Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near

3 D view of the rare Phobos–Jupiter conjunction taken on 1 June 2011 by the High Resolution Stereo Camera on Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Video Caption: Phobos and Jupiter in Conjunction – taken from Mars orbit !
A movie of the 1 June 2011 Phobos–Jupiter conjunction made by combining a sequence of 100 images of the encounter taken by the High Resolution Stereo Camera on ESA’s Mars Express orbiter. Mars Express is searching for safe landing zones on Phobos for Russia’s Phobos-Grunt lander blasting off on November 9. Credits: ESA/DLR/FU Berlin (G. Neukum)
3 D images of Phobos-Jupiter conjuction below
Update – Phobos-Grunt launch processing photo below

In just 7 days, Russia’s Phobos-Grunt sample return mission will blast off for Mars on November 9 on a daring mission to grab soil samples from the surface of the miniscule martian moon Phobos and return them back to Earth for analysis to give us breathtaking new insights into the formation and evolution of Mars, Phobos and our Solar System.

So, check out the amazing animation and 3 D stereo images of fish-like Phobos and banded Jupiter snapped by Europe’s Mars Express orbiter to get a bird’s eye feel for the battered terrain, inherent risks and outright beauty that’s in store for the Phobos -Grunt spaceship when it arrives in the Red Planet’s vicinity around October 2012. Whip out your red-cyan 3 D glasses – Now !

[/caption]

ESA’s Mars Express orbiter (MEX) was tasked to help Russia locate suitable and safe landing sites on Phobos’ pockmarked terrain. MEX was built by ESA, the European Space Agency and has been in Mars orbit since 2003.

To capture this impressive series of rare photos of Jupiter and Phobos in conjunction, Mars Express performed a special maneuver to observe an unusual alignment of Jupiter and Phobos on 1 June 2011.

Mars Express High Resolution Stereo Camera (HRSC) snapped a total of 104 images over 68 seconds when the distance from the spacecraft to Phobos was 11,389 km and the distance to Jupiter was 529 million km.

Phobos- Jupiter Conjunction: before, during and after on 1 June 2011 from Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Enjoy the exquisite views of the bands of Jupiter and imagine exploring the deep pockets and mysterious grooves on Phobos – which may be a captured asteroid.

The camera was kept fixed on Jupiter, to ensure it remained static as Phobos passed in front and which afforded an improvement in our knowledge of the orbital position of Phobos.

Phobos in 3 D during flyby of 10 March 2010. Image taken from a distance of 278 km. Russia’s Phobos-Grunt will retrieve rogolith and rock for return to Earth. Credit: ESA/DLR/FU Berlin (G. Neukum)

NASA’s twin Mars rovers Spirit and Opportunity have also occasionally photographed both of Mars’ moons to further refine their orbital parameters.

NASA’s Curiosity rover remains on track to liftoff for Mars on Nov. 25

Orbital Paths of Phobos and Mars Express. The trajectories of Phobos and Mars Express at the time of the conjunction with Jupiter on 1 June 2011. The letter ‘S’ denotes the South Pole of Mars.
Technicians at Baikonur Cosmodrome prepare Phobos-Grunt for upper stage attachment. Credit: Roscosmos

Read Ken’s continuing features about Phobos-Grunt here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Astrophoto: Jupiter by Ray Gilchrist

Astrophoto: Jupiter by Ray Gilchrist
Jupiter. Credit: Ray Gilchrist

[/caption]
Ray Gilchrist captured this photo of planet Jupiter from Barrow in Furness, Cumbria on October 27, 2011. The photo also shows the two of Jupiter’s largest moons, Io and Ganymede.

Ray used a Skywatcher 200p, EQ5 and a Canon350D camera. He also provided us with a few technical specs: 1/125 sec exposure, ISO 1600.

