For the First Time, Astronomers Spot Stars in Galaxies that Existed Just 1 Billion Years After the Big Bang

Artist impression of a powerful young quasar. Credit: ESO/M. Kornmesser Credit: ESO/M. Kornmesser

Since it launched on December 25th, 2021 (quite the Christmas present!), the James Webb Space Telescope (JWST) has taken the sharpest and most detailed images of the Universe, surpassing even its predecessor, the venerable Hubble Space Telescope! But what is especially exciting are the kinds of observations we can look forward to, where the JWST will use its advanced capabilities to address some of the most pressing cosmological mysteries. For instance, there’s the problem presented by high-redshift supermassive black holes (SMBHs) or brightly-shining quasars that existed during the first billion years of the Universe.

To date, astronomers have not been able to determine how SMBHs could have formed so soon after the Big Bang. Part of the problem has been that, until recently, stars in host galaxies with redshift values of Z>2 (within 10.324 billion light-years) have been elusive. But thanks to the JWST, an international team of astronomers recently observed stars in quasars at Z>6 (within 12.716 billion light-years) for the first time. Their observations could finally allow astronomers to assess the processes in early quasars that governed the formation and evolution of the first SMBHs.

Continue reading “For the First Time, Astronomers Spot Stars in Galaxies that Existed Just 1 Billion Years After the Big Bang”

NASA's Report Details a Dark Time in American History but Finds no Direct Evidence That Webb Fired People for Their Sexual Orientation

1963 photo showing Dr. William H. Pickering, (center) JPL Director, President John F. Kennedy, (right). NASA Administrator James Webb in background. They are discussing the Mariner program, with a model presented. Credit: NASA

NASA has announced the release of the James Webb History Report, a document detailing their investigation into the namesake of the next-generation space telescope that took to space on December 25th, 2021. Months before it launched, the observatory became the subject of controversy when it was revealed that Webb was involved in the so-called “Lavender Scare.” After reviewing the relevant documents and collections located by their historians, NASA decided not to rename its flagship observatory.

The Final Report, titled “NASA Historical Investigation into James E. Webb’s Relationship to the Lavender Scare,” was compiled by NASA Chief Historian Brian C. Odom (Ph.D., MLIS) and can be accessed through NASA’s servers.

Continue reading “NASA's Report Details a Dark Time in American History but Finds no Direct Evidence That Webb Fired People for Their Sexual Orientation”

Woohoo! JWST's Mid-Infrared Instrument is Fully Operational Again

pillars of creation
The NASA/ESA/CSA James Webb Space Telescope’s mid-infrared view of the Pillars of Creation. Credit: NASA, ESA, CSA, STScI, J. DePasquale (STScI), A. Pagan (STScI)

Engineers with the James Webb Space Telescope have figured out a way to work around a friction issue that arose with the telescopes’ Mid-Infrared Instrument (MIRI). The team is now planning to resume observations with the instrument’s medium resolution spectrometry (MRS) mode, which has not been used since August.

Continue reading “Woohoo! JWST's Mid-Infrared Instrument is Fully Operational Again”

Can JWST see Galaxies Made of Primordial Stars?

The distance of first generation stars. Credit: STScI

All stars are composed of mostly hydrogen and helium, but most stars also have measurable amounts of heavier elements, which astronomers lump into the category of “metals.” Our Sun has more metals than most stars because the nebula from which it formed was the remnant debris of earlier stars. These were in turn children of even earlier stars, and so on. Generally, each new generation of stars has a bit more metal than the last. The very first stars, those born from the primordial hydrogen and helium of the cosmos, had almost no metal in them. We’ve never seen one of these primordial stars, but with the power of the Webb and a bit of luck, we might catch a glimpse of them soon.

Continue reading “Can JWST see Galaxies Made of Primordial Stars?”

How to See the Bigger Picture From NASA’s Webb Space Telescope

JWST and DSS views of Carina Nebula
The James Webb Space Telescope's infrared image of the Carina Nebula is embedded within a wider optical-wavelength view from the Terapixel Digitized Sky Survey. (JWST / DSS via AAS WorldWide Telescope)

MEMPHIS, Tenn. — Side-by-side pictures from NASA’s 32-year-old Hubble Space Telescope and the brand-new James Webb Space Telescope may draw oohs and ahhs, but they don’t give you a full sense of just how much more astronomers are getting from the new kid on the cosmic block.

Fortunately, new tools for data visualization can get you closer to the sense of wonder those astronomers are feeling.

“The public is just presented with these beautiful pictures, and they think, ‘Oh, wow, that’s great,'” says Harvard astronomer Alyssa Goodman. “But in my opinion, they could learn a lot more from these images.”

Goodman laid out strategies for getting a better appreciation of JWST — and a better appreciation of the technologies that are transforming modern astronomy — this week at the ScienceWriters 2022 conference in Memphis.

Continue reading “How to See the Bigger Picture From NASA’s Webb Space Telescope”

Here’s Webb’s View of the Pillars of Creation

The Pillars of Creation are set off in a kaleidoscope of color in NASA’s James Webb Space Telescope’s near-infrared-light view. Image Credit: NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI).

The James Webb Space Telescope is living up to expectations. When it was launched, NASA Administrator Bill Nelson said it would “… open up secrets of the universe that will be just stupendous, if not almost overwhelming.” Nelson’s statement rings true a few months into the telescope’s multi-year mission.

Continue reading “Here’s Webb’s View of the Pillars of Creation”

These Bizarre Concentric Rings in Space are Real, Not an Optical Illusion. New Data from JWST Explains What’s Happening

James Webb Space Telescope image of partial dust shells surrounding WR 140. Credit: JWST/MIRI/Judy Schmidt.

Back in August, an early release image from the James Webb Space Telescope revealed a bizarre sight: as many as 17 concentric rings encircling a binary star system, called Wolf-Rayet 140. Was it a spiral nebula, an alien megastructure or just an optical illusion?

The answer, revealed today, is dust. A new paper published in Nature Astronomy explains how stellar winds in this odd binary system blasts dust into near-perfect concentric circles every time the two stars come close to each other in their eccentric orbits.

Continue reading “These Bizarre Concentric Rings in Space are Real, Not an Optical Illusion. New Data from JWST Explains What’s Happening”

Webb and Hubble Work Together to Reveal This Spectacular Galaxy Pair — and Several Bonuses!

By combining data from the James Webb Space Telescope and the Hubble Space Telescope, this image of galaxy pair VV 191 includes near-infrared light from Webb, and ultraviolet and visible light from Hubble. Credit: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe (University of Melbourne), JWST PEARLS Team, Alyssa Pagan (STScI).

What’s better than a pair of galaxies observed by a pair of iconic space telescopes? The answer to that, according to researchers using the Hubble and James Webb Space Telescopes, is finding even more galaxies and other remarkable details no one expected in the duo’s observations.

“Galaxies in the foreground, background, deep background, and into the depths,” said astronomer William Keel from Galaxy Zoo, on Twitter.

Continue reading “Webb and Hubble Work Together to Reveal This Spectacular Galaxy Pair — and Several Bonuses!”

Webb Turns its Infrared Gaze on Mars

Graphic of Webb’s 2 NIRCam instrument images of Mars, taken on Sept. 5, 2022. Credit: NASA, ESA, CSA, STScI, Mars JWST/GTO team

The James Webb Space Telescope (JWST) is the most complex and sophisticated observatory ever deployed. Using its advanced suite of infrared instruments, coronographs, and spectrometers – contributed by NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA) – this observatory will spend the next ten to twenty years building on the achievements of its predecessor, the venerable Hubble. This includes exoplanet characterization, star and planet formation, and the formation and evolution of the earliest galaxies in the Universe.

However, one of the main objectives of the JWST is to study the planets, moons, asteroids, comets, and other celestial bodies here in the Solar System. This includes Mars, the first Solar planet to get the James Webb treatment! The images Webb took (recently released by the ESA) provide a unique perspective on Mars, showing what the planet looks like in infrared wavelengths. The data yielded by these images could provide new insight into Mars’ atmosphere and environment, complimenting decades of observations by orbiters, landers, rovers, and other telescopes.

Continue reading “Webb Turns its Infrared Gaze on Mars”

Wow! Here's Webb's View of the Tarantula Nebula

The Tarantula Nebula as seen by the James Webb Space Telescope. Credit: NASA, ESA, CSA, STScI, Webb ERO Production Team.

Here’s the Tarantula Nebula like we’ve never seen it before. The James Webb Space Telescope turned its detectors towards the Large Magellanic Cloud about 161,000 lightyears away to take a look at 30 Doradus, more commonly known as the Tarantula Nebula. JWST’s exceptional infrared view has now revealed thousands of never-before-seen young stars in this stellar nursery, as well incredible views of the wispy, dusty filaments and the impressive collection of massive older stars.

There is so much detail in this image, if you download the full-sized version, you can pan and zoom around to see details on stars and the surrounding dust and gas. And there are even other, more distant galaxies dotting the background. If you have a big screen, even better, as it takes up over 14,000 x 8,000 pixels. Or, take a look at the video tour, below.

Continue reading “Wow! Here's Webb's View of the Tarantula Nebula”