Dawn gets Big Science Boost at Best Vesta Mapping Altitude

Vesta imaged by NASA’s Dawn Asteroid Orbiter. Dawn is currently at work at the Low Altitude Mapping Orbit (LAMO) acquiring new imagery and spectra of much higher resolution compared to these images acquired at higher altitudes and is also filling in gaps of surface data. The image from Dawn’s Framing Camera, at left, was taken on July 24 at a distance of 3,200 miles soon after achieving orbit around Vesta. The mosaic from Dawn’s Visible and infrared spectrometer (VIR), at right, was acquired from High-altitude mapping orbit (HAMO). Credit: NASA/ JPL-Caltech/ UCLA/ ASI/ INAF/ IAPS. Collage: Ken Kremer

[/caption]

NASA’s Dawn mission is getting a whopping boost in science observing time at the closest orbit around Asteroid Vesta as the probe passes the midway point of its 1 year long survey of the colossal space rock. And the team informs Universe Today that the data so far have surpassed all expectations and they are very excited !

Dawn’s bonus study time amounts to an additional 40 days circling Vesta at the highest resolution altitude for scientific measurements. That translates to a more than 50 percent increase beyond the originally planned length of 70 days at what is dubbed the Low Altitude Mapping Orbit, or LAMO.

“We are truly thrilled to be able to spend more time observing Vesta from low altitude,” Dr. Marc Rayman told Universe Today in an exclusive interview. Rayman is Dawn’s Engineer at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“It is very exciting indeed to obtain such a close-up look at a world that even a year ago was still just a fuzzy blob.”

The big extension for a once-in-a-lifetime shot at up close science was all enabled owing to the hard work of the international science team in diligently handling any anomalies along the pathway through interplanetary space and since Dawn achieved orbit in July 2011, as well as to the innovative engineering of the spacecraft’s design and its revolutionary ion propulsion system.

“This is a reflection of how well all of our work at Vesta has gone from the beginning of the approach phase in May 2011,” Rayman told me.

Simulated view of Vesta from Dawn in LAMO, low altitude mapping orbit - March, 6 2012
Credit: Gregory J. Whiffen, JPL

Dawn’s initially projected 10 week long science campaign at LAMO began on Dec. 12, 2011 at an average distance of 210 kilometers (130 miles) from the protoplanet and was expected to conclude on Feb. 20, 2012 under the original timeline. Thereafter it would start spiraling back out to the High Altitude Mapping Orbit, known as HAMO, approximately 680 kilometers above the surface.

“With the additional 40 days it means we are now scheduled to leave LAMO on April 4. That’s when we begin ion thrusting for the transfer to HAMO2,” Rayman stated.

And the observations to date at LAMO have already vastly surpassed all hopes – using all three of the onboard science instruments provided by the US, Germany and Italy.

“Dawn’s productivity certainly is exceeding what we had expected,” exclaimed Rayman.

“We have acquired more than 7500 LAMO pictures from the Framing Camera and more than 1 million LAMO VIR (Visible and Infrared) spectra which afford scientists a much more detailed view of Vesta than had been planned with the survey orbit and the high altitude mapping orbit (HAMO). It would have been really neat just to have acquired even only a few of these close-up observations, but we have a great bounty!”

“Roughly around half of Vesta’s surface has been imaged at LAMO.”

Dawn mosaic of Visible and Infrared spectrometer (VIR) data of Vesta
This mosaic shows the location of the data acquired by VIR (visible and infrared spectrometer) during the HAMO (high-altitude mapping orbit) phase of the Dawn mission from August to October 2011. Dawn is now making the same observations at the now extended LAMO (low-altitude mapping orbit) phase of the Dawn mission from December 2011 to April 2012. VIR can image Vesta in a number of different wavelengths of light, ranging from the visible to the infrared part of the electromagnetic spectrum. This mosaic shows the images taken at a wavelength of 550 nanometers, which is in the visible part of the electromagnetic spectrum. During HAMO VIR obtained more than 4.6 million spectra of Vesta. It is clear from this image that the VIR observations are widely distributed across Vesta, which results in a global view of the spectral properties of Vesta’s surface. This image shows Vesta’s southern hemisphere (lower part of the image) and equatorial regions (upper part of the image). NASA’s Dawn spacecraft obtained these VIR images with its visible and infrared spectrometer in September and October 2011. The distance to the surface of Vesta is around 700 kilometers (435 miles) and the average image resolution is 170 meters per pixel. Credit: NASA/ JPL-Caltech/ UCLA/ ASI/ INAF/ IAPS

The bonus time at LAMO will now be effectively used to help fill in the gaps in surface coverage utilizing all 3 science instruments. Therefore perhaps an additional 20% to 25% extra territory will be imaged at the highest possible resolution. Some of this will surely amount to enlarged new coverage and some will be overlapping with prior terrain, which also has enormous research benefits.

“There is real value even in seeing the same part of the surface multiple times, because the illumination may be different. In addition, it helps for building up stereo,” said Rayman.

Researchers will deduce further critical facts about Vesta’s topography, composition, interior, gravity and geologic features with the supplemental measurements.

Successive formation of impact craters on Vesta
This Dawn FC (framing camera) image shows two overlapping impact craters and was taken on Dec. 18,2011 during the LAMO (low-altitude mapping orbit) phase of the mission. The large crater is roughly 20 kilometers (12 miles) in diameter and the smaller crater is roughly 6 kilometers (4 miles) in diameter. The rims of the craters are both reasonably fresh but the larger crater must be older because the smaller crater cuts across the larger crater’s rim. As the smaller crater formed it destroyed a part of the rim of the pre-existing, larger crater. The larger crater’s interior is more densely cratered than the smaller crater, which also suggests that is it older. In the bottom of the image there is some material slumping from rim of the larger crater towards its center. This image with its framing camera on Dec. 18, 2011. This image was taken through the camera’s clear filter. The distance to the surface of Vesta is 260 kilometers (162 miles) and the image has a resolution of about 22 meters (82 feet) per pixel. Credit: NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA

The foremost science goals at LAMO are collection of gamma ray and neutron measurements with the GRaND instrument – which focuses on determining the elemental abundances of Vesta – and collection of information about the structure of the gravitational field. Since GRaND can only operate effectively at low orbit, the extended duration at LAMO takes on further significance.