For more interesting astrophotos, check out Ray’s website at http://www.raygilchrist.co.uk/

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Close-up Look at Jupiter in Opposition — and a Transiting Great Red Spot

Jupiter has been putting on quite a show in the night sky lately as it officially reached opposition on October 28, 2011, making it a target of many astrophotographers as the gas giant shows itself off big and bright in the night sky. This animation from amateur astronomer Leonard E. Mercer from Malta shows Jupiter’s famous Great Red Spot moving across the surface of the mighty planet. Mercer captured a series of 12 images on the 27th and 28th (10pm – 2.00am. CET). Mercer used a C11 telescope and DMK 21 mono camera with RGB filters. “Conditions were very good!” he said.

Opposition means an the planet is directly opposite the Sun as seen from Earth, which also put it at its closest point to Earth in the two planets’ orbits around the Sun.

Faulkes Team Images Trojan Jupiter Comet

Jupiter Comet

Based on an observation posted on the Near Earth Object confirmation page from an image taken by A. D. Grauer using the mount Lemmon observatory, Faulkes telescope team members Nick Howes, Giovanni Sostero and Ernesto Guido along with University of Glamorgan student Antos Kasprzyk and amateur astronomer Iain Melville, imaged what is potentially some of the first direct evidence for a Trojan Jupiter Comet

Comet P/2010 TO20 (LINEAR-GRAUER) was immediately recognised by the team from looking at the orbit to be a highly unusual object, but it was only when the images came through from the faulkes observations that the true nature of the object became clear

The observations showed a distinct cometary appearance, with a sharp central condensation, compact coma and a wide, fan-shaped tail.

This is no ordinary comet, and supports the theory and initial spectral observation work by a team using the keck telescope in Hawaii. Closer analysis of their object (part of a binary known as the Patroclus pair) showed that it was made of water ice and a thin layer of dust, but at the time of writing, no direct images of a Jupiter Trojan showing evidence of a coma and tail had been taken.

The Faulkes teams above image, combined with the original observations by Grauer clearly show a cometary object, thus confirming the Keck team’s hypothesis.

According to the CBET released today “After two nights of observations of Grauer’s comet had been received at the Minor Planet Center.
Spahr realized that this object was identical with an object discovered a year ago by the LINEAR project (discovery observation tabulated below; cf. MPS 351583) that appeared to be a Jupiter Trojan minor planet.”

The observations have now proved it is not a minor planet, but a comet.

This discovery could provide new clues about the evolution of the Solar System, suggesting that the Gas Giants formed closer to the Sun and as they moved further away, they caused massive perturbations with Kuiper Belt objects, trapping some in their own orbits.

Nick Howes on the Faulkes team said “When we first saw the preliminary orbit, we knew it was a quite remarkable object” Howes also added “To have a University Student also involved is terrific for the degree program at Glamorgan and also for the Faulkes project. We’d like to extend our congratulations to Al Grauer” for his detection of this groundbreaking new comet” and we’re immensely proud to be part of the CBET released by the IAU confirming its nature

References:
Space Is Ace
Spacedaily.com
Remanzacco Observatory

What’s That Very Bright Star – Is it the Planet Jupiter?

Jupiter Credit: John Talbot

[/caption]

Have you seen a very bright star rising in the East every night the past few months? If you’re a night owl, you may have noticed it moves across they sky from the East into the West, shining brightly throughout the night. However this object is not a star! It’s the planet Jupiter and it is the brightest object in the night sky at the moment, apart from the Moon.

At the end of October Jupiter will be at opposition. This means the mighty planet (the largest in our solar system) will be directly opposite the sun as seen from Earth and it will also be at its closest point to Earth in the two planets’ orbits around the Sun. This makes Jupiter or any other object at opposition appear brighter and larger. The opposition of Jupiter occurs on October 29, 2011.

But Jupiter has been gracing our night sky for several months, and will continue to shine brightly as it moves in and out of opposition. But enjoy the view now, as this will be the closest opposition until 2022!

Visually, even with the naked eye, Jupiter is stunning! A burning yellowish-white star-like object, many times brighter than any other stars.

But through a pair of ordinary binoculars or a small telescope, Jupiter comes to life. Not only is it possible to see the disc of the Planet, you can also see the four Galilean moons.

