What Did Galileo Invent?

Portrait of Galileo Galilei by Giusto Sustermans (1636). Credit: nmm.ac.uk

Galileo is considered one of the greatest astronomers of all time. His discovery of Jupiter’s major moons (Io, Europa, Ganymede and Callisto) revolutionized astronomy and helped speed the acceptance of the Copernican Model of the universe. However, Galileo is also known for the numerous scientific inventions he made during his lifetime.

These included his famous telescope, but also a series of devices that would have a profound impact on surveying, the use of artillery, the development of clocks, and meteorology. Galileo created many of these in order to earn extra money to support his family. But ultimately, they would help cement his reputation as the man who challenged centuries worth of previously-held notions and revolutionized the sciences.

Hydrostatic Balance:

Inspired by the story of Archimedes’ and his “Eureka” moment, Galileo began looking into how jewelers weighed precious metals in air, and then by displacement, to determine their specific gravity. In 1586, at the age of 22, he theorized of a better method, which he described in a treatise entitled La Bilancetta (or “The Little Balance”).

In this tract, he described an accurate balance for weighing things in air and water, in which the part of the arm on which the counter weight was hung was wrapped with metal wire. The amount by which the counterweight had to be moved when weighing in water could then be determined very accurately by counting the number of turns of the wire. In so doing, the proportion of metals like gold to silver in the object could be read off directly.

Galileo's La Billancetta, in which he describes a method for hydrostatic balance. Credit: Museo Galileo
Galileo’s “La Billancetta”, in which he describes a new method of measuring the specific gravity of precious metals. Credit: Museo Galileo

Galileo’s Pump:

In 1592, Galileo was appointed professor of mathematics at the University of Padua and made frequent trips to the Arsenal – the inner harbor where Venetian ships were fitted out. The Arsenal had been a place of practical invention and innovation for centuries, and Galileo used the opportunity to study mechanical devices in detail.

In 1593, he was consulted on the placement of oars in galleys and submitted a report in which he treated the oar as a lever and correctly made the water the fulcrum. A year later the Venetian Senate awarded him a patent for a device for raising water that relied on a single horse for operation. This became the basis of modern pumps.

To some, Galileo’s Pump was a merely an improvement on the Archimedes Screw, which was first developed in the third century BCE and patented in the Venetian Republic in 1567. However, there is apparent evidence connecting Galileo’s invention to Archimedes earlier and less sophisticated design.

Pendulum Clock:

During the 16th century, Aristotelian physics was still the predominant way of explaining the behavior of bodies near the Earth. For example, it was believed that heavy bodies sought their natural place or rest – i.e at the center of things. As a result, no means existed to explain the behavior of pendulums, where a heavy body suspended from a rope would swing back and forth and not seek rest in the middle.

Spring driven pendulum clock, designed by Huygens, built by instrument maker Salomon Coster (1657),[96] and copy of the Horologium Oscillatorium,[97] Museum Boerhaave, Leiden
Spring driven pendulum clock, designed by Huygens, built by instrument maker Salomon Coster (1657),[96] and copy of the Horologium Oscillatorium,[97] Museum Boerhaave, Leiden.

Already, Galileo had conducted experiments that demonstrated that heavier bodies did not fall faster than lighter ones – another belief consistent with Aristotelian theory. In addition, he also demonstrated that objects thrown into the air travel in parabolic arcs. Based on this and his fascination with the back and forth motion of a suspended weight, he began to research pendulums in 1588.

In 1602, he explained his observations in a letter to a friend, in which he described the principle of isochronism. According to Galileo, this principle asserted that the time it takes for the pendulum to swing is not linked to the arc of the pendulum, but rather the pendulum’s length. Comparing two pendulum’s of similar length, Galileo demonstrated that they would swing at the same speed, despite being pulled at different lengths.

According to Vincenzo Vivian, one of Galileo’s contemporaries, it was in 1641 while under house arrest that Galileo created a design for a pendulum clock. Unfortunately, being blind at the time, he was unable to complete it before his death in 1642. As a result, Christiaan Huygens’ publication of Horologrium Oscillatorium in 1657 is recognized as the first recorded proposal for a pendulum clock.

The Sector:

The cannon, which was first introduced to Europe in 1325, had become a mainstay of war by Galileo’s time. Having become more sophisticated and mobile, gunners needed instrumentation to help them coordinate and calculate their fire. As such, between 1595 and 1598, Galileo devised and improved a geometric and military compass for use by gunners and surveyors.

The Sector, a military/geometric compass designed by Galileo Galilei. Credit:
The Sector, a military/geometric compass designed by Galileo Galilei. Credit: chsi.harvard.edu

Existing gunner’s compasses relied on two arms at right angles and a circular scale with a plumb line to determine elevations. Meanwhile, mathematical compasses, or dividers, developed during this time were designed with various useful scales on their legs. Galileo combined the uses of both instruments, designing a compass or sector that had many useful scales engraved on its legs that could be used for a variety of purposes.

In addition to offering a new and safer way for gunners to elevate their cannons accurately, it also offered a quicker way of computing the amount of gunpowder needed based on the size and material of the cannonball. As a geometric instrument, it enabled the construction of any regular polygon, computation of the area of any polygon or circular sector, and a variety of other calculations.

Galileo’s Thermometer:

During the late 16th century, there existed no practical means for scientists to measure heat and temperature. Attempts to rectify this within the Venetian intelligentsia resulted in the thermoscope, an instrument that built on the idea of the expansion of air due to the presence of heat.

In ca. 1593, Galileo constructed his own version of a thermoscope that relied on the expansion and contraction of air in a bulb to move water in an attached tube. Over time, he and his colleagues worked to develop a numerical scale that would measure the heat based on the expansion of the water inside the tube.

Galileo Galilei's telescope with his handwritten note specifying the magnifying power of the lens, at an exhibition at The Franklin Institute in Philadelphia. Credit: AP Photo/Matt Rourke
Galileo Galilei’s telescope with his handwritten note specifying the magnifying power of the lens, at an exhibition at The Franklin Institute in Philadelphia. Credit: AP Photo/Matt Rourke

And while it would take another century before scientists – such as Daniel G. Fahrenheit and Anders Celsius – began developing universal temperature scales that could be used in such instrument, Galileo’s thermoscope was a major breakthrough. In addition to being able to measure heat in air, it also provided quantitative meteorological information for the first time ever.