“Our focus is on acquiring the highest priority science. The pointing of the spacecraft is determined by our primary scientific objectives of collecting GRaND and gravity measurements.”

As Dawn continues orbiting every 4.3 hours around Vesta during LAMO, GRaND is recording measurements of the subatomic particles that emanate from the surface as a result of the continuous bombardment of cosmic rays and reveals the signatures of the elements down to a depth of about 1 meter.

“You can think of GRaND as taking a picture of Vesta but in extremely faint light. That is, the nuclear emissions it detects are extremely weak. So our long time in LAMO is devoted to making a very, very long exposure, albeit in gamma rays and neutrons and not in visible light,” explained Rayman.

Now with the prolonged mission at LAMO the team can gather even more data, amounting to thousands and thousands more pictures, hundreds of thousands of more VIR spectra and ultra long exposures by GRaND.

“HAMO investigations have already produced global coverage of Vesta’s gravity field,” said Sami Asmar, a Dawn co-investigator from JPL. Extended investigations at LAMO will likewise vastly improve the results from the gravity experiment.

Dawn Spacecraft Current Location and Trajectory - March, 6 2012. Credit: Gregory J. Whiffen, JPL

“We always carried 40 days of “margin,” said Rayman, “but no one who was knowledgeable about the myriad challenges of exploring this uncharted world expected we would be able to accomplish all the complicated activities before LAMO without needing to consume some of that margin. So although we recognized that we might get to spend some additional time in LAMO, we certainly did not anticipate it would be so much.”

“As it turned out, although we did have surprises the operations team managed to recover from all of them without using any of those 40 days.”

“This is a wonderful bonus for science,” Rayman concluded.

“We remain on schedule to depart Vesta in July 2012, as planned for the past several years.”

Dawn’s next target is Ceres, the largest asteroid in the main Asteroid Belt between Mars and Jupiter

A Weekend Sky Show: Moon, Venus and Jupiter

Moon and Venus on Feb. 25, 2012. © Jason Major

[/caption]

As promised by Nancy in a previous article on Universe Today, Venus was visible during the daylight hours this Saturday, very close to the crescent Moon. If you had clear weather you may have been able to catch a glimpse of the scene above, photographed from my location in north Texas at 6:35 p.m. local time.

Dim but visible, Venus is the “star” at lower left.

Later that same evening the show really went into full force as the Moon was illuminated by Earthshine in the western sky, with Venus ablaze and Jupiter making a bright appearance as well!

Nancy wrote on Feb. 24: If you don’t see Venus during the day, try to see Venus immediately at sunset; and right now, the Moon, Venus and Jupiter are lining up for triple conjunction at dusk, and with clear skies, it will be a great view that is almost impossible to miss!

A great view indeed! I grabbed a quick shot with my iPhone camera of the conjunction, and took the opportunity to point out the view to some neighbors as well.

Conjunction of the Moon, Venus and Jupiter on Feb. 25, 2012. (Jason Major)

One of the more dramatic planetary conjunctions I’ve seen, especially with the light from a fading sunset illuminating the stage.

Sometimes the best astronomy is the type you can see with your own eyes… and be able to easily share with others!

ADDED 2/26: Sunday evening brought some great views as well! Here’s a photo from around 6:45 pm on Feb. 26th:

Jupiter, the Moon and Venus on Feb. 26, 2012. © Jason Major

 

Does Water Ice Lurk Beneath the Poles of Vesta ?

Viewing the South Pole of Vesta and Rhea Silvia Impact Basin. This image obtained by Dawn’s framing camera shows the south pole of the giant asteroid Vesta and the circular Rheasilvia impact basin which scientists believe originated by a collision with another asteroid early in the asteroid's history. The image was recorded from a distance of about 1,700 miles (2,700 kilometers). The image resolution is about 260 meters per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

The mysterious asteroid Vesta may well have more surprises in store. Despite past observations that Vesta would be nearly bone dry, newly published research indicates that about half of the giant asteroid is sufficiently cold and dark enough that water ice could theoretically exist below the battered surface.

Scientists working at NASA’s Goddard Space Flight Center in Greenbelt, Md., and the University of Maryland have derived the first models of Vesta’s average global temperatures and illumination by the Sun based on data obtained from the Hubble Space Telescope.

“Near the north and south poles, the conditions appear to be favorable for water ice to exist beneath the surface,” says Timothy Stubbs of NASA’s Goddard Space Flight Center in Greenbelt, Md., and the University of Maryland, Baltimore County. The research by Timothy Stubbs and Yongli Wang, of the Goddard Planetary Heliophysics Institute at the University of Maryland, was published in the January 2012 issue of the journal Icarus.

If any water lurks beneath Vesta, it would most likely exist at least 10 feet (3 meters) below the North and South poles because the models predict that the poles are the coldest regions on the giant asteroid and the equatorial regions are too warm.

Global Map of Average Surface Temperature of Vesta
This global map of average surface temperature shows the warmer equatorial zone of the giant asteroid Vesta is likely too warm to sustain water ice below the surface. But roughly half of Vesta is so cold and receives so little sunlight on average that water ice could have survived there for billions of years. The dividing lines (solid gray) are found at about 27 degrees north latitude and 27 degrees south latitude. This map, with temperatures given in kelvins, comes from the first published models of the average global temperature and illumination conditions on Vesta. Credit: NASA/GSFC/UMBC

If proven, the existence of water ice at Vesta would have vast implications for the formation and evolution of the tiny body and upend current theories.

The surface of Vesta is not cold enough for ice to survive all the time because unlike the Moon, it probably does not have any significant permanently shadowed craters where water ice could stay frozen on the surface indefinitely.

Even the huge 300 mile diameter (480-kilometer) crater at the South Pole is not a good candidate for water ice because Vesta is tilted 27 degrees on its axis, a bit more than Earth’s tilt of 23 degrees.