The Galilean moons, Callisto, Ganymede, Europa and Io were discovered by Galileo over 400 years ago and are amazing worlds in their own right.

Callisto is the outermost moon with a very ancient and heavily cratered surface. It is the second largest of the four moons, but does not interact tidally with an “orbital resonance” unlike the other three moons.

Callisto. Image credit: NASA/JPL

Ganymede is the largest of the four moons and is also the largest moon in the Solar system, being larger than the Planet Mercury. The bizarre surface is a mix of two types of terrain – highly cratered dark regions and younger, but still ancient regions with a large array of grooves and ridges. Ganymede is the only moon in the solar system to have its own magnetosphere.

Ganymede
Ganymede Credit: NASA

Europa is the second closest moon and is also the smallest. It has one of the smoothest and newest surfaces in the solar system, being covered purely with ice. Europa is likely a water world and it is believed that below its icy surface, lies a deep moon-wide ocean surrounding a warm mantle. It is one of the most likely places to harbour life in the solar system.

Europa from Galileo
Europa from Galileo

Io is the innermost of the four Galilean moons of Jupiter and third largest. It is the most geologically active body in the solar system with over 400 active volcanoes and an ever changing and hostile surface of sulphur and silicates.

Io Credit: NASA

When you look up tonight and stare at Jupiter, or you are looking at it through binoculars or a telescope, just think – Jupiter and the four Galilean moons are a very interesting place, almost a mini solar system with our larger solar system!

Occasionally you will see Jupiter’s “Great Red Spot” or the shadow of one of the moons on Jupiter’s surface. The Jupiter system is always changing.

If you want to find out what the positions are for the moons, use planetarium software such as Stellarium and then have a look yourself.

Good luck!

First Image Captured by NASAs Jupiter bound Juno; Earth – Moon Portrait

Earth & Moon Portrait - First Photo transmitted from Jupiter Bound Juno. This image of Earth (on the left) and the moon (on the right) was taken by NASA's Juno spacecraft on Aug. 26, 2011, when the spacecraft was about 6 million miles (9.66 million kilometers) away. It was taken by the spacecraft's onboard camera, JunoCam. Credit: NASA/JPL-Caltech

[/caption]

NASA’s solar powered Jupiter bound Juno orbiter has captured her first image – a beautiful portrait of the Earth & Moon – since the probe blasted off from the home planet.

Juno lifted off 25 days ago at 12: 25 p.m. on August 5 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The spacecraft snapped the portrait with the onboard JunoCam camera on August 26 after journeying some 6 million miles (9.66 million km) from Earth and while traveling at a velocity of 77,600 miles per hour (124,900 kilometers per hour) relative to the sun.

“The image of the Earth Moon system is a rather unique perspective that we can get only by stepping outside of our home planet,” said Scott Bolton, Juno principal investigator, in an exclusive interview with Universe Today. Bolton is from the Southwest Research Institute in San Antonio.

“On our way to Jupiter, we’ve looked back at home and managed to take this amazing image.”

“Earth looking much like any other planet or star from a distance is glorious as this somewhat average looking “star” is home to all of humanity. Our companion, the moon, so beautiful and important to us, stands out even less.”

“We appear almost average and inconspicuous, yet all of our history originates here. It makes one wonder just how many other planets or solar systems might contain life like ours,” Bolton told me.

Juno casts a shadow back toward Earth and Space Shuttle Launch Pad 39A and the shuttle crawler way (at left) seconds after liftoff from adjacent Launch Pad 41 at Cape Canaveral, Florida. View from the VAB Roof. Credit: Ken Kremer

The Juno team commanded the probe to take the image as part of the checkout phase of the vehicles instruments and subsystems.

“The JunoCam instrument turn on and check out were planned activities. The instrument is working great and in fact, all the instruments that we’ve turned on thus far have been working great,” Bolton added.

So far the spacecraft is in excellent health and the team has completed the checkout of the Waves instrument and its two Flux Gate Magnetometer sensors and deployment of its V-shaped electric dipole antenna.