Galileo’s Telescope:

While Galileo did not invent the telescope, he greatly improved upon them. Over the course of many months during 1609, he unveiled multiple telescope designs that would collectively come to be known as Galilean Telescopes. The first, which he constructed between June and July of 1609, was a three-powered spyglass, which he replaced by August with an eight-powered instrument that he presented to the Venetian Senate.

By the following October or November, he managed to improve upon this with the creation a twenty-powered telescope – the very telescope that he used to observe the Moon, discover the four satellites of Jupiter (thereafter known as the Galilean Moons), discern the phases of Venus, and resolve nebular patches into stars.

These discoveries helped Galileo to advance the Copernican Model, which essentially stated that the Sun (and not the Earth) was the center of the universe (aka. heliocentrism). He would go on to refine his designs further, eventually creating a telescope that could magnify objects by a factor of 30.

Though these telescopes were humble by modern standards, they were a vast improvement over the models that existed during Galileo’s time. The fact that he managed to construct them all himself is yet another reason why they are considered his most impressive inventions.

Because of the instruments he created and the discoveries they helped make, Galileo is rightly recognized as one of the most important figures of the Scientific Revolution. His many theoretical contributions to the fields of mathematics, engineering and physics also challenged Aristotelian theories that had been accepted for centuries.

In short, he was one of just a few people who – through their tireless pursuit of scientific truth – forever changed our understanding of the universe and the fundamental laws that govern it.

Universe Today has articles on Galileo’s telescope and scientists want to exhume Galileo’s body.

For more information, check out the Galileo Project and Galileo the telescope and the Laws of Dynamics.

Astronomy Cast has an episode on choosing and using a telescope and how to build your own.

Source: NASA

What are the Signs of the Planets?

The symbols of the eight planets, and Pluto, Credit: insightastrology.net

In our long history of staring up at the stars, human beings have assigned various qualities, names, and symbols for all the objects they have found there. Determined to find patterns in the heavens that might shed light on life here on Earth, many of these designations also ascribed (and were based on) the observable behavior of the celestial bodies.

When it came to assigning signs to the planets, astrologists and astronomers – which were entwined disciplines in the past -made sure that these particular symbols were linked to the planets’ names or their history in some way.

Mercury:
This planet is named after the Roman god who was himself the messenger of the gods, noted for his speed and swiftness. The name was assigned to this body largely because it is the planet closest to the Sun, and which therefore has the fastest rotational period. Hence, the symbol is meant to represent Mercury’s helmet and caduceus – a herald’s staff with snakes and wings intertwined.

Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Mercury, as imaged by the MESSENGER spacecraft, which was named after the messenger of the gods because it has the fastest orbit around the Sun. Image Credit: NASA/JHU/Carnegie Institution.

Venus:
Venus’ symbol has more than one meaning. Not only is it the sign for “female”, but it also represents the goddess Venus’ hand mirror. This representation of femininity makes sense considering Venus was the goddess of love and beauty in the Roman Pantheon. The symbol is also the chemical sign for copper; since copper was used to make mirrors in ancient times.

Earth:
Earth’s sign also has a variety of meanings, although it does not refer to a mythological god. The most popular view is that the circle with a cross in the middle represents the four main compass points.  It has also been interpreted as the Globus Cruciger, an old Christian symbol for Christ’s reign on Earth.

This symbol is not just limited to Christianity though, and has been used in various culture around the world. These include, but are not limited to,  Norse mythology (where it appears as the Solar or Odin’s Cross), Native American cultures (where it typically represented the four spirits of direction and the four sacred elements), the Celtic Cross, the Greek Cross, and the Egyptian Ankh.

In fact, perhaps owing to the simplicity of the design, cross-shaped incisions have made appearances as petroglyphs in European cult caves dating all the way back to the beginning of the Upper Paleolithic, and throughout prehistory to the Iron Age.

Mars, as photographed with the Mars Global Surveyor, is identified with the Roman god of war. Credit: NASA
Mars, as photographed with the Mars Global Surveyor, is identified with the Roman god of war. Credit: NASA

Mars:
Mars is named after the Roman god of war, owing perhaps to the planet’s reddish hue, which gives it the color of blood. For this reason, the symbol associated with Mars represents the god of wars’ shield and spear. Additionally, it is the same sign as the one used to represent “male”, and hence is associated with self-assertion, aggression, sexuality, energy, strength, ambition and impulsiveness.

Jupiter:
Jupiter’s sign, which looks like an ornate, oddly shaped “four,” also stands for a number of symbols. It has been said to represent an eagle, which was the Jovian god’s bird. Additionally, the symbol can stand for a “Z,” which is the first letter of Zeus  – who was Jupiter’s Greek counterpart.

The line through the symbol is consistent with this, since it would indicate that it was an abbreviation for Zeus’ name. And last, but not least, there is the addition of the swirled line which is believed to represent a lighting bolt – which just happens to  Jupiter’s (and Zeus’) weapon of choice.

Saturn:
Like Jupiter, Saturn resembles another recognizable character – this time, it’s an “h.” However, this symbol is actually supposed to represent Saturn’s scythe or sickle, because Saturn is named after the Roman god of agriculture (after the Greek god Cronus, leader of the Titans, who was also depicted as holding a scythe).

Jupiter's Great Red Spot and Ganymede's Shadow. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)
Jupiter, the largest planet in the Solar System, is appropriately named after the Roman father of the gods. Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)

Uranus:
The sign for Uranus is a combination of two other signs – Mars’ sign and the symbol of the Sun – because the planet is connected to these two in mythology. Uranus represented heaven in Roman mythology, and this ancient civilization believed that the Sun’s light and Mars’ power ruled the heavens.

Neptune:
Neptune’s sign is linked to the sea god Neptune, who the planet was named after. Appropriately, the symbol represents this planet is in the shape of the sea god’s trident.