By contrast, the Moon is only tilted 1.5 degrees and possesses many permanently shadowed craters. NASA’s LCROSS impact mission proved that water ice exists inside permanently shadowed lunar craters.

New modeling shows that, under present conditions, Vesta's polar regions are cold enough (less than about 145 kelvins) to sustain water ice for billions of years, as this map of average surface temperature around the asteroid's south pole indicates.

The models predict that the average annual temperature around Vesta’s poles is below minus 200 degrees Fahrenheit (145 kelvins). Water ice is not stable above that temperature in the top 10 feet of Vestan soil, or regolith.

At the equator and in a band stretching to about 27 degrees north and south in latitude, the average annual temperature is about minus 190 degrees Fahrenheit (145 kelvins), which is too high for the ice to survive.

“On average, it’s colder at Vesta’s poles than near its equator, so in that sense, they are good places to sustain water ice,” says Stubbs in a NASA statement. “But they also see sunlight for long periods of time during the summer seasons, which isn’t so good for sustaining ice. So if water ice exists in those regions, it may be buried beneath a relatively deep layer of dry regolith.”

Vesta is the second most massive asteroid in the main Asteroid belt between Mars and Jupiter.

NASA’s Dawn Asteroid Orbiter is the very first mission to Vesta and achieved orbit in July 2011 for a 1 year long mission.

Dawn is currently circling Vesta at its lowest planned orbit. The three science instruments are snapping pictures and the spectrometers are collecting data on the elemental and mineralogical composition of Vesta.

The onboard GRaND spectrometer in particular could shed light on the question of whether water ice exists at Vesta.

So far no water has been detected, but the best data is yet to come.

In July 2012, Dawn fires up its ion thrusters and spirals out of orbit to begin the journey to Ceres, the largest asteroid of them all.

Ceres is believed to harbor huge caches of water, either as ice or in the form of oceans and is a potential habitat for life.

Beneath the Surface: Seeing Jupiter’s Hidden Storms

Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)


Launched on August 5, 2011, NASA’s Juno spacecraft will arrive at Jupiter in 2016 to study its magnetic field and atmosphere. Using its suite of science instruments Juno will peer inside the gas giant’s thick clouds, revealing hidden structures and powerful storms. To help people visualize what it means to see the invisible, JPL’s visual strategist Dan Goods created the exhibit above, titled Beneath the Surface. It’s an installation of lights, sound and fog effects that dramatically recreates what Juno will experience as it orbits Jupiter. By using their cell phone cameras, viewers can see lightning “storms” hidden beneath upper, opaque layers of “atmosphere”… in much the same way Juno will.

Goods explains: “Humans are only able to see a little, tiny sliver of what there is available in light. There’s gamma rays, microwaves, ultraviolet and infrared light also, and infrared is close enough to the visible part of the spectrum that cell phone cameras can pick it up. Cell phones normally produce more grainy photos at night because they don’t try to cut out the infrared light the way higher-end digital cameras do so in this case, the cell phone cameras are an advantage.” (Via the Pasadena Weekly.)

I had a chance to meet Dan Goods during a Tweetup event for the Juno launch at Kennedy Space Center. He’d brought a table that had magnetic elements set beneath a flat black surface, and by passing a handheld magnet over the table you could “detect” the different magnetic fields… in some cases rather strongly, even though they were all obviously invisible. It was an ingenious way that Juno’s abilities could be demonstrated in a “hands-on” manner.

Watch my video of the Juno launch from the KSC press site.

[/caption]

Beneath the Surface takes that kind of demonstration to an entirely new level.

“I love to work with the world of things that are right in front of you but you just can’t see,” Goods said. “With Juno, there’s all this structure just under the surface of Jupiter, but humans can develop tools that help us understand things we’d never have seen before.”

The exhibit was installed at the Pasadena Museum of California Art until January 8. It will now travel to science museums around the country.

Video: watch how the exhibit was constructed.

Juno’s primary goal is to improve our understanding of Jupiter’s formation and evolution. The spacecraft will spend a year investigating the planet’s origins, interior structure, deep atmosphere and magnetosphere. Juno’s study of Jupiter will help us to understand the history of our own solar system and provide new insight into how planetary systems form and develop in our galaxy and beyond.

Explore the Juno mission more at http://missionjuno.swri.edu/.

Does Life on the Seafloor Predict Life on Other Worlds?

Hydrothermal vents deep in Earth's oceans. Could similar types of vents power the transport of silica and other materials out from Enceladus? Credit: NOAA
Hydrothermal vents deep in Earth's oceans. Could similar types of vents power the transport of silica and other materials out from Enceladus? Credit: NOAA

[/caption]

Scientists have recently discovered communities of previously unknown species living on the seafloor near Antarctica clustered around hydrothermal vents. This discovery is certainly exciting for biologists, but it’s also important for astrobiologists. It begs the question — if life can thrive in the deep, dark oceans without sunlight, could similar life thrive elsewhere in our solar system or the universe?

For decades, scientists assumed the deep oceans were barren; sunlight can’t reach the ocean floor, making it an impossible environment for life as we know it to arise. But in 1977, oceanographers from the Scripps Institute discovered hydrothermal vents.

A schematic diagram of deep sea vent chemistry. Image credit: National Oceanic and Atmospheric Administration

These fissures, found along mid-ocean ridges on the seafloor of the Pacific, Atlantic, and Indian Oceans, create a natural, deep-sea plumbing system. Heat and minerals from the Earth’s interior vents out, providing a complex ecosystem that can reach up to 382 degrees Celsius (almost 720 degrees Fahrenheit). These ecosystems can support unique life forms that get their energy not from the Sun but from breaking down chemicals issued from the vents such as hydrogen sulphide.

The latest life forms, discovered in the Antarctic region by teams from the University of Oxford, University of Southampton and British Antarctic Survey, include a new species of yeti crab, starfish, barnacles, sea anemones, and potentially an octopus.

“These findings are yet more evidence of the precious diversity to be found throughout the world’s oceans,” said Professor Rogers of Oxford University’s Department of Zoology. “Everywhere we look, whether it is in the sunlit coral reefs of tropical waters or these Antarctic vents shrouded in eternal darkness, we find unique ecosystems that we need to understand and protect.”

