NASA Webb Telescope Resumes Rigorous Vibration Qualification Tests

NASA engineers and technicians position the James Webb Space Telescope (inside a large tent) onto the shaker table used for vibration testing. Credits: NASA/Chris Gunn
NASA engineers and technicians position the James Webb Space Telescope (inside a large tent) onto the shaker table used for vibration testing. Credits: NASA/Chris Gunn

Engineers have resumed a series of critical and rigorous vibration qualification tests on NASA’s mammoth James Webb Space Telescope (JWST) at NASA’s Goddard Space Flight Center, in Greenbelt, Maryland to confirm its safety, integrity and readiness for the unforgiving environment of space flight, after pausing due to a testing ‘anomaly’ detected in early December 2016.

The vibration tests are conducted by the team on a shaker table at Goddard to ensure Webb’s worthiness and that it will survive the rough and rumbling ride experienced during the thunderous rocket launch to the heavens slated for late 2018.

“Testing on the ground is critical to proving a spacecraft is safe to launch,” said Lee Feinberg, an engineer and James Webb Space Telescope Optical Telescope Element Manager at Goddard, in a statement.

“The Webb telescope is the most dynamically complicated article of space hardware that we’ve ever tested.”

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

Testing of the gargantuan Webb Telescope had ground to a halt after a brief scare in early December when technicians initially detected “anomalous readings” that raised potential concerns about the observatories structural integrity partway through a preplanned series of vibration tests.

“On December 3, 2016, vibration testing automatically shut down early due to some sensor readings that exceeded predicted levels,” officials said.

Thereafter, engineers and technicians carried out a new batch of intensive inspections of the observatory’s structure during December.

Shortly before Christmas, NASA announced on Dec. 23 that JWST was deemed “sound” and apparently unscathed after engineers conducted both “visual and ultrasonic examinations” at NASA’s Goddard Space Flight Center in Maryland. Officials said the telescope was found to be safe at this point with “no visible signs of damage.”

As it turned out the culprit of the sensor anomaly was the many “tie-down … restraint mechanisms ” that hold the telescope in place.

“After a thorough investigation, the James Webb Space Telescope team at NASA Goddard determined that the cause was extremely small motions of the numerous tie-downs or “launch restraint mechanisms” that keep one of the telescope’s mirror wings folded-up for launch,” NASA officials explained in a statement.

Furthermore engineers revealingly discovered that “the ground vibration test itself is more severe than the launch vibration environment.”

Technicians work on the James Webb Space Telescope in the massive clean room at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, on Nov. 2, 2016, as the completed golden primary mirror and observatory structure stands gloriously vertical on a work stand, reflecting incoming light from the area and observation deck. Credit: Ken Kremer/kenkremer.com

NASA reported today (Jan. 25) that the testing resumed last week at the point where it had been paused. Furthermore the testing was completed along the first of three axis.

“In-depth analysis of the test sensor data and detailed computer simulations confirmed that the input vibration was strong enough and the resonance of the telescope high enough at specific vibration frequencies to generate these tiny motions. Now that we understand how it happened, we have implemented changes to the test profile to prevent it from happening again,” explained Feinberg.

“We have learned valuable lessons that will be applied to the final pre-launch tests of Webb at the observatory level once it is fully assembled in 2018. Fortunately, by learning these lessons early, we’ve been able to add diagnostic tests that let us show how the ground vibration test itself is more severe than the launch vibration environment in a way that can give us confidence that the launch itself will be fully successful.”

The next step is to resume and complete shaking the telescope in the other two axis, or “two directions to show that it can withstand vibrations in all three dimensions.”

“This was a great team effort between the NASA Goddard team, Northrop Grumman, Orbital ATK, Ball Aerospace, the European Space Agency, and Arianespace,” Feinberg said. “We can now proceed with the rest of the planned tests of the telescope and instruments.”

NASA’s James Webb Space Telescope is the most powerful space telescope ever built and is the scientific successor to the phenomenally successful Hubble Space Telescope (HST). The mammoth 6.5 meter diameter primary mirror has enough light gathering capability to scan back over 13.5 billion years and see the formation of the first stars and galaxies in the early universe.

The Webb telescope will launch on an ESA Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

But Webb and its 18 segment “golden” primary mirror have to be carefully folded up to fit inside the nosecone of the Ariane V booster.

“Due to its immense size, Webb has to be folded-up for launch and then unfolded in space. Prior generations of telescopes relied on rigid, non-moving structures for their stability. Because our mirror is larger than the rocket fairing we needed structures folded for launch and moved once we’re out of Earth’s atmosphere. Webb is the first time we’re building for both stability and mobility.” Feinberg said.

“This means that JWST testing is very unique, complex, and challenging.”

View showing actual flight structure of mirror backplane unit for NASA’s James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

The environmental testing is being done at Goddard before shipping the huge structure to NASA’s Johnson Space Center in February 2017 for further ultra low temperature testing in the cryovac thermal vacuum chamber.

The 6.5 meter diameter ‘golden’ primary mirror is comprised of 18 hexagonal segments – looking honeycomb-like in appearance.

And it’s just mesmerizing to gaze at – as I had the opportunity to do on a few occasions at Goddard this past year – standing vertically in November and seated horizontally in May.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

Gold coated primary mirrors newly exposed on spacecraft structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

James Webb Space Telescope. Image credit: NASA/JPL

NASA Webb Telescope Structure is Sound After Vibration Testing Detects Anomaly

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com
The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MD – The James Webb Space Telescope (JWST) is now deemed “sound” and apparently unscathed, engineers have concluded, based on results from a new batch of intensive inspections of the observatory’s structure, after concerns were raised in early December when technicians initially detected “anomalous readings” during a preplanned series of vibration tests, NASA announced Dec. 23.

After conducting both “visual and ultrasonic examinations” at NASA’s Goddard Space Flight Center in Maryland, engineers have found it to be safe at this point with “no visible signs of damage.”

But because so much is on the line with NASA’s $8.8 Billion groundbreaking Webb telescope mission that will peer back to nearly the dawn of time, engineers are still investigating the “root cause” of the “vibration anomaly” first detected amidst shake testing on Dec. 3.

“The team is making good progress at identifying the root cause of the vibration anomaly,” NASA explained in a Dec 23 statement – much to everyone’s relief!

“They have successfully conducted two low level vibrations of the telescope.”

“All visual and ultrasonic examinations of the structure continue to show it to be sound.”

Technicians work on the James Webb Space Telescope in the massive clean room at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, on Nov. 2, 2016, as the completed golden primary mirror and observatory structure stands gloriously vertical on a work stand, reflecting incoming light from the area and observation deck. Credit: Ken Kremer/kenkremer.com

Starting late November, technicians began a defined series of environmental tests including vibration and acoustics tests to make sure that the telescopes huge optical structure was fit for blastoff and could safely withstand the powerful shaking encountered during a rocket launch and the especially harsh rigors of the space environment. It would be useless otherwise – unable to carry out unparallelled science.

To carry out the vibration and acoustics tests conducted on equipment located in a shirtsleeve environment, the telescope structure was first carefully placed inside a ‘clean tent’ structure to protect it from dirt and grime and maintain the pristine clean room conditions available inside Goddard’s massive clean room – where it has been undergoing assembly for the past year.

NASA’s James Webb Space Telescope placed inside a “clean tent” in Nov. 2016 to protect it from dust and dirt as engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland transport it out of the relatively dust-free cleanroom and into a shirtsleeve environment to conduct vibration and acoustics tests to confirm it is fit for launch in 2018. Credit: NASA/Chris Gunn

NASA’s James Webb Space Telescope is the most powerful space telescope ever built and is the scientific successor to the phenomenally successful Hubble Space Telescope (HST).

The mammoth 6.5 meter diameter primary mirror has enough light gathering capability to scan back over 13.5 billion years and see the formation of the first stars and galaxies in the early universe.

The Webb telescope will launch on an ESA Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

“The James Webb Space Telescope is undergoing testing to make sure the spacecraft withstands the harsh conditions of launch, and to find and remedy all possible concerns before it is launched from French Guiana in 2018.”

However, shortly after the vibration testing began technicians soon discovered unexpected “anomalous readings” during a shake test of the telescope on Dec. 3, as the agency initially announced in a status update on the JWST website.

The anomalous readings were found during one of the vibration tests in progress on the shaker table, via accelerometers attached to the observatories optical structure known as OTIS.

“During the vibration testing on December 3, at Goddard Space Flight Center in Greenbelt, Maryland, accelerometers attached to the telescope detected anomalous readings during a particular test,” the team elaborated.

So the team quickly conducted further “low level vibration” tests and inspections to more fully understand the nature of the anomaly, as well as scrutinize the accelerometer data for clues.

“Further tests to identify the source of the anomaly are underway. The engineering team investigating the vibe anomaly has made numerous detailed visual inspections of the Webb telescope and has found no visible signs of damage.”

“They are continuing their analysis of accelerometer data to better determine the source of the anomaly.”

The team is measuring and recording the responses of the structure to the fresh low level vibration tests and will compare these new data to results obtained prior to detection of the anomaly.

Work continues over the holidays to ensure Webb is safe and sound and can meet its 2018 launch target. After thoroughly reviewing all the data the team hope to restart the planned vibration and acoustic testing in the new year.

“Currently, the team is continuing their analyses with the goal of having a review of their findings, conclusions and plans for resuming vibration testing in January.”

Webb’s massive optical structure being tested is known as OTIS or Optical Telescope element and Integrated Science. It includes the fully assembled 18-segment gold coated primary mirror and the science instrument module housing the four science instruments

OTIS is a combination of the OTE (Optical Telescope Assembly) and the ISIM (Integrated Science Instrument Module) together.

“OTIS is essentially the entire optical train of the observatory!” said John Durning, Webb Telescope Deputy Project Manager, in an earlier exclusive interview with Universe Today at NASA’s Goddard Space Flight Center.

“It’s the critical photon path for the system.”

The components were fully integrated this past summer at Goddard.

The combined OTIS entity of mirrors, science module and backplane truss weighs 8786 lbs (3940 kg) and measures 28’3” (8.6m) x 8”5” (2.6 m) x 7”10“ (2.4 m).

The environmental testing is being done at Goddard before shipping the huge structure to NASA’s Johnson Space Center in February 2017 for further ultra low temperature testing in the cryovac thermal vacuum chamber.

The 6.5 meter diameter ‘golden’ primary mirror is comprised of 18 hexagonal segments – looking honeycomb-like in appearance.

And it’s just mesmerizing to gaze at – as I had the opportunity to do on a few occasions at Goddard this past year – standing vertically in November and seated horizontally in May.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Ken Kremer/Universe Today reflecting in and about the golden mirrors of NASA’s James Webb Space Telescope which will peer back 13.5 Billion years to unravel the mysteries off the formation of the early Universe and tell us how our place in the Universe came to be. Credit: Ken Kremer/kenkremer.com

Weekly Space Hangout – December 23, 2016: Mathew Anderson’s “Our Cosmic Story”

Host: Fraser Cain (@fcain)

Special Guest:
Mathew Anderson is the author of “Our Cosmic Story” available on Amazon in January, 2017. He wrote “Our Cosmic Story” in interest from his years studying science giants like Brian Greene, Neil deGrasse Tyson, Richard Dawkins, and from past figures like Carl Sagan. This book is a big picture view of our world, its diverse life and civilizations, and the chance for life and civilizations elsewhere in the cosmos.

As a special treat, for a limited time, our listeners will have the opportunity to receive an advance electronic copy of Mathew’s books. Join us today to learn how to get your copy!

Guests:
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Alessondra Springmann (sondy.com / @sondy)

Their stories this week:
James Webb experiences a test anomaly
False alarm on brightest ever supernova
Where will NASA’s next midsize mission go?

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<

Weekly Space Hangout – November 4, 2016: Mars and Where to Land on it with Dr. Matt Golombek

Host: Fraser Cain (@fcain)

Special Guest:
Dr. Matt Golombek, Senior Research Scientist at the JPL; Mars Exploration Rover Project Scientist; Mars Exploration Program Landing Site Scientist.

Guests:

Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )
Nicole Gugliucci (cosmoquest.org / @noisyastronomer)
Paul M. Sutter (pmsutter.com / @PaulMattSutter)

Their stories this week:

The entire sky mapped via hydrogen

First light on VLT’s adaptive optics mirror

JWST’s sunshield completed

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page.

Weekly Space Hangout – October 7, 2016: James Webb: Standing on the Shoulders of Hubble

Host: Fraser Cain (@fcain)

Special Guest:
Paul Geithner, Deputy Project Manager – Technical for the James Webb Space Telescope (JWST) at NASA’s Goddard Space Flight Center.

Guests:

Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )
Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Alessondra Springmann (sondy.com / @sondy)

Their stories this week:

MAVEN’s One Year Anniversary

Giant plasma balls ejected from star

Hurricane Matthew at the space coast

Ultra-strange ultra-cool brown dwarfs

Successful test of New Shepard crew escape system

Saturday, Oct. 8 is International Observe the Moon Night!

We are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page.

Webb Telescope Gets its Science Instruments Installed

In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure. Credits: NASA/Chris Gunn
In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure.  Credits: NASA/Chris Gunn
In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure. Credits: NASA/Chris Gunn

The package of powerful science instruments at the heart of NASA’s mammoth James Webb Space Telescope (JWST) have been successfully installed into the telescopes structure.

A team of two dozen engineers and technicians working with “surgical precision” inside the world’s largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, meticulously guided the instrument package known as the ISIM (Integrated Science Instrument Module) into the telescope truss structure.

ISIM is located right behind the 6.5 meter diameter golden primary mirror – as seen in NASA’s and my photos herein.

The ISIM holds the observatory’s international quartet of state-of-the-art research instruments, funded, built and provided by research teams in the US, Canada and Europe.

“This is a tremendous accomplishment for our worldwide team,” said John Mather, James Webb Space Telescope Project Scientist and Nobel Laureate, in a statement.

“There are vital instruments in this package from Europe and Canada as well as the US and we are so proud that everything is working so beautifully, 20 years after we started designing our observatory.”

This side shot shows a glimpse inside a massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland where the James Webb Space Telescope team worked meticulously to complete the science instrument package installation.  Credits: NASA/Desiree Stover
This side shot shows a glimpse inside a massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland where the James Webb Space Telescope team worked meticulously to complete the science instrument package installation. Credits: NASA/Desiree Stover

Just as with the mirrors installation and other assembly tasks, the technicians practiced the crucial ISIM installation procedure numerous times via test runs, computer modeling and a mock-up of the instrument package.

To accomplish the ISIM installation, the telescope structure had to be flipped over and placed into the giant work gantry in the clean room to enable access by the technicians.

“The telescope structure has to be turned over and put into the gantry system [in the clean room],” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center.

“Then we take ISIM and install in the back of the telescope.”

The team used an overhead crane to lift and maneuver the heavy ISIM science instrument package in the clean room. Then they lowered it into the enclosure behind the mirrors on the telescopes backside and secured it to the structure.

“Our personnel were navigating a very tight space with very valuable hardware,” said Jamie Dunn, ISIM Manager.

“We needed the room to be quiet so if someone said something we would be able to hear them. You listen not only for what other people say, but to hear if something doesn’t sound right.”

Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  ISIM science instrument module will be installed inside truss structure below.  Credit: Ken Kremer/kenkremer.com
Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. ISIM science instrument module will be installed inside truss structure below. Credit: Ken Kremer/kenkremer.com

The ISIM installation continues the excellently executed final assembly phase of Webb at Goddard this year. And comes just weeks after workers finished installing the entire mirror system.

This author has witnessed and reported on the assembly progress at Goddard on numerous occasions, including after the mirrors were recently uncovered and unveiled in all their golden glory.

“The entire mirror system is checked out. The system has been integrated and the alignment has been checked,” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center.

Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of  NASA’s James Webb Space Telescope inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.   Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms.  Credit: Ken Kremer/kenkremer.com
Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

ISIM is a collection of cameras and spectrographs that will record the light collected by Webb’s giant golden primary mirror.

“It will take us a few months to install ISIM and align it and make sure everything is where it needs to be,” Durning told me.

The primary mirror is comprised of 18 hexagonal segments.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

Webb’s golden mirror structure was tilted up for a very brief period on May 4 as seen in this NASA time-lapse video:

The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA

The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.

With the mirror structure complete, the next step was the ISIM science module installation.

To accomplish that installation, technicians carefully moved the Webb mirror structure into the clean room gantry structure.

As shown in this time-lapse video we created from Webbcam images, they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.

Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Webbcam. Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni

The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com
All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

More about ISIM and upcoming testing in the next story.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Unveiled Webb Telescope Mirrors Mesmerize in ‘Golden’ Glory

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com
All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com
All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MD – It’s Mesmerizing ! That’s the overwhelming feeling expressed among the fortunate few setting their own eyeballs on the newly exposed golden primary mirror at the heart of NASA’s mammoth James Webb Space Telescope (JWST) – a sentiment shared by the team building the one-of-its-kind observatory and myself during a visit this week by Universe Today.

“The telescope is cup up now [concave]. So you see it in all its glory!” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center on Tuesday, May 3, after the covers were carefully removed just days ago from all 18 primary mirror segments and the structure was temporarily pointed face up.

“The entire mirror system is checked out, integrated and the alignment has been checked.”

Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of  NASA’s James Webb Space Telescope inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.   Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms.  Credit: Ken Kremer/kenkremer.com
Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

It’s a banner year for JWST at Goddard where the engineers and technicians are well into the final assembly and integration phase of the optical and science instrument portion of the colossal observatory that will revolutionize our understanding of the cosmos and our place it in. And they are moving along at a rapid pace.

JWST is the scientific successor to NASA’s 25 year old Hubble Space Telescope. It will become the biggest and most powerful space telescope ever built by humankind after it launches 30 months from now.

The flight structure for the backplane assembly truss that holds the mirrors and science instruments arrived at Goddard last August from Webb prime contractor Northrop Grumman Aerospace Systems in Redondo Beach, California.

The painstaking assembly work to piece together the 6.5 meter diameter primary mirror began just before the Thanksgiving 2015 holiday, when the first unit was successfully installed onto the central segment of the mirror holding backplane assembly.

Technicians from Goddard and Harris Corporation of Rochester, New York then methodically populated the backplane assembly one-by-one, sequentially installing the last primary mirror segment in February followed by the single secondary mirror at the top of the massive trio of mirror mount booms and the tertiary and steering mirrors inside the Aft Optics System (AOS).

Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  ISIM science instrument module will be installed inside truss structure below.  Credit: Ken Kremer/kenkremer.com
Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. ISIM science instrument module will be installed inside truss structure below. Credit: Ken Kremer/kenkremer.com

Everything proceeded according to the meticulously choreographed schedule.

“The mirror installation went exceeding well,” Durning told Universe Today.

“We have maintained our schedule the entire time for installing all 18 primary mirror segments. Then the center section, which is the cone in the center, comprising the Aft Optics System (AOS). We installed that two months ago. It went exceedingly well.”

The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.

The next step is to install the observatory’s quartet of state-of-the-art research instruments, a package known as the ISIM (Integrated Science Instrument Module), in the truss structure over the next few weeks.

“The telescope is fully integrated and we are now doing the final touches to get prepared to accept the instrument pack which will start happening later this week,” Durning explained.

The integrated optical mirror system and ISIM form Webb’s optical train.

“So we are just now creating the new integration entity called OTIS – which is a combination of the OTE (Optical Telescope Assembly) and the ISIM (Integrated Science Instrument Module) together.”

“That’s essentially the entire optical train of the observatory!” Durning stated.

“It’s the critical photon path for the system. So we will have that integrated over the next few weeks.”

The combined OTIS entity of mirrors, science module and backplane truss weighs 8786 lbs (3940 kg) and measures 28’3” (8.6m) x 8”5” (2.6 m) x 7”10“ (2.4 m).

Gold coated primary mirrors newly exposed on spacecraft structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.   Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms.  Credit: Ken Kremer/kenkremer.com
Gold coated primary mirrors newly exposed on spacecraft structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

After OTIS is fully integrated, engineers and technicians will spend the rest of the year exposing it to environmental testing, adding the thermal blanketry and testing the optical train – before shipping the huge structure to NASA’s Johnson Space Center.

“Then we will send it to NASA’s Johnson Space Center (JSC) early next year to do some cryovac testing, and the post environmental test verification of the optical system,” During elaborated.

“In the meantime Northrup Grumman is finishing the fabrication of the sunshield and finishing the integration of the spacecraft components into their pieces.”

“Then late in 2017 is when the two pieces – the OTIS configuration and the sunshield configuration – come together for the first time as a full observatory. That happens at Northrup Grumman in Redondo Beach.”

Webb’s optical train is comprised of four different mirrors. We discussed the details of the mirrors, their installation, and testing.

“There are four mirror surfaces,” Durning said.

“We have the large primary mirror of 18 segments, the secondary mirror sitting on the tripod above it, and the center section looking like a pyramid structure [AOS] contains the tertiary mirror and the fine steering mirror.”

“The AOS comes as a complete package. That got inserted down the middle [of the primary mirror].”

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

In space, the folded mirror structure will unfold into side by side sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

The lone rounded secondary mirror sits at the top of the tripod boom over the primary.

The tertiary mirror and fine steering mirror sit in the Aft Optics System (AOS), a cone shaped unit located at the center of the primary mirror.

“So how it works is the light from the primary mirror bounces up to the secondary, and the secondary bounces down to the tertiary,” Durning explained.

“And then the tertiary – which is within that AOS structure – bounces down to the steering mirror. And then that steering mirror steers the beams of photons to the pick off mirrors that sit below in the ISIM structure.”

“So the photons go through that AOS cone. There is a mask at the top that cuts off the path so we have a fixed shape of the beam coming through.”

“It’s the tertiary mirror that directs the photons to the fine steering mirror. The fine steering mirror then directs it [the photons] to the pick off mirrors that sit below in the ISIM structure.”

So the alignment between the AOS system and the telescopes primary and secondary mirrors is incredibly critical.

“The AOS tertiary mirror catches the light [from the secondary mirror] and directs the light to the steering mirror. The requirements for alignment were just what we needed. So that was excellent progress.”

“So the entire mirror system is checked out. The system has been integrated and the alignment has been checked.”

Webb’s golden mirror structure was tilted up for a very brief period this week on May 4 as seen in this NASA time-lapse video:

The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA

The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.

With the mirror structure complete, the next step is ISIM science module installation.

To accomplish that, technicians carefully moved the Webb mirror structure this week into the clean room gantry structure.

As shown in this time-lapse video we created from Webbcam images, they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.

Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Webbcam. Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni

The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

More about ISIM in the next story.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

View showing actual flight structure of mirror backplane unit for NASA's James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration.  JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md.  Credit: Ken Kremer/kenkremer.com
View showing actual flight structure of mirror backplane unit for NASA’s James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com
All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com
All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com
John Durning/Webb Telescope Deputy Project Manager, and Ken Kremer/Universe Today discuss assembly process of NASA’s James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com
John Durning/Webb Telescope Deputy Project Manager, and Ken Kremer/Universe Today discuss assembly process of NASA’s James Webb Space Telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com
The James Webb Space Telescope. Image Credit: NASA/JPL
The James Webb Space Telescope.
Image Credit: NASA/JPL

James Webb Space Telescope Takes The Gloves Off

Behold, the mighty primary mirror of the James Webb Space Telescope, in all its gleaming glory! Image: NASA/Chris Gunn
The primary mirror of the James Webb Space Telescope, in all its gleaming glory! Image: NASA/Chris Gunn

The James Webb Space Telescope (JWST) isn’t even operational yet, and already its gleaming golden mirror has reached iconic status. It’s segmented mirror is reminiscent of an insect eye, and once that eye is unfolded at its eventual stationary location at L2, the JWST will give humanity its best view of the Universe yet. Now, NASA has unveiled the JWST’s mirrors in a clean room at the Goddard Space Flight Centre, giving us a great look at what the telescope will look like when it’s operational.

Even if you didn’t know anything about the JWST, its capabilities, or its torturous path to finally being built, you would still look at it and be impressed. It’s obviously a highly technological, highly engineered, one of a kind object. In fact, you could be forgiven for mistaking it for a piece of modern art. (I’ve seen less appealing modern art, have you?)

The fact that the JWST will outperform its predecessor, the Hubble, is a well-known fact. After all, the Hubble is pretty long in the tooth now. But how exactly it will outperform the Hubble, and what the JWST’s mission objectives are, is less well-known. It’s worth it to take a look at the objectives of the JWST, again, and re-visit the enthusiasm that has surrounded this mission since its inception.

The James Webb Space Telescope in the clean room at the Goddard Space Flight Center. Image: NASA/Chris Gunn
The James Webb Space Telescope in the clean room at the Goddard Space Flight Center. Image: NASA/Chris Gunn

NASA groups JWST’s science objectives into four areas:

  • infrared vision that acts like a time-machine, giving us a look at the first stars and galaxies to form in the Universe, over 13 billion years ago.
  • a comparative study of the stately spiral and elliptical galaxies of our age with the faintest, earliest galaxies to form in the Universe.
  • a probing gaze through clouds of dust, to watch stars and planets being born.
  • a look at extrasolar planets, and their atmospheres, keeping an eye out for biomarkers.

That is an impressive list, even in an age where people take technological and scientific progress for granted. But alongside these noble objectives, there will no doubt be some surprises. Guessing what those surprises might be is a bit of a fool’s errand, but this is the internet, so let’s dare to be foolish.

We have an idea that abiogenesis on Earth happened fairly quickly, but we have nothing to compare it to. Will we learn enough about exoplanets and their atmospheres to shed some light on conditions needed for life to happen? It’s a stretch, but who knows?

We have an understanding of the expansion of the Universe, and it’s backed up by pretty solid evidence. Will we learn something surprising about this? Or something that sheds some light on Dark Matter and Dark Energy, and their role in the early Universe?

Or will there be surprising findings in the area of planetary and stellar formation? The capability to look deeply into dust clouds should certainly reveal things previously unseen, but only guessed at.

Of course, not everything needs to be surprising to be exciting. Evidence that supports and fine tunes current theories is also intriguing. And the James Webb should deliver a boatload of evidence.

There’s no question that the JWST will outdo the Hubble in the science department. But for a generation or two of people, the Hubble will always have a special place. It drew many of us in, with its breathtaking pictures of nebulae and other objects, its famous Deep Field study, and, of course, its science. It was probably the first telescope to gain celebrity status.

The James Webb will probably never gain the social status that the Hubble gained. It’s kind of like the Beatles, there can only be one ‘first of its kind.’ But the JWST will be much more powerful, and will reveal to us a lot that has been hidden.

The JWST will be a grand technological accomplishment, if all goes well and it makes it to L2 and is fully functional. Its ability to look deeply into dust clouds, and to look back in time, to the early days of the Universe, make it a potent scientific tool.

And if engineering can figure out a way to reverse the polarity in the warp core without it going crit, we should be able to fire a beam of tachyon anti-matter neutrinos and de-cloak a Romulan Warbird at a distance of 3 AUs. Not bad for something Congress threatened to cancel!

Time-lapse Video Documents Assembly of Webb Telescope Primary Mirror

This overhead shot of the James Webb Space Telescope shows part of the installation of the 18 primary flight mirrors onto the telescope structure in a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA’s Goddard Space Flight Center/Chris Gunn See time-lapse video below
This rare overhead shot of the James Webb Space Telescope shows the nine primary flight mirrors installed on the telescope structure in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credits: NASA's Goddard Space Flight Center/Chris Gunn
This overhead shot of the James Webb Space Telescope shows part of the installation of the 18 primary flight mirrors onto the telescope structure in a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA’s Goddard Space Flight Center/Chris Gunn
See time-lapse video below

NASA GODDARD SPACE FLIGHT CENTER, MD – A time-lapse video newly released by NASA documents the painstakingly complex assembly of the primary mirror at the heart of the biggest space telescope ever conceived by humankind – NASA’s James Webb Space Telescope (JWST).

Although the video, seen here, is short, it actually compresses over two and a half months of carefully choreographed and very impressive mirror installation process into less than 90 seconds. Continue reading “Time-lapse Video Documents Assembly of Webb Telescope Primary Mirror”