Pluto:
Although Pluto was demoted to a dwarf planet in 2006, it still retains its old symbol. Pluto’s sign is a combination of a “P” and a “L,” which are the first two letters in Pluto as well as the initials of Percival Lowell, the astronomer who discovered the planet.

A full Moon flyby, as seen from Paris, France. Credit and copyright: Sebastien Lebrigand.
A full Moon flyby, as seen from Paris, France. Credit and copyright: Sebastien Lebrigand.

Moon:
The Moon is represented by a crescent shape, which is a clear allusion to how the Moon appears in the night sky more often than not. Since the Moon is also tied to people’s perceptions, moods, and emotional make-up, the symbol has also come to represents the mind’s receptivity.

Sun:
And then there’s the Sun, which is represented by a circle with a dot in the middle. In the case of the Sun, this symbol represents the divine spirit (circle) surrounding the seed of potential, which is a direct association with ancient Sun worship and the central role the Sun gods played in their respective ancient pantheons.

We have many interesting articles on the planets here at Universe Today. For example, here is other articles including symbols of the planets and symbols of the Sun and Moon.

If you are looking for more information try signs of the planets and symbols of the minor planets.

Astronomy Cast has an episode on each planet including Saturn.

What is the Biggest Planet in the Solar System?

Jupiter and Io
Io and Jupiter as seen by New Horizons during its 2008 flyby. (Credit: NASA/Johns Hopkins University APL/SWRI).

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant of Jupiter. Between it’s constant, swirling clouds, its many, many moons, and its Giant Red Spot, there are many things about this planet that are both delightful and fascinating.

But perhaps the most impressive feature about Jupiter is its sheer size. In terms of mass, volume, and surface area, Jupiter is the biggest planet in our Solar System by a wide margin. But just what makes Jupiter so massive, and what else do we know about it?

Size and Mass:

Jupiter’s mass, volume, surface area and mean circumference are 1.8981 x 1027 kg, 1.43128 x 1015 km3, 6.1419 x 1010 km2, and 4.39264 x 105 km respectively. To put that in perspective, Jupiter diameter is roughly 11 times that of Earth, and 2.5 the mass of all the other planets in the Solar System combined.

But, being a gas giant, Jupiter has a relatively low density – 1.326 g/cm3 – which is less than one quarter of Earth’s. This means that while Jupiter’s volume is equivalent to about 1,321 Earths, it is only 318 times as massive. The low density is one way scientists are able to determine that it is made mostly of gases, though the debate still rages on what exists at its core (see below).

Composition:

Jupiter is composed primarily of gaseous and liquid matter. It is the largest of the gas giants, and like them, is divided between a gaseous outer atmosphere and an interior that is made up of denser materials. Its upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume of gas molecules, and approx. 75% hydrogen and 24% helium by mass, with the remaining one percent consisting of other elements.

This cut-away illustrates a model of the interior of Jupiter, with a rocky core overlaid by a deep layer of liquid metallic hydrogen. Credit: Kelvinsong/Wikimedia Commons
This cut-away illustrates a model of the interior of Jupiter, with a rocky core overlaid by a deep layer of liquid metallic hydrogen. Credit: Kelvinsong/Wikimedia Commons

The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds as well as trace amounts of benzene and other hydrocarbons. There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. Crystals of frozen ammonia have also been observed in the outermost layer of the atmosphere.

The interior contains denser materials, such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. It is believed that Jupiter’s core is a dense mix of elements – a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. The core has also been described as rocky, but this remains unknown as well.

In 1997, the existence of the core was suggested by gravitational measurements, indicating a mass of from 12 to 45 times the Earth’s mass, or roughly 4%–14% of the total mass of Jupiter. The presence of a core is also supported by models of planetary formation that indicate how a rocky or icy core would have been necessary at some point in the planet’s history in order to collect its bulk of hydrogen and helium from the protosolar nebula.

However, it is possible that this core has since shrunk due to convection currents of hot, liquid, metallic hydrogen mixing with the molten core. This core may even be absent now, but a detailed analysis is needed before this can be confirmed. The Juno mission, which launched in August 2011, is expected to provide some insight into these questions, and thereby make progress on the problem of the core.

The temperature and pressure inside Jupiter increase steadily toward the core. At the “surface”, the pressure and temperature are believed to be 10 bars and 340 K (67 °C, 152 °F). At the “phase transition” region, where hydrogen becomes metallic, it is believed the temperature is 10,000 K (9,700 °C; 17,500 °F) and the pressure is 200 GPa. The temperature at the core boundary is estimated to be 36,000 K (35,700 °C; 64,300 °F) and the interior pressure at roughly 3,000–4,500 GPa.

Moons:

The Jovian system currently includes 67 known moons. The four largest are known as the Galilean Moons, which are named after their discoverer, Galileo Galilei. They include: Io, the most volcanically active body in our Solar System; Europa, which is suspected of having a massive subsurface ocean; Ganymede, the largest moon in our Solar System; and Callisto, which is also thought to have a subsurface ocean and features some of the oldest surface material in the Solar System.

Then there’s the Inner Group (or Amalthea group), which is made up of four small moons that have diameters of less than 200 km, orbit at radii less than 200,000 km, and have orbital inclinations of less than half a degree. This groups includes the moons of Metis, Adrastea, Amalthea, and Thebe. Along with a number of as-yet-unseen inner moonlets, these moons replenish and maintain Jupiter’s faint ring system.

Jupiter also has an array of Irregular Satellites, which are substantially smaller and have more distant and eccentric orbits than the others. These moons are broken down into families that have similarities in orbit and composition, and are believed to be largely the result of collisions from large objects that were captured by Jupiter’s gravity.

Illustration of Jupiter and the Galilean satellites. Credit: NASA
Illustration of Jupiter and the Galilean satellites. Credit: NASA

Interesting Facts:

Much like Earth, Jupiter experiences auroras near its northern and southern poles. But on Jupiter, the auroral activity is much more intense and rarely ever stops. The intense radiation, Jupiter’s magnetic field, and the abundance of material from Io’s volcanoes that react with Jupiter’s ionosphere creates a light show that is truly spectacular.