Jupiter's moon Europa. The lines on the surface are breaks in the ice that lie on top of vast oceans. Image credit: NASA/courtesy of nasaimages.org

But it isn’t only biologists studying life on Earth that can benefit from this latest discovery. These peculiar environments on and beneath the seafloor could be a model for the origin of life on Earth and on other planets.

One particular target is Jupiter’s moon Europa. Recent research has confirmed that the moon has vast oceans buried beneath its frozen surface ice; it’s estimated to hold twice as much water as Earth. As such, it is a target for NASA in the search for life. It could be the case that some type of hydrothermal vent system exists on Europa, making its distance from the Sun irrelevant for life.

But just because sulfur or methane-based life on Earth can thrive around deep-ocean vents doesn’t mean the same is true on Europa. The presence of hydrothermal vents depends on geologic activity and a hot interior, neither of which has been confirmed. The possibility remains that light energy from the Sun could travel the distance to the moon and provide shallower portions of the subsurface oceans with life-giving light.

In any case, as scientists discover life in the more extreme environments on Earth, analogies are drawn with other worlds. If life is discovered in hostile parts of our planet, the same could theoretically arise in similar environments on other worlds.

Source: ‘Lost World’ discovered around Antarctic vents.

Dazzling Photos of the International Space Station Crossing the Moon!

Moon and International Space Station from NASA Johnson Space Center, Houston, Texas. This photo was taken in the early evening of Jan. 4. Equipment: Nikon D3S, 600mm lens and 2x converter, Heavy Duty Bogen Tripod with sandbag and a trigger cable to minimize camera shake. Camera settings: 1/1600 @ f/8, ISO 2500 on High Continuous Burst. Credit: NASA

[/caption]

Has the International Space Station (ISS) secretly joined NASA’s newly arrived GRAIL lunar twins orbiting the Moon?

No – but you might think so gazing at these dazzling new images of the Moon and the ISS snapped by a NASA photographer yesterday (Jan. 4) operating from the Johnson Space Center in Houston, Texas.

Check out this remarkable series of NASA photos above and below showing the ISS and her crew of six humans crossing the face of Earth’s Moon above the skies over Houston, Texas. And see my shot below of the Moon near Jupiter – in conjunction- taken just after the two GRAIL spacecraft achieved lunar orbit on New Year’s weekend.

In the photo above, the ISS is visible at the upper left during the early evening of Jan. 4, and almost looks like it’s in orbit around the Moon. In fact the ISS is still circling about 248 miles (391 kilometers) above Earth with the multinational Expedition 30 crew of astronauts and cosmonauts hailing from the US, Russia and Holland.

Space Station Crossing Face of Moon
This composite of images of the International Space Station flying over the Houston area show the progress of the station as it crossed the face of the moon in the early evening of Jan. 4, 2012 over NASA’s Johnson Space Center, Houston, Texas. Credit: NASA
click to enlarge

The amazing photo here is a composite image showing the ISS transiting the Moon’s near side above Houston in the evening hours of Jan 4.

The ISS is the brightest object in the night sky and easily visible to the naked eye if it’s in sight.

With a pair of binoculars, it’s even possible to see some of the stations structure like the solar panels, truss segments and modules.

Check this NASA Website for ISS viewing in your area.

How many of you have witnessed a sighting of the ISS?

It’s a very cool experience !

NASA says that some especially good and long views of the ISS lasting up to 6 minutes may be possible in the central time zone on Friday, Jan 6 – depending on the weather and your location.

And don’t forget to check out the spectacular photos of Comet Lovejoy recently shot by Expedition 30 Commander Dan Burbank aboard the ISS – through the Darth Vader like Cupola dome, and collected here

Moon and International Space Station (at lower right) on Jan 4, 2012 from NASA Johnson Space Center, Houston, Texas. Credit: NASA click to emlarge
Moon, Jupiter and 2 GRAILs on Jan. 2, 2012
Taken near Princeton, NJ after both GRAIL spacecraft achieved lunar orbit after LOI - Lunar Orbit Insertion- burns on New Year’s weekend 2012. Credit: Ken Kremer

2011: Top Stories from the Best Year Ever for NASA Planetary Science!

Dawn Orbiting Vesta. NASA's Dawn spacecraft achieved orbit at the giant asteroid Vesta in July 2011. The depiction of Vesta is based on images obtained by Dawn's framing cameras. Dawn is an international collaboration of the US, Germany and Italy. Credit: NASA/JPL-Caltech

[/caption]

A year ago, 2011 was proclaimed as the “Year of the Solar System” by NASA’s Planetary Science division. And what a year of excitement it was indeed for the planetary science community, amateur astronomers and the general public alike !

NASA successfully delivered astounding results on all fronts – On the Story of How We Came to Be.

“2011 was definitely the best year ever for NASA Planetary Science!” said Jim Green in an exclusive interview with Universe Today. Green is the Director of Planetary Science for the Science Mission Directorate at NASA HQ. “The Search for Life is a significant priority for NASA.”

This past year was without doubt simply breathtaking in scope in terms of new missions, new discoveries and extraordinary technical achievements. The comprehensive list of celestial targets investigated in 2011 spanned virtually every type of object in our solar system – from the innermost planet to the outermost reaches nearly touching interplanetary space.

There was even a stunningly evocative picture showing “All of Humanity” – especially appropriate now in this Holiday season !

You and all of Humanity are here !
-- Earth & Moon Portrait by Juno from 6 Million miles away --
First Photo transmitted from Jupiter Bound Juno shows Earth (on the left) and the Moon (on the right). Taken on Aug. 26, 2011 when spacecraft was about 6 million miles (9.66 million kilometers) away from Earth. Credit: NASA/JPL-Caltech

Three brand new missions were launched and ongoing missions orbited a planet and an asteroid and flew past a comet.

“NASA has never had the pace of so many planetary launches in such a short time,” said Green.

And three missions here were awarded ‘Best of 2011’ for innovation !