“We have a couple more instruments still to do,” Bolton noted.

The team reports that Juno also performed its first precession, or reorientation maneuver, using its thrusters and that the first trajectory control maneuver (TCM-1) was cancelled as unnecessary because of the extremely accurate targeting provided by the Atlas V rocket.

The portrait shot is actually not Juno’s last photo of her home.

The 8000 pound (3,600 kilogram) probe will fly by Earth once more on October 9, 2013 for a gravity assisted speed boost of 16,330 MPH (7.3 km/sec) to accelerate Juno past the asteroid belt on its long journey to the Jovian system.

Juno soars skyward to Jupiter on Aug. 5 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer

JunoCam will collect new photos and the other science instruments will make measurements as Juno cartwheels past Earth during the slingshot to Jupiter.

Juno is on a 5 year and 1.7 Billion mile (2.8 Billion km) trek to the largest planet in our solar system. When she arrives at Jupiter on July 4, 2016, Juno will become the first polar orbiting spacecraft at the gas giant.

During a one year science mission – entailing 33 orbits lasting 11 days each – the probe will plunge to within about 3000 miles (5000 km) of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s genesis and evolution.

The goal is to find out more about the planets origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core.

“This is a remarkable sight people get to see all too rarely,” said Bolton in a NASA statement about the Earth-Moon photo. “This view of our planet shows how Earth looks from the outside, illustrating a special perspective of our role and place in the universe. We see a humbling yet beautiful view of ourselves.”

NASA’s Jet Propulsion Laboratory manages the Juno mission. The spacecraft was designed and built by Lockheed Martin Space Systems, Denver.

Juno and Booster Streak Across the Stars
NASA's Juno spacecraft and its spent Centaur upper rocket stage are captured in this telescope view as they move across the field of stars. The five-minute, timed exposure was acquired on Aug. 5 11:18pm Eastern time (Aug. 6 at 3:18 UTC) when Juno was at a distance of about 195,000 miles (314,000 kilometers) from Earth. The images were taken remotely by amateur astronomer Scott Ferguson using Global Rent-a-Scope's GRAS-016 Takahashi Widefield Refractor, which is located in Nerpio, Spain. Credit: Scott Ferguson
Juno Spacecraft Cruise Trajectory to Jupiter
This graphic shows Juno's trajectory, or flight path, from Earth to Jupiter. The spacecraft travels around the Sun, to a point beyond the orbit of Mars where it fires its main engine a couple of times. These deep space maneuvers set up the Earth flyby maneuver that occurs approximately two years after launch. The Earth flyby gives Juno the boost in velocity it needs to coast all the way to Jupiter. Juno arrives at Jupiter in July 2016. Credit: NASA/JPL-Caltech
View of Juno’s position on Aug. 24, 2011 nearly 6 million miles distant from Earth visualized by NASA’s Eyes on the Solar System website.

Read my continuing features about Juno
Juno Blasts off on Science Trek to Discover Jupiter’s Genesis
Juno Jupiter Orbiter poised at Launch Pad for Aug. 5 Blastoff
JUNO Orbiter Mated to Mightiest Atlas rocket for Aug. 5 Blastoff to Jupiter
Solar Powered Jupiter bound JUNO lands at Kennedy Space Center

How Did Jupiter Shape Our Solar System?

Shortly after forming, Jupiter was slowly pulled toward the sun. Saturn was also pulled in and eventually, their fates became linked. When Jupiter was about where Mars is now, the pair turned and moved away from the sun. Scientists have referred to this as the "Grand Tack," a reference to the sailing maneuver. Credit: NASA/GSFC

[/caption]

Jupiter hasn’t always been in the same place in our solar system. Early in the history of our solar system, Jupiter moved inward towards the sun, almost to where Mars currently orbits now, and then back out to its current position.

The migration through our solar system of Jupiter had some major effects on our solar system. Some of the effects of Jupiter’s wanderings include effects on the asteroid belt and the stunted growth of Mars.

What other effects did Jupiter’s migration have on the early solar system and how did scientists make this discovery?

In a research paper published in the July 14th issue of Nature, First author Kevin Walsh and his team created a model of the early solar system which helps explain Jupiter’s migration. The team’s model shows that Jupiter formed at a distance of around 3.5 A.U (Jupiter is currently just over 5 A.U from the sun) and was pulled inward by currents in the gas clouds that still surrounded the sun at the time. Over time, Jupiter moved inward slowly, nearly reaching the same distance from the sun as the current orbit of Mars, which hadn’t formed yet.

“We theorize that Jupiter stopped migrating toward the sun because of Saturn,” said Avi Mandell, one of the paper’s co-authors. The team’s data showed that Jupiter and Saturn both migrated inward and then outward. In the case of Jupiter, the gas giant settled into its current orbit at just over 5 a.u. Saturn ended its initial outward movement at around 7 A.U, but later moved even further to its current position around 9.5 A.U.

Astronomers have had long-standing questions regarding the mixed composition of the asteroid belt, which includes rocky and icy bodies. One other puzzle of our solar system’s evolution is what caused Mars to not develop to a size comparable to Earth or Venus.

Artist's conception of early planetary formation from gas and dust around a young star. Image Credit: NASA/JPL-Caltech

Regarding the asteroid belt, Mandell explained, “Jupiter’s migration process was slow, so when it neared the asteroid belt, it was not a violent collision but more of a do-si-do, with Jupiter deflecting the objects and essentially switching places with the asteroid belt.”

Jupiter’s slow movement caused more of a gentle “nudging” of the asteroid belt when it passed through on its inward movement. When Jupiter moved back outward, the planet moved past the location it originally formed. One side-effect of caused by Jupiter moving further out from its original formation area is that it entered the region of our early solar system where icy objects were. Jupiter pushed many of the icy objects inward towards the sun, causing them to end up in the asteroid belt.

“With the Grand Tack model, we actually set out to explain the formation of a small Mars, and in doing so, we had to account for the asteroid belt,” said Walsh. “To our surprise, the model’s explanation of the asteroid belt became one of the nicest results and helps us understand that region better than we did before.”

With regards to Mars, in theory Mars should have had a larger supply gas and dust, having formed further from the sun than Earth. If the model Walsh and his team developed is correct, Jupiter foray into the inner solar system would have scattered the material around 1.5 A.U.

Mandell added, “Why Mars is so small has been the unsolvable problem in the formation of our solar system. It was the team’s initial motivation for developing a new model of the formation of the solar system.”

An interesting scenario unfolds with Jupiter scattering material between 1 and 1.5 AU. Instead of the higher concentration of planet-building materials being further out, the high concentration led to Earth and Venus forming in a material-rich region.

The model Walsh and his team developed brings new insight into the relationship between the inner planets, our asteroid belt and Jupiter. The knowledge learned not only will allow scientists to better understand our solar system, but helps explain the formation of planets in other star systems. Walsh also mentioned, “Knowing that our own planets moved around a lot in the past makes our solar system much more like our neighbors than we previously thought. We’re not an outlier anymore.”

If you’d like to access the paper (subscription or paid/university access required), you can do so at: http://www.nature.com/nature/journal/v475/n7355/full/nature10201.html

Source: NASA Solar System News, Nature

In Their Own Words: Experts Talk Juno

Several scientists and experts discussed the Juno mission to Jupiter with Universe Today. Photo Credit: Alan Walters/awaltersphoto.com

CAPE CANAVERAL Fla. – Many experts took time out of their hectic schedules to talk with Universe Today in the day leading up to the launch of the Juno spacecraft. Some even took the time to talk to us just minutes before the probe was scheduled to be launched on its mission. Check out what they had to say below:

Juno Project Scientist Steve Levin was at Kennedy Space Center to watch the Juno probe begin its five-year journey to Jupiter. He took a few minutes of his time to talk about what his expectations are for this mission.

Levin has been with JPL since 1990, one of the previous projects he worked on is the Planck mission which launched in 2009.

Levin believes that Juno could fundamentally change the way we view Jupiter. He was one of many VIPs that descended on Kennedy Space Center to watch as Juno thundered to orbit atop at Atlas V rocket.

Sami Asmar is part of the science team that is working on the Juno project. He was at the rollout of the Atlas rocket to the pad. Here is what he had to say about the mission (note the Atlas rocket moving out behind him).

Bill Nye the Science Guy was a very busy man while at Kennedy Space Center. He still took the time to chat with Universe Today about his views on this mission. Unfortunately, with little time to spare, we had to conduct the interview within minutes of the first launch attempt. A good chunk of Nye’s interview – was drowned out by the lead up to the countdown!

The usual launch of an Atlas consists of the launch team coming in, pushing a button and going home – the launch vehicle is that reliable. This day, things occurred quite differently. A technical issue coupled with a wayward boat that had drifted too close to the launch pad saw the launch time slip from 11:34 a.m. EDT to 12:25 p.m. When the rocket did take off however it was a spectacular sight to behold, faster than other iterations of the Atlas, it roared off the pad, sending Juno on its way to Jupiter.

Rockin’ With the Juno Launch

Here’s a fantastic look at launch day for the Juno spacecraft, now on its way to Jupiter. It’s hard not to get pumped up for the mission after watching the Atlas V rocket blast into space, sending Juno on its journey. This video is courtesy the United Launch Alliance (ULA). Universe Today will have more original videos from launch day soon from our team of photographers and videographers who were on hand at Kennedy Space Center.

Juno Blasts off on Science Trek to Discover Jupiter’s Genesis

JUNO blasts off for Jupiter on Aug. 5 from Cape Canaveral Air Force Station at 12:25 p.m. EDT. Credit: Alan Walters (awaltersphoto.com)

[/caption]

NASA’s solar powered Juno spacecraft blasted off today (Aug.5)from Cape Canaveral today to begin a 2.8 billion kilometer science trek to discover the genesis of Jupiter hidden deep inside the planet’s interior.

Upon arrival at Jupiter in July 2016, JUNO will fire its braking rockets and go into polar orbit and circle the planet 33 times over about one year. The goal is to find out more about the planets origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core.

The spacecraft is healthy and the solar panels successfully deployed.

Check out the photo album of Juno’s launch from the Universe Today team of Alan Walters and Ken Kremer.

“Jupiter is the Rosetta Stone of our solar system,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

Juno was launched atop a powerful Atlas V rocket augmented by 5 solid rocket boosters – built by United Launch Alliance

JUNO blasts off for Jupiter on Aug. 5. Credit: Alan Walters (awaltersphoto.com)

“Today, with the launch of the Juno spacecraft, NASA began a journey to yet another new frontier,” NASA Administrator Charles Bolden said. “The future of exploration includes cutting-edge science like this to help us better understand our solar system and an ever-increasing array of challenging destinations.”

Juno Launch - View from the VAB Roof
Atlas V liftoff with JUNO to Jupiter on Aug. 5 from Cape Canaveral Air Force Station. Credit: Ken Kremer
Juno Launch - View from the VAB Roof
Atlas V liftoff with JUNO to Jupiter on Aug. 5 from Cape Canaveral Air Force Station. Credit: Ken Kremer (kenkremer.com)
Juno Launch - View from the VAB Roof
JUNO blasts off for Jupiter on Aug. 5 atop an Atlas V rocket from Cape Canaveral Air Force Station at 12:25 p.m. EDT.

Credit: Ken Kremer (kenkremer.com)

Send Ken your Juno launch photos to post at Universe Today

Read my continuing features about Juno
Juno Jupiter Orbiter poised at Launch Pad for Aug. 5 Blastoff
JUNO Orbiter Mated to Mightiest Atlas rocket for Aug. 5 Blastoff to Jupiter
Solar Powered Jupiter bound JUNO lands at Kennedy Space Center