Jupiter also has a violent atmosphere. Winds in the clouds can reach speeds of up to 620 kph (385 mph). Storms form within hours and can become thousands of km in diameter overnight. One storm, the Great Red Spot, has been raging since at least the late 1600s. The storm has been shrinking and expanding throughout its history; but in 2012, it was suggested that the Giant Red Spot might eventually disappear.

The discovery of exoplanets has revealed that planets can get even bigger than Jupiter. In fact, the number of “Super Jupiters” observed by the Kepler space probe (as well as ground-based telescopes) in the past few years has been staggering. In fact, as of 2015, more than 300 such planets have been identified.

Notable examples include PSR B1620-26 b (Methuselah), which was the first super-Jupiter to be observed (in 2003). At 12.7 billion years of age, it is also the third oldest known planet in the universe. There’s also HD 80606 b (Niobe), which has the most eccentric orbit of any known planet, and 2M1207b (Lerna), which orbits the brown dwarf Fomalhaut b (Illion).

Scientist theorize that a gas gain could get 15 times the size of Jupiter before it began deuterium fusion, making it a brown dwarf star. Good thing too, since the last thing the Solar System needs if for Jupiter to go nova!

Jupiter was appropriately named by the ancient Romans, who chose to name after the king of the Gods (Jupiter, or Jove). The more we have come to know and understand about this most-massive of Solar planets, the more deserving of this name it appears.

If you’re wondering, here’s how big planets can get with a lot of mass, and here’s what is the biggest star in the Universe. And here’s the 2nd largest planet in the Solar System.

Here’s another article about the which is the largest planet in the Solar System, and here’s what’s the smallest planet in the Solar System.

We have recorded a whole series of podcasts about the Solar System at Astronomy Cast. Check them out here.

Sources:

NASA Gives ‘GO’ for Mission to Alien Ocean World at Jupiter Moon Europa

Artist's concept of NASA mission streaking over Europa. Credit: NASA/JPL

Artist’s concept of NASA mission streaking over ocean world of Europa. Credit: NASA/JPL
Story updated[/caption]

At long last NASA is heading back to Jupiter’s mysterious moon Europa and doing so in a big way – because scientists believe it harbors an alien ocean of water beneath an icy crust and therefore is “one of the most promising places in the solar system to search for signs of present-day life” beyond Earth.

Top NASA officials have now formally and officially green lighted the Europa ocean world robotic mission and given it the “GO” to move from early conceptual studies into development of the interplanetary spacecraft and mission hardware, to search for the chemical constituents of life.

“Today we’re taking an exciting step from concept to mission, in our quest to find signs of life beyond Earth,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, in a NASA statement.

The goal is to investigate the habitability of Europa’s subsurface ocean, determine if it possesses the ingredients for life and advance our understanding of “Are we Alone?”

“Observations of Europa have provided us with tantalizing clues over the last two decades, and the time has come to seek answers to one of humanity’s most profound questions,” said Grunsfeld.

Water is a prerequisite for life as we know it.

“We know that on Earth everywhere there is water we find life,” says Robert Pappalardo, Europa mission project scientist.

“Therefore Europa is the most likely place to find life in our solar system today because we think there is a liquid water ocean beneath its surface.”

Video caption: Alien Ocean: NASA’s Mission to Europa. Could a liquid water ocean beneath the surface of Jupiter’s moon Europa have the ingredients to support life? Here’s how NASA’s mission to Europa would find out. Credit: NASA

After a thorough review of the mission concept, managers agreed that it “successfully completed its first major review by the agency and now is entering the development phase known as formulation

“It’s a great day for science,” said Joan Salute, Europa program executive at NASA Headquarters in Washington.

“We are thrilled to pass the first major milestone in the lifecycle of a mission that will ultimately inform us on the habitability of Europa.”

In a major milestone leading up to this mission development approval, NASA managers recently announced the selection of the nine science instruments that will fly on the agency’s long awaited planetary science mission to this intriguing world that many scientists suspect could support life, as I reported here last month.

“We are trying to answer big questions. Are we alone,” said Grunsfeld at the May 26 media briefing.

“The young surface seems to be in contact with an undersea ocean.”

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona
This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona

Planetary scientists have long desired a speedy to return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the moon’s surface in recent times.

NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection – whose candidates include the heavy lift Space Launch System (SLS) now under development to launch astronauts on deep space expedition to the Moon, Asteroids and Mars.

The solar powered Europa probe will go into orbit around Jupiter for a three year mission in order to minimize exposure to the intense radiation region that could harm the spacecraft.

The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.

It will be equipped with high resolution cameras, spectrometers and radar, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.

There will many opportunities for close flybys of Europa during the three year primary mission to conduct unprecedented studies of the composition and structure of the surface, icy shell and oceanic interior.

“During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Curt Niebur, Europa program scientist at NASA Headquarters in Washington, told Universe Today.

“These will occur about every two to three weeks.”

The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).

Europa rising. The icy moon hangs above Jupiter cloud tops in a @NASANewHorizons image from 2007.  Credit: NASA
Europa rising. The icy moon hangs above Jupiter cloud tops in a @NASANewHorizons image from 2007. Credit: NASA

The mission currently has a budget of about $10 million for 2015 and $30 Million in 2016. Over the next three years the mission concept will be further defined.

The mission will be managed by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California and is expected to cost in the range of at least $2 Billion or more.

The nine science instruments are described in my earlier story- here. They will be developed and built by Johns Hopkins University Applied Physics Laboratory (APL); JPL; Arizona State University, Tempe; the University of Texas at Austin; Southwest Research Institute, San Antonio and the University of Colorado, Boulder.

This artist's rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean.  Credits: NASA/JPL-Caltech
This artist’s rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean. Credits: NASA/JPL-Caltech

Right now there is another NASA probe bound for Jupiter, the solar powered Juno orbiter that will investigate the origin of the gas giant. But Juno will not be conducting any observations or flyby’s of Europa.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Europa, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 25-27: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Weekly Space Hangout – June 12, 2015: Astronomy in Chile Educator Ambassadors Program

Host: Fraser Cain (@fcain)

Special Guest: This week we welcome Astronomy in Chile Educator Ambassadors Program Participants:
Michael Prokosch (Seeing Stars Blog, MikeProkosch@shsuobservatory)
Tim Spuck ([email protected])
Brian Koberlein (@briankoberlein / briankoberlein.com)
Vivian White ([email protected]).

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Brian Koberlein (@briankoberlein / briankoberlein.com)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – June 12, 2015: Astronomy in Chile Educator Ambassadors Program”

UK Amateur Recreates the Great Red Spot’s Glory Days

Graphical comparison showing how Jupiter's Great Red Spot has shrunk in the past 125 years. Credit: Damian Peach

Maybe it’s too soon for a pity party, but the profound changes in the size and prominence of Jupiter’s Great Red Spot (GRS) in the past 100 years has me worried. After Saturn’s rings, Jupiter’s big bloody eye is one of astronomy’s most iconic sights.

This titanic hurricane-like storm has charmed earthlings since Giovanni Cassini first spotted it in the mid-1600s.  Will our grandchildren turn their telescopes to Jove only to see a pale pink oval like so many others rolling around the planet’s South Tropical Zone?

Maybe.

Jupiter’s Great Red Spot is a cyclone larger than two Earths. (photomontage ©Michael Carroll)
Jupiter’s Great Red Spot is a cyclone that’s presently about 1.2 times as big as Earth. As recently as 1979, it was twice Earth’s diameter as illustrated here.  Photomontage ©Michael Carroll

An inspired image prompted this sad train of thought. UK astrophotographer Damian Peach came up with an ideal way to depict how the GRS  would look to us now if it we could see it as it was in 1890, 125 years ago. Those were the glory days for the “Eye of Jupiter” as Cassini was fond of calling it. With a diameter of 22,370 miles (36,000 km), the GRS spanned nearly three Earths wide. What a sight it must have been in nearly any telescope.

Peach compared measurements of the Spot in black and white photos taken at Lick Observatory in California in 1890-91 with a photo he took on April 13 this year. He then manipulated his April 13 data using the Lick photos and WINJUPOS (Jupiter feature measuring program) to carefully match the storm to its dimensions and appearance 125 years ago. Voila! Now we have a good idea of what we missed by being born too late.

At left, Photograph of Jupiter's enormous Great Red Spot in 1879 from Agnes Clerk's Book " A History of Astronomy in the 19th Century".
At left,  A crude photograph of Jupiter’s enormous Great Red Spot in 1879 from Agnes Clerk’s Book ” A History of Astronomy in the 19th Century”.

“A century ago, it truly was deserving of its name!” wrote Peach.

Painting by Italian artist Donato Creti showing a telescopic view of Jupiter above a nighttime landscape. The Great Red Spot is clearly visible.
Painting by Italian artist Donato Creti showing a telescopic view of Jupiter in 1711 above a nighttime landscape. The Great Red Spot is clearly visible above center.

The shrinking of the Great Red Spot isn’t breaking news. You read about it here in Universe Today more than year ago. Before that, Jupiter observers had grumbled for years that the once-easy feature had become anemic and not nearly as obvious as once remembered. Astronomers have been following its downsizing since the 1930s.

These two photos, taken by Australian amateur astronomer Anthony Wesley, show the dramatic fading of Jupiter's South Equatorial Belt (SEB) from a year ago. The north belt remains dark and easy to see in a small telescope. The red oval is the Great Red Spot, a hurricane-like weather system some 2 1/2 times the size of the Earth.
Dramatic fading of Jupiter’s South Equatorial Belt (SEB) between 2009 and 2010. The belt has since returned to view. The Red Spot is also seen in both images. Credit: Anthony Wesley

That doesn’t mean it’s necessarily going away, though if it did — at least temporarily — it wouldn’t be the first time. The Spot vanished in the 1680s only to reappear in 1708. Like clouds and weather fronts that keeps things lively on Earth, Jupiter’s atmosphere constantly cooks up new surprises. The entire South Equatorial Belt, one of Jupiter’s two most prominent “stripes”, has taken a leave of absence at least 17 times since the invention of the telescope, the last in 2010.

Reprocessed view by Bjorn Jonsson of the Great Red Spot taken by Voyager 1 in 1979 reveals an incredible wealth of detail.
The Great Red Spot photographed by Voyager 1 in 1979 and reprocessed by Bjorn Jonsson shows an incredible wealth of detail. Credit: NASA

Perhaps we should turn the question around? How has the Red Spot managed to last this long? Hurricanes on Earth have lifetimes measured in days, while this whirling vortex has been around for hundreds of years. Any number of things should have killed it: loss of energy through radiation of heat to outer space, or energy-sapping turbulence from nearby jet streams. But the Eye persists. So what keeps it alive? Astronomers think the storm might gain energy by devouring smaller vortices, those small white dots and ovals you see in high resolution photos of the planet. Vertical winds that transport hot and cold gases in and out of the Spot may also restore its vigor.

Just in case it disappears unexpectedly, take one last look this observing season. Jupiter’s currently getting lower in the western sky as it approaches Venus for its grand conjunction on June 30. Below are times (Central Daylight or CDT) when it crosses or transits the planet’s central meridian. The GRS will be easiest to see for a 2-hour interval starting an hour before the times shown. It’s located in the planet’s southern hemisphere just south of the prominent South Equatorial Belt. Add an hour for Eastern time; subtract one hour for Mountain and two hours for Pacific. A complete list of transit times can be found HERE.

* June 13 at 8:58 p.m.
* June 18 at 12:16 a.m.
* June 18 at 8:08 p.m.
* June 20 at 9:47 p.m.
* June 22  at 11:26 p.m.
* June 25 at 8:57 p.m.
* June 27 at 10:36 p.m.

 

 

What are the Galilean Moons?

Illustration of Jupiter and the Galilean satellites. Credit: NASA

It’s no accident that Jupiter shares its name with the king of the gods. In addition to being the largest planet in our Solar System – with two and a half times the mass of all the other planets combined – it is also home to some of the largest moons of any Solar planet. Jupiter’s largest moons are known as the Galileans, all of which were discovered by Galileo Galilei and named in his honor.

They include Io, Europa, Ganymede, and Callisto, and are the Solar System’s fourth, sixth, first and third largest satellites, respectively. Together, they contain almost 99.999% of the total mass in orbit around Jupiter, and range from being 400,000 and 2,000,000 km from the planet. Outside of the Sun and eight planets, they are also among the most massive objects in the Solar System, with radii larger than any of the dwarf planets.

Continue reading “What are the Galilean Moons?”

What Is The Difference Between Asteroids and Meteorites?

Various meteorites from 2008 TC3. Credit: P. Jenniskens, et. al. Click image for full description

Asteroids, meteors, and meteorites … It might be fair to say these rocks from space inspire both wonder and fear among us Earthlings. But knowing a bit more about each of them and how they differ may eliminate some potential misgivings. While all these rocks originate from space, they have different names depending their location — i.e. whether they are hurtling through space or hurtling through the atmosphere and impacting Earth’s surface.

In simplest terms here are the definitions:

Asteroid: a large rocky body in space, in orbit around the Sun.

Meteoroid: much smaller rocks or particles in orbit around the Sun.

Meteor: If a meteoroid enters the Earth’s atmosphere and vaporizes, it becomes a meteor, which is often called a shooting star.

Meteorite: If a small asteroid or large meteoroid survives its fiery passage through the Earth’s atmosphere and lands on Earth’s surface, it is then called a meteorite.

Another related term is bolide, which is a very bright meteor that often explodes in the atmosphere. This can also be called a fireball.

Let’s look at each in more detail:

Asteroids

An artists impression of an asteroid belt. Credit: NASA
An artists impression of an asteroid belt. Credit: NASA

Asteroids are found mainly in the asteroid belt, between Mars and Jupiter. Sometimes their orbits get perturbed or altered and some asteroids end up coming closer to the Sun, and therefore closer to Earth. In addition to the asteroid belt, however, there have been recent discussions among astronomers about the potential existence of large number asteroids in the Kuiper Belt and Oort Cloud. You can read a paper about this concept here, and a good article discussing the topic here.

The asteroid Vesta as seen by the Dawn spacecraft. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA
The asteroid Vesta as seen by the Dawn spacecraft. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA

Asteroids are sometimes referred to as minor planets or planetoids, but in general, they are rocky bodies that do not have an atmosphere. However, a few have their own moons. Our Solar System contains millions of asteroids, many of which are thought to be the shattered remnants of planetesimals – bodies within the young Sun’s solar nebula that never grew large enough to become planets.

The size of what classifies as an asteroid is not extremely well defined, as an asteroid can range from a few meters wide – like a boulder — to objects that are hundreds of kilometers in diameter. The largest asteroid is asteroid Ceres at about 952 km (592 miles) in diameter, and Ceres is so large that it is also categorized as a dwarf planet.

Most asteroids are made of rock, but as we explore and learn more about them we know that some are composed of metal, mostly nickel and iron. According to NASA, a small portion of the asteroid population may be burned-out comets whose ices have evaporated away and been blown off into space. Recently, astronomers have discovered some asteroids that mimic comets in that gas and dust are emanating from them, and as we mentioned earlier, there appears to be a large number of bodies with asteroid-like compositions but comet-like orbits.

How Often Do Asteroids Hit Earth?

Meteor Crater near Winslow, Arizona. Image credit: NASA.
Meteor Crater near Winslow, Arizona. Image credit: NASA.

While we know that some asteroids pass very close to Earth’s orbit around the Sun, we’ve been lucky in the history of humanity that we haven’t had a large asteroid hit Earth in the past several thousand years. It wasn’t until satellite imagery of Earth became widely available that scientists were able to see evidence of past asteroid impacts.

One of the more famous impact craters on Earth is Meteor Crater in Arizona in the US, which was made by an impact about 50,000 years ago. But there are about 175 known impact around the world – a few are quite large, like Vredefort Crater in South Africa which has an estimated radius of 190 kilometers (118 miles), making it the world’s largest known impact structure on Earth. Another notable impact site is off the coast of the Yucatan Peninsula in Mexico, and is believed to be a record of the event that led to the extinction of the dinosaurs 65 million years ago. You can see images of some of the most impressive Earth impact craters here.

These days, asteroid impacts are less of a threat. NASA estimates that about once a year an automobile-sized asteroid enters Earth’s atmosphere, creates an impressive fireball and disintegrates before ever reaching the surface. Studies of Earth’s history indicate that about once every 5,000 years or so on average an object the size of a football field hits Earth and causes significant damage. Once every few million years on average an object large enough to cause regional or global disaster impacts Earth. You can find more information about the frequency of impacts in this article from NASA.


Meteors, Meteoroids and Bolides

A bright meteor from September 21, 1994. Credit: John Chumack.
A bright meteor from September 21, 1994. Credit: John Chumack.

Space debris smaller than an asteroid are called meteoroids. A meteoroid is a piece of interplanetary matter that is smaller than an asteroid and frequently are only millimeters in size. Most meteoroids that enter the Earth’s atmosphere are so small that they vaporize completely and never reach the planet’s surface. When they burn up during their descent, they create a beautiful trail of light known as a meteor, sometimes called a shooting star.

Mostly these are harmless, but larger meteors that explode in the atmosphere – sometimes called bolides — can create shockwaves, which can cause problems. In February 2013 a meteor that exploded over Chelyabinsk, Russia shattered windows with its air blast. This meteoroid or bolide was estimated to be 18 meters (59 feet) in diameter. In 1908, a rocky meteoroid less than 100 meters in diameter is believed to have entered the atmosphere over the Tunguska region of Siberia in 1908 and the resulting shockwave knocked down trees for hundreds of square kilometers

How often is Earth hit by meteroids?

Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn.
Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn.

Because of the Chelyabinsk meteor in 2013, astronomers have acquired more information about the frequency of larger meteors that hit Earth, and there is now a growing consensus that the Earth gets hit by bigger space rocks more often than we previously thought. You can read more about that concept here.

This video from the B612 Foundation shows a visualization of the location of 26 space rocks that hit Earth between 2000 and 2013, each releasing energy equivalent to some of our most powerful nuclear weapons. The B612 foundation says that a Hiroshima-scale asteroid explosion happens in our atmosphere on average once a year, but many are not detected because they explode high in the atmosphere, or because most of the Earth’s surface is water and even a large percentage of land is fairly uninhabited by humans.

Estimates vary of how much cosmic dust and meteors enter Earth’s atmosphere each day, but range anywhere from 5 to 300 metric tons. Satellite observations suggest that 100-300 metric tons of cosmic dust enter the atmosphere each day. This figure comes from the rate of accumulation in polar ice cores and deep-sea sediments of rare elements linked to cosmic dust, such as iridium and osmium.

But other measurements – which includes meteor radar observations, laser observations and measurements by high altitude aircraft — indicate that the input could be as low as 5 metric ton per day. Read more about this here.

For a documented list of bolide events, you can check out this page from JPL.

Meteorite

A stunning slice of the Glorieta pallasite meteorite cut thin enough to allow light to shine through its many olivine crystals.  Credit: Mike Miller
A stunning slice of the Glorieta pallasite meteorite cut thin enough to allow light to shine through its many olivine crystals. Credit: Mike Miller

If any part of a meteoroid survives the fall through the atmosphere and lands on Earth, it is called a meteorite. Although the vast majority of meteorites are very small, their size can range from about a fraction of a gram (the size of a pebble) to 100 kilograms (220 lbs) or more (the size of a huge, life-destroying boulder). Meteorites smaller than 2mm are classified as micrometeorites.

Meteorites have traditionally been divided into three broad categories, depending on their structure, chemical and isotopic composition and mineralogy. Stony meteorites are rocks, mainly composed of silicate minerals; iron meteorites that are largely composed of metallic iron-nickel; and, stony-iron meteorites that contain large amounts of both metallic and rocky material.

Meteorites have also been found on the Moon and Mars and conversely, scientists have traced the origination of the meteorites found here on Earth to four other bodies: the Moon, Mars, the asteroid 4 Vesta, and the comet Wild 2. Meteorites are the source of a great deal of the knowledge that we have have about the composition of other celestial bodies.

How Often Do Meteorites Hit Earth?

On Feb. 28, 2009, Peter Jenniskens (SETI/NASA), finds his first 2008TC3 meteorite after an 18-mile long journey. "It was an incredible feeling," Jenniskens said. The African Nubian Desert meteorite of Oct 7, 2008 was the first asteroid whose impact with Earth was predicted while still in space approaching Earth. 2008TC3 and Chelyabinsk are part of the released data set. (Credit: NASA/SETI/P.Jenniskens)
On Feb. 28, 2009, Peter Jenniskens (SETI/NASA), finds his first 2008TC3 meteorite after an 18-mile long journey. “It was an incredible feeling,” Jenniskens said. The African Nubian Desert meteorite of Oct 7, 2008 was the first asteroid whose impact with Earth was predicted while still in space approaching Earth. 2008TC3 and Chelyabinsk are part of the released data set. (Credit: NASA/SETI/P.Jenniskens)

According to the Planetary Science Institute, it is estimated that probably 500 meteorites reach the surface of the Earth each year, but less than 10 are recovered. This is because most fall into water (oceans, seas or lakes) or land in remote areas of the Earth that are not accessible, or are just not seen to fall.

You can read more about meteorites that were found from the Chelyabinsk meteor here.

Summary

In short, the difference between asteroids and meteors all comes down to a question of location. Asteroids are always found in space. Once it enters an atmosphere, it becomes a meteor, and then a meteorite after it hits the ground. Each are made of the same basic materials – minerals and rock – and each originated in space. The main difference is where they are when they are being observed.

We have many great articles on the subject of asteroids and meteorites here at Universe Today, such as this general information article on asteroids, this article and infographic about the difference between comets, asteroids and meteors, and these articles that deal with Ceres and Vesta. And here are some recent articles about the Chelyabinsk meteor that landed in Russia, as well as a 2 billion-year old Martian meteorite that contains evidence of water on Mars.

There is some good information on a NASA page as well as some great information here on Universe Today and Astronomy Cast.

Sources:
JPL’s Near Earth Asteroid Office
Planetary Science Institute
NASA: Asteroids
NASA: Meteors

NASA Selects Mission Science Instruments Searching for Habitability of Jupiter’s Ocean Moon Europa

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

In a major move forward on a long dreamed of mission to investigate the habitability of the subsurface ocean of Jupiter’s mysterious moon Europa, top NASA officials announced today, Tuesday, May 26, the selection of nine science instruments that will fly on the agency’s long awaited planetary science mission to an intriguing world that many scientists suspect could support life.

“We are on our way to Europa,” proclaimed John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, at a media briefing today outlining NASA’s plans for a mission dedicated to launching in the early to mid-2020s. “It’s a mission to inspire.”

“We are trying to answer big questions. Are we alone?”

“The young surface seems to be in contact with an undersea ocean.”

The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.

It will be equipped with high resolution cameras, radar and spectrometers, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.

“Europa has tantalized us with its enigmatic icy surface and evidence of a vast ocean, following the amazing data from 11 flybys of the Galileo spacecraft over a decade ago and recent Hubble observations suggesting plumes of water shooting out from the moon,” says Grunsfeld.

“We’re excited about the potential of this new mission and these instruments to unravel the mysteries of Europa in our quest to find evidence of life beyond Earth.”

Planetary scientists have long desired a speedy return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the surface in recent times.

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona
This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona

NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection, whose candidates include the heavy lift Space Launch System (SLS).

The solar powered probe will go into orbit around Jupiter for a three year mission.

“The mission concept is that it will conduct multiple flyby’s of Europa,” said Jim Green. director, Planetary Science Division, NASA Headquarters, during the briefing.

“The purpose is to determine if Europa is a habitable place. It shows few craters, a brown gum on the surface and cracks where the subsurface meet the surface. There may be organics and nutrients among the discoloration at the surface.”

Europa is at or near the top of the list for most likely places in our solar system that could support life. Mars is also near the top of the list and currently being explored by a fleet of NASA robotic probes including surface rovers Curiosity and Opportunity.

“Europa is one of those critical areas where we believe that the environment is just perfect for potential development of life,” said Green. “This mission will be that step that helps us understand that environment and hopefully give us an indication of how habitable the environment could be.”

The exact thickness of Europa’s ice shell and extent of its subsurface ocean is not known.

The ice shell thickness has been inferred by some scientists to be perhaps only 5 to 10 kilometers thick based on data from Galileo, the Hubble Space Telescope, a Cassini flyby and other ground and space based observations.

The global ocean might be twice the volume of all of Earth’s water. Research indicates that it is salty, may possess organics, and has a rocky sea floor. Tidal heating from Jupiter could provide the energy for mixing and chemical reactions, supplemented by undersea volcanoes spewing heat and minerals to support living creatures, if they exist.

This artist's rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean.  Credits: NASA/JPL-Caltech
This artist’s rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean. Credits: NASA/JPL-Caltech

“Europa could be the best place in the solar system to look for present day life beyond our home planet,” says NASA officials.

The instruments chosen today by NASA will help answer the question of habitability, but they are not life detection instruments in and of themselves. That would require a follow on mission.

“They could find indications of life, but they’re not life detectors,” said Curt Niebur, Europa program scientist at NASA Headquarters in Washington. “We currently don’t even have consensus in the scientific community as to what we would measure that would tell everybody with confidence this thing you’re looking at is alive. Building a life detector is incredibly difficult.”

‘During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Niebur told Universe Today. “These will occur about every two to three weeks.”

The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).

“The mass spectrometer has a range of 1 to 2000 daltons, Niebur told me. “That’s a much wider range than Cassini. However there will be no means aboard to determine chirality.” The presence of Chiral compounds could be an indicator of life.

Right now the Europa mission is in the formulation stage with a budget of about $10 million this year and $30 Million in 2016. Over the next three years the mission concept will be defined.

The mission is expected to cost in the range of at least $2 Billion or more.

Jupiter Moon Europa, Ice Rafting View
Jupiter Moon Europa, Ice Rafting View

Here’s a NASA description of the 9 instruments selected:

Plasma Instrument for Magnetic Sounding (PIMS) — principal investigator Dr. Joseph Westlake of Johns Hopkins Applied Physics Laboratory (APL), Laurel, Maryland. This instrument works in conjunction with a magnetometer and is key to determining Europa’s ice shell thickness, ocean depth, and salinity by correcting the magnetic induction signal for plasma currents around Europa.

Interior Characterization of Europa using Magnetometry (ICEMAG)
— principal investigator Dr. Carol Raymond of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California. This magnetometer will measure the magnetic field near Europa and – in conjunction with the PIMS instrument – infer the location, thickness and salinity of Europa’s subsurface ocean using multi-frequency electromagnetic sounding.


Mapping Imaging Spectrometer for Europa (MISE)
— principal investigator Dr. Diana Blaney of JPL. This instrument will probe the composition of Europa, identifying and mapping the distributions of organics, salts, acid hydrates, water ice phases, and other materials to determine the habitability of Europa’s ocean.

Europa Imaging System (EIS) — principal investigator Dr. Elizabeth Turtle of APL. The wide and narrow angle cameras on this instrument will map most of Europa at 50 meter (164 foot) resolution, and will provide images of areas of Europa’s surface at up to 100 times higher resolution.

Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) — principal investigator Dr. Donald Blankenship of the University of Texas, Austin. This dual-frequency ice penetrating radar instrument is designed to characterize and sound Europa’s icy crust from the near-surface to the ocean, revealing the hidden structure of Europa’s ice shell and potential water within.

Europa Thermal Emission Imaging System (E-THEMIS) — principal investigator Dr. Philip Christensen of Arizona State University, Tempe. This “heat detector” will provide high spatial resolution, multi-spectral thermal imaging of Europa to help detect active sites, such as potential vents erupting plumes of water into space.

MAss SPectrometer for Planetary EXploration/Europa (MASPEX) — principal investigator Dr. Jack (Hunter) Waite of the Southwest Research Institute (SwRI), San Antonio. This instrument will determine the composition of the surface and subsurface ocean by measuring Europa’s extremely tenuous atmosphere and any surface material ejected into space.

Ultraviolet Spectrograph/Europa (UVS) — principal investigator Dr. Kurt Retherford of SwRI. This instrument will adopt the same technique used by the Hubble Space Telescope to detect the likely presence of water plumes erupting from Europa’s surface. UVS will be able to detect small plumes and will provide valuable data about the composition and dynamics of the moon’s rarefied atmosphere.

SUrface Dust Mass Analyzer (SUDA) — principal investigator Dr. Sascha Kempf of the University of Colorado, Boulder. This instrument will measure the composition of small, solid particles ejected from Europa, providing the opportunity to directly sample the surface and potential plumes on low-altitude flybys.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Watch Jupiter Get Blasted by an Iridium Flare

Screenshot of an Iridium satellite flare right next to Jupiter's location in the sky. From video by Thierry Legault.

Cue the “Space Invaders” sound effects! We’ve shared previously how astrophotographer Thierry Legault will travel anywhere to get a unique shot. He took this impressive but fun video of an Iridium 72 satellite flaring and passing in front of Jupiter, traveling to Oostende Beach at the North Sea in Belgium to capture this transit. He took both a wide angle view as well as the telescopic close-up view of Jupiter, and from the vantage point of Earth, it appears as though Jupiter gets blasted by the flare. In the zoomed-in view, even Jupiter’s moons are part of the scene.

You can almost hear the “pew-pew.”

Legault also shared a another recent video he shot of the Chinese Yaogan 6 satellite. “It is probably out of control, quickly tumbling with very bright and short flashes,” Legault said, and it has been tumbling for about a year. Yaogan 6 is a radar reconnaissance satellite launched by China in 2009. Legault said he did the tracking by hand with professional video tripod with a fluid head.

See more of Legault’s extraordinary astrophotography work at his website.