Mars Science Laboratory (MSL), Dawn and MESSENGER named “Best of What’s New” in 2011 by Popular Science magazine. 3 NASA Planetary Science missions received the innovation award for 2011 from Popular Science magazine. Artist concept shows mosaic of MESSENGER, Mars Science Laboratory and Dawn missions. Credit: NASA/JPL-Caltech

Here’s the Top NASA Planetary Science Stories of 2011 – ‘The Year of the Solar System’ – in chronological order

1. Stardust-NExT Fly By of Comet Tempel 1

Starting from the first moments of 2011 at the dawn of Jan. 1, hopes were already running high for planetary scientists and engineers busily engaged in setting up a romantic celestial date in space between a volatile icy comet and an aging, thrusting probe on Valentine’s Day.

The comet chasing Stardust-Next spacecraft successfully zoomed past Comet Tempel 1 on Feb. 14 at 10.9 km/sec (24,000 MPH) after flying over 6 Billion kilometers (3.5 Billion mi).

6 Views of Comet Tempel 1 and Deep Impact crater during Stardust-NExT flyby on Feb. 14, 2011
Arrows show location of man-made crater created in 2005 by NASA’s prior Deep Impact comet mission and newly imaged as Stardust-NExT zoomed past comet in 2011. The images progress in time during closest approach to comet beginning at upper left and moving clockwise to lower left. Credit: NASA/JPL-Caltech/University of Maryland. Post process and annotations by Marco Di Lorenzo & Kenneth Kremer

The craft approached within 178 km (111mi) and snapped 72 astonishingly detailed high resolution science images over barely 8 minutes. It also fulfilled the teams highest hopes by photographing the human-made crater created on Tempel 1 in 2005 by a cosmic collision with a penetrator hurled by NASA’s Deep Impact spacecraft. The probe previously flew by Comet Wild 2 in 2004 and returned cometary coma particles to Earth in 2006

Tempel 1 is the first comet to be visited by two spaceships from Earth and provided the first-ever opportunity to compare observations on two successive passages around the Sun.

Don Brownlee, the original Principal Investigator, summarized the results for Universe Today; “A great bonus of the mission was the ability to flyby two comets and take images and measurements. The wonderfully successful flyby of Comet Tempel 1 was a great cap to the 12 year mission and provided a great deal of new information to study the diversity among comets.”

“The new images of Tempel showed features that form a link between seemingly disparate surface features of the 4 comets imaged by spacecraft. Combining data on the same comet from the Deep Impact and Stardust missions has provided important new insights in to how comet surfaces evolve over time and how they release gas and dust into space”.

2. MESSENGER at Mercury

On March 18, the Mercury Surface, Space Environment, Geochemistry, and Ranging, or MESSENGER, spacecraft became the first spacecraft inserted into orbit around Mercury, the innermost planet.

So far MESSENGER has completed 1 solar day – 176 Earth days- circling above Mercury. The probe has collected a treasure trove of new data from the seven instruments onboard yielding a scientific bonanza; these include global imagery of most of the surface, measurements of the planet’s surface chemical composition, topographic evidence for significant amounts of water ice, magnetic field and interactions with the solar wind.

“MESSENGER discovered that Mercury has an enormous core, larger than Earth’s. We are trying to understand why that is and why Mercury’s density is similar to Earth’s,” Jim Green explained to Universe Today.

The First Solar Day
After its first Mercury solar day (176 Earth days) in orbit, MESSENGER has nearly completed two of its main global imaging campaigns: a monochrome map at 250 m/pixel and an eight-color, 1-km/pixel color map. Small gaps will be filled in during the next solar day. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“The primary mission lasts 2 solar days, equivalent to 4 Mercury years.”

“NASA has granted a 1 year mission extension, for a total of 8 Mercury years. This will allow the team to understand the environment at Mercury during Solar Maximum for the first time. All prior spacecraft observations were closer to solar minimum,” said Green.

MESSENGER was launched in 2004 and the goal is to produce the first global scientific observations of Mercury and piece together the puzzle of how Mercury fits in with the origin and evolution of our solar system.

NASA’s Mariner 10 was the only previous robotic probe to explore Mercury, during three flyby’s back in the mid-1970’s early in the space age.

3. Dawn Asteroid Orbiter

The Dawn spacecraft achieved orbit around the giant asteroid Vesta in July 2011 after a four year interplanetary cruise and began transmitting the history making first ever close-up observations of the mysteriously diverse and alien world that is nothing short of a ‘Space Spectacular’.

“We do not have a good analog to Vesta anywhere else in the Solar System,” Chris Russell said to Universe Today. Russell, from UCLA, is the scientific Principal Investigator for Dawn.

Before Dawn, Vesta was just another fuzzy blob in the most powerful telescopes. Dawn has completely unveiled Vesta as a remarkably dichotomous, heavily battered and pockmarked world that’s littered with thousands of craters, mountains and landslides and ringed by mystifying grooves and troughs. It will unlock details about the elemental abundances, chemical composition and interior structure of this marvelously intriguing body.

Cataclysmic collisions eons ago excavated Vesta so it lacks a south pole. Dawn discovered that what unexpectedly remains is an enormous mountain some 16 miles (25 kilometers) high, twice the height of Mt. Everest.

Dawn is now about midway through its 1 year mission at Vesta which ends in July 2012 with a departure for Ceres, the largest asteroid. So far the framing cameras have snapped more than 10,000 never-before-seen images.

“What can be more exciting than to explore an alien world that until recently was virtually unknown!. ” Dr. Marc Rayman said to Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif.

“Dawn is NASA at its best: ambitious, exciting, innovative, and productive.”

4. Juno Jupiter Orbiter

The solar powered Juno spacecraft was launched on Aug. 5 at Cape Canaveral Air Force Station in Florida, to embark on a five year, 2.8 billion kilometer (1.7 Billion mi) trek to Jupiter, our solar system’s largest planet. It was the first of three NASA planetary science liftoffs scheduled in 2011.

Juno Jupiter Orbiter soars skyward to Jupiter on Aug. 5, 2011 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

Juno’s goal is to map to the depths of the planets interior and elucidate the ingredients of Jupiter’s genesis hidden deep inside. These measurements will help answer how Jupiter’s birth and evolution applies to the formation of the other eight planets.

