The biggest and heaviest Cygnus commercial cargo craft ever built by Orbital ATK is coming together at the Kennedy Space Center as the launch pace picks up steam for its critical ‘Return to Flight’ resupply mission to the space station for NASA. Cygnus is on target for an early December blastoff from