielding thermal protection systems, avionics and subsystems like electrical power storage, cabin pressure control and flight software –to name just a few.”
NASA plans to launch the first combined SLS/Orion on the uncrewed Exploration Mission-1 (EM-1) in November 2018.
The launch date for the first crewed flight on EM-2 was targeted for 2021. But EM-2 is likely to slip to the right to 2023, due to insufficient funding.
Lack of funding will also force NASA to delay development of the far more capable and powerful Exploration Upper Stage (EUS) to propel Orion on deep space missions. It will now not be available for the SLS/EM-2 launch as hoped.
The proposed huge budget cuts to SLS, Orion and Europa are certain to arose the ire of multiple members of Congress and space interest groups, who just successfully fought to increase NASA’s FY 2016 budget for these same programs in the recently passed 2016 omnibus spending bill.
“This administration cannot continue to tout plans to send astronauts to Mars while strangling the programs that will take us there,” said Rep. Lamar Smith (R-Texas), Chairman of the House Science, Space, and Technology Committee, in a statement in response to the president’s budget proposal.
“President Obama’s FY17 budget proposal shrinks our deep space exploration programs by more than $800 million. And the administration once more proposes cuts of more than $100 million to the Planetary Science accounts, which have previously funded missions like this past year’s Pluto flyby.”
“This imbalanced proposal continues to tie our astronauts’ feet to the ground and makes a Mars mission all but impossible. This is not the proposal of an administration that is serious about maintaining America’s leadership in space.”
“The Coalition for Deep Space Exploration … had hoped the request would reflect the priorities laid out for NASA in the FY16 Omnibus, for which there was broad support,” said Mary Lynne Dittmar, executive director of the Coalition for Deep Space Exploration, in a statement.
“Unfortunately this was not the case. The Coalition is disappointed with the proposed reduction in funding below the FY16 Omnibus for NASA’s exploration programs. We are deeply concerned about the Administration’s proposed cut to NASA’s human exploration development programs.”
“This proposed budget falls well short of the investment needed to support NASA’s exploration missions, and would have detrimental impacts on cornerstone, game-changing programs such as the super-heavy lift rocket, the Space Launch System (SLS), and the Orion spacecraft – the first spacecraft designed to reach multiple destinations in the human exploration of deep space.”
Funding for the James Webb Space Telescope (JWST) was maintained at planned levels to keep it on track for launch in 2018.
On Dec. 18, 2015, the US Congress passed and the president signed the 2016 omnibus spending bill which funds the US government through the remainder of the 2016 Fiscal Year.
As part of the omnibus bill, NASA’s approved budget amounted to nearly $19.3 Billion. That was an outstanding result and a remarkable turnaround to some long awaited good news from the decidedly negative outlook earlier in 2015.
The 2016 budget represented an increase of some $750 million above the Obama Administration’s proposed NASA budget allocation of $18.5 Billion for Fiscal Year 2016, and an increase of more than $1.2 Billion over the enacted budget for FY 2015.
KENNEDY SPACE CENTER, FL – NASA officials proudly unveiled the pressure vessel for the agency’s new Orion capsule destined to launch on the EM-1 mission to the Moon in 2018, after the vehicle arrived at the Kennedy Space Center (KSC) in Florida last week aboard NASA’s unique Super Guppy aircraft.
KENNEDY SPACE CENTER – Looking amazingly like a fish flying across the skies high above the Florida space coast, NASA’s unique Super Guppy aircraft loaded with the structural backbone for NASA’s next Orion crew module, swooped in for a landing at the Kennedy Space Center on Monday afternoon, Feb. 1.
In a major step towards flight, engineers at NASA’s Michoud Assembly Facility in New Orleans have finished welding together the pressure vessel for the first Lunar Orion crew module that will blastoff in 2018 atop the agency’s Space Launch System (SLS) rocket.