The 4 ton spacecraft will arrive at the gas giant in July 2016 and fire its braking rockets to go into a polar orbit and circle the planet 33 times over about one year.

The suite of nine instruments will scan the gas giant to find out more about the planets origins, interior structure and atmosphere, measure the amount of water and ammonia, observe the aurora, map the intense magnetic field and search for the existence of a solid planetary core.

“Jupiter is the Rosetta Stone of our solar system,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

5. Opportunity reaches Endeavour Crater on Mars

The long lived Opportunity rover finally arrived at the rim of the vast 14 mile (22 kilometer) wide Endeavour Crater in mid-August 2011 following an epic three year trek across treacherous dune fields – a feat once thought unimaginable. All told, Opportunity has driven more than 34 km ( 21 mi) since landing on the Red Planet way back in 2004 for a mere 90 sol mission.

Endeavour Crater Panorama from Opportunity Mars Rover in August 2011
Opportunity arrived at the rim of Endeavour on Sol 2681, August 9, 2011 after a three year trek. The robot photographed segments of the huge craters eroded rim in this panoramic vista. Endeavour Crater is 14 miles (22 kilometers) in diameter. Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

In November, the rover discovered the most scientifically compelling evidence yet for the flow of liquid water on ancient Mars in the form of a water related mineral vein at a spot dubbed “Homestake” along an eroded ridge of Endeavour’s rim.

Read my story about the Homestake discovery here, along with our panoramic mosaic showing the location – created by Ken Kremer and Marco Di Lorenzo and published by Astronomy Picture of the Day (APOD) on 12 Dec. 2011.

Watch for my upcoming story detailing Opportunity’s accomplishments in 2011.

6. GRAIL Moon Mappers

The Gravity Recovery and Interior Laboratory, or GRAIL mission is comprised of twin spacecraft tasked to map the moon’s gravity and study the structure of the lunar interior from crust to core.

Twin GRAIL Probes GO for Lunar Orbit Insertion on New Year’s Eve and New Year’s Day
GRAIL spacecraft will map the moon's gravity field and interior composition. Credit: NASA/JPL-Caltech

The dynamic duo lifted off from Cape Canaveral on September 10, 2011 atop the last Delta II rocket that will likely soar to space from Florida. After a three month voyage of more than 2.5 million miles (4 million kilometers) since blastoff, the two mirror image GRAIL spacecraft dubbed Grail-A and GRAIL-B are sailing on a trajectory placing them on a course over the Moon’s south pole on New Year’s weekend.

Each spacecraft will fire the braking rockets for about 40 minutes for insertion into Lunar Orbit about 25 hours apart on New Year’s Eve and New Year’s Day.

Engineers will then gradually lower the satellites to a near-polar near-circular orbital altitude of about 34 miles (55 kilometers).

The spacecraft will fly in tandem and the 82 day science phase will begin in March 2012.

“GRAIL is a Journey to the Center of the Moon”, says Maria Zuber, GRAIL principal investigator from the Massachusetts Institute of Technology (MIT). “GRAIL will rewrite the book on the formation of the moon and the beginning of us.”

“By globally mapping the moon’s gravity field to high precision scientists can deduce information about the interior structure, density and composition of the lunar interior. We’ll evaluate whether there even is a solid or liquid core or a mixture and advance the understanding of the thermal evolution of the moon and the solar system,” explained co-investigator Sami Asmar to Universe Today. Asmar is from NASA’s Jet Propulsion Laboratory (JPL)

7. Curiosity Mars Rover

The Curiosity Mars Science Lab (MSL) rover soared skywards on Nov. 26, the last of 2011’s three planetary science missions. Curiosity is the newest, largest and most technologically sophisticated robotic surveyor that NASA has ever assembled.

“MSL packs the most bang for the buck yet sent to Mars.” John Grotzinger, the Mars Science Laboratory Project Scientist of the California Institute of Technology, told Universe Today.

The three meter long robot is the first astrobiology mission since the Viking landers in the 1970’s and specifically tasked to hunt for the ‘Ingredients of Life’ on Mars – the most Earth-like planet in our Solar System.


Video caption: Action packed animation depicts sequences of Curiosity departing Earth, the nail biting terror of the never before used entry, descent and landing on the Martian surface and then looking for signs of life at Gale Crater during her minimum two year expedition across hitherto unseen and unexplored Martian landscapes, mountains and craters. Credit: NASA

Curiosity will gather and analyze samples of Martian dirt in pursuit of the tell-tale signatures of life in the form of organic molecules – the carbon based building blocks of life as we know it.

NASA is targeting Curiosity to a pinpoint touch down inside the 154 km (96 mile) wide Gale Crater on Aug. 6, 2012. The crater exhibits exposures of phyllosilicates and other minerals that may have preserved evidence of ancient or extant Martian life and is dominated by a towering 3 mile (5 km) high mountain.

“10 science instruments are all aimed at a mountain whose stratigraphic layering records the major breakpoints in the history of Mars’ environments over likely hundreds of millions of years, including those that may have been habitable for life,” Grotzinger told me.

Titan Upfront
The colorful globe of Saturn's largest moon, Titan, passes in front of the planet and its rings in this true color snapshot from NASA's Cassini spacecraft. Credit: NASA/JPL-Caltech/Space Science Institute
Curiosity Mars Science Laboratory Rover and Ken Kremer - inside the Cleanroom at the Kennedy Space Center. Last View of Curiosity just prior to folding and encapsulation for launch. Credit: Ken Kremer

This past year Ken was incredibly fortunate to witness the ongoing efforts of many of these magnificent endeavors.

NASA’s Dawn Orbiter snaps Best Ever Images of Vesta

Crater in Shadow on Vesta. This new image from Dawn in its low altitude mapping orbit on Dec. 13 shows part of the rim of a fresh crater on Vesta located in an area known as the Heavily Cratered Terrain in the northern hemisphere at around 17 degrees latitude and 77 degrees longitude. It was obtained at an altitude of 119 miles (191 km) and covers an area 11 mi x 11 mi (18 km x 18 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

NASA’s Dawn spacecraft has swooped down to the closest orbit above the monster asteroid Vesta that the craft’s cameras and spectrometers will ever glimpse and the probe has begun transmitting these highest resolution pictures to anxiously waiting scientists back on Earth.

Dawn arrived at its Low Altitude Mapping Orbit, known as LAMO, on Dec. 12, 2011 and will continue circling scarcely 130 miles (210 kilometers) above Vesta for at least the next 10 weeks. Each orbit takes about 4.3 hours.

NASA has now released the first batch of crisp new close-ups images taken by the Framing Camera on Dec. 13 showing the stippled and lumpy surface in an exquisitely fine detail never seen before.

The photo montage below shows side by side views of the same portion of the Vestan surface at ever increasing resolution and clarity from ever lower altitudes.

Closer and Closer to the Vesta Surface
NASA’s Dawn spacecraft has spiraled closer and closer to the surface of the giant asteroid Vesta since arriving in mid-2011. The two images on the left represent an identical area, first observed during Dawn's survey orbit (far left image). The picture in the center is from Dawn's high-altitude mapping orbit (HAMO) from an altitude of about 430 miles (700 km) with about 230 feet (70 meters-per-pixel) resolution. The image at right was obtained on Dec. 13 from the low altitude mapping orbit (LAMO) at an altitude of 124 miles (199 km) above the surface and has a resolution of 75 feet (23 m) per pixel. It shows small impact craters or slumping at the steep-flanked mountain in the image center that can be identified in the two images to the left. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The high resolution image gallery reveals fine scale highlights such as multitudes of small craters, grooves and lineaments, landslides and slumping, ejecta from past colossal impacts, and small outcrops of bright and dark materials.

The science team, led by Principal Investigator Prof Chris Russell of UCLA, believes that Vesta is actually more like a planet than an asteroid based on the data obtained thus far.

Vesta is the smallest terrestrial planet in our Solar System”, Russell told Universe Today. “We do not have a good analog to Vesta anywhere else in the Solar System.”

The primary science objectives at the LAMO orbit are to measure the elemental abundances on the surface of Vesta with the US built gamma ray and neutron detector (GRaND) and to probe the interior structure of the asteroid by measuring the gravity field.

Vesta is a proto-planet formed just a few million years after the birth of the solar system whose evolution into a larger planet was stopped cold by the massive gravitational influence of the planet Jupiter.

Scientists are plowing through thousands of images and millions of spectral measurements to glean clues about the origin and evolution of the solar system that have been preserved on the hitherto unexplored world.

Buried Craters on Vesta
This Dec. 13 image from Dawn spacecraft in its low altitude mapping orbit shows many buried craters located within the equatorial trough region of Vesta. This area bears traces of the material thrown out by the impact that created the Rheasilvia basin in the asteroid’s south polar region. Lineated features are visible in a variety of shapes and sizes from an altitude of 117 miles (189 km) over an area of 11 mi x 11 mi (18 km x 18 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“Vesta is a transitional body between a small asteroid and a planet and is unique in many ways,” says mission scientist Vishnu Reddy of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. “Vesta is unlike any other asteroid we have visited so far.”

After completing the LAMO measurements, Dawn will again spiral back to a higher altitude for further data gathering especially at the unseen North Pole which is in darkness now.

Dawn will continue orbiting Vesta until July 2012 when it will fire up its ion propulsion system and depart for Ceres, the largest body in the main Asteroid belt between Mars and Jupiter.

“What can be more exciting than to explore an alien world that until recently was virtually unknown!” Dr. Marc Rayman told Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif.

Equatorial Trough in Dark and Bright on Vesta
This image was one of the first obtained by Dawn in its low altitude mapping orbit and shows a part of one of the long troughs at the equator of Vesta. Credit: NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA

“Dawn continues to gather gamma ray spectra and neutron spectra,” Rayman reports. “The bonus imaging at LAMO is yielding pictures more than three times better than those acquired in the high altitude mapping orbit (HAMO). Every week at this low altitude, Dawn will use its ion propulsion system to fine tune its orbit. The first of these weekly orbit adjustments was performed on December 17.”

The framing cameras eere built by the Max Planck Institute for Solar System Research in Germany.

A treasure trove of spectacular Vesta close-ups are streaming at this moment to the home planet and we’ll have many more goodies to show.

Read continuing features about Dawn by Ken Kremer starting here:
Holiday Greetings from an Alien Snowman on Vesta
Dawn swoops to lowest orbit around Vesta – Unveiling Spectacular Alien World
Rainbow of Colors Reveal Asteroid Vesta as More Like a Planet
Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain

Top Astronomy Events Coming Up in 2012

Stargazing Credit: http://twitter.com/VirtualAstro

[/caption]

As 2011 is drawing to a close, the festive season is here and many of us are winding down and looking forward to the holidays. But this is a great time to look ahead to 2012 and pencil into our calendar and diaries the top astronomical events we don’t want to miss next year.

2012 is going to be a great year for astronomy observing, with some rare and exciting things taking place and a good outlook with some of the regular annual events.

So what top wonders should we expect to see and what will 2012 bring?

Conjunction of Venus and Jupiter

Venus & Jupiter Conjunction Credit: Anthony Arrigo UtahSkies.org

On March 15th the Planets Venus and Jupiter will be within 3 degrees and very close to each other in the early evening sky. This will be quite a spectacle as both planets are very bright (Venus being the brightest) and the pair will burn brightly together like a pair of alien eyes watching us after the Sun sets.

This conjunction (where planets group close together as seen from Earth) will be a fantastic visual and photographic opportunity, as it’s not often you get the brightest Planets in our Solar System so close together.

Transit of Venus

Transit of Venus Credit: Australian Space Alliance

For many, the transit of Venus is the year’s most anticipated astronomical event and it takes place on June 5th – 6th. The Planet Venus will pass between the Earth and the Sun and you will see Venus (a small black circle) slowly move across, or “transit” the disc of the Sun.

Transits of Venus are very rare and only a few have been witnessed since the dawn of the telescope. Be sure not to miss this very rare event as the next one isn’t visible for over another 100 years from now in 2117 and the next after that is in 2125.

The full transit of Venus in 2012 will be visible in North America, the northwest part of South America, Western Pacific, North East Asia, Japan, Australia and New Zealand. Other parts of the world will see a partial transit such as observers in the UK, who will only be able to see the last part of the transit as the Sun rises.

First contact will be at 22:09 UT and final contact will be at 04:49 UT

Take note! You have to use the right equipment for viewing the Sun, such as eclipse glasses, solar filters, or projection through a telescope. Never ever look directly at the Sun and never look at it through a normal telescope or binoculars – You will be permanently blinded! The transit of Venus will be a very popular event, so contact your local astronomy group and see if they are holding an event to celebrate this rare occasion.

Meteor Showers

Don't Miss the Major 2012 Meteor Showers Credit: Shooting Star Wallpapers

2011 was a poor year for meteor showers due to the presence of a largely illuminated Moon on all of the major showers; this prevented all but the brightest meteors being seen.

In contrast 2012 brings a welcome respite from the glare of the Moon as it gives little or no interference with this year’s major showers. The only other issue left to contend with is the weather, but if you have clear skies on the evenings of these celestial fireworks, you are in for a treat.

  • The Quadrantid Meteor Shower peak is narrow and just before dawn on January 4th this shower is expected to have a peak rate (ZHR) of around 80 meteors per hour.
  • The Perseid Meteor Shower peak is fairly broad with activity increasing on the evenings of the August 9th and 10th with the showers peak on the morning of the 12th. Perseids are the most popular meteor shower of the year as it tends to be warm and the shower has very bright meteors and fireballs, with rates of 100+ an hour at its peak.
  • The Geminid Meteor Shower is probably the best meteor shower of the year with high rates of slow bright meteors. The peak is very broad and rates of 100+ meteors per hour can be seen. The best time to look out for Geminids is on the evenings of the 12th to 14th December, but they can be seen much earlier or later than the peak.

If you want to find out more and enjoy the meteor showers of 2012, why not join in with a meteorwatch and visit meteorwatch.org

Jupiter and the Moon

Occultation of Jupiter by the Moon on July 15th as seen from Southern England Credit: Adrian West

European observers are in for a very rare treat as the Moon briefly hides the planet Jupiter on the morning of July 15th. This “lunar occultation” can be seen from southern England and parts of Europe at approximately 1:50am UT (dependant on location) and the planet re-emerges from the dark lunar limb at approximately 3:10am UT.

This is a great chance to watch this rare and bright event, and it will also be a fantastic imaging opportunity.

Annular Eclipse

Annular Eclipse Credit: Kitt Peak Observatory

American observers will have treat on May 20th with an annular eclipse of the Sun. The eclipse will be visible from many western US states and a partial eclipse visible from most of North America.

Because the Moon’s orbit is not a perfect circle and is slightly elliptical, it moves closer and further away from us slightly in its orbit by 13% and on July 15th it is at its furthest point away from the Earth as it passes in front of the Sun.

Normally the Moon covers the entire disc of the Sun and creates a total solar eclipse, but because the Moon is at its furthest point in its orbit on the 15th, we get an annular eclipse, where we can still see a ring of bright light around the Sun, but we don’t get totality.

The eclipse starts roughly at 6:20pm local time for the Western US states and lasts for four and a half minutes.

As mentioned earlier; never, ever look at the Sun without proper protection such as eclipse glasses or filters for equipment! This can damage your eyes and permanently blind you. This is the same for cameras; the sensitive chips inside can be damaged.

The World Not Ending

End Of The World

Finally we get to December 21st, in which astronomy-minded folks will celebrate the solstice. But in case you haven’t heard, some have prophesied the end of the world, saying the Mayan calendar ends. This has been the subject of much discussion, comedy and media coverage, and it has even been made into films.

Will the Antichrist press the red button and will there be the Rapture? Will the Earth reverse its magnetic poles, or will we get wiped out by a solar flare, rogue comet or asteroid?

Nope, probably not. You can read our entire series which explains why this whole 2012 end-of-the-world craze is complete hokum.

All I know is 2012 is going to be a great year for astronomy with some very interesting, rare events taking place, with many more regular events to see, as well.

I’m sure it’s not going to end.

 

Is Jupiter’s Core Liquifying?

Credit: NASA/ESA/E. Karkoschka (U. Arizona)

[/caption]

Jupiter, the largest and most massive planet in our solar system, may be its own worst enemy. It turns out that its central core may in fact be self-destructing, gradually liquifying and dissolving over time. This implies it was previously larger than it is now, and may dissolve altogether at some point in the future. Will Jupiter eventually destroy itself completely? No, probably not, but it may lose its heart…

The core is composed of iron, rock and ice and weighs about ten times as much as Earth. That’s still small though, compared to the overall mass of Jupiter itself, which weighs as much as 318 Earths! The core is buried deep within the thick atmosphere of hydrogen and helium. Conditions there are brutal, with a temperature of about 16,000 kelvin – hotter than the surface of the Sun – and a pressure about 40 million times greater than the atmospheric pressure on Earth. The core is surrounded by a fluid of metallic hydrogen which results from the intense pressure deep down in the atmosphere. The bulk of Jupiter though is the atmosphere itself, hence why Jupiter (and Saturn, Uranus and Neptune) are called gas giants.

One of the primary ingredients in the rock of the core is magnesium oxide (MgO). Planetary scientists wanted to see what would happen when it is subjected to the conditions found at the core; they found that it had a high solubility and started to dissolve. So if it is in a state of dissolution, then it was probably larger in the past than it is now and scientists would like to understand the process. According to David Stevenson of the California Institute of Technology, “If we can do that, then we can make a very useful statement about what Jupiter was like at genesis. Did it have a substantial core at that time? If so, was it 10 Earth masses, 15, 5?”

The findings also mean that some exoplanets which are even larger and more massive than Jupiter, and thus likely even hotter at their cores, may no longer have any cores left at all. They would be indeed be gas giants in the most literal sense.

The conditions inside Jupiter’s core can’t be duplicated in labs yet, but the spacecraft Juno should provide much more data when it arrives at and starts orbiting Jupiter in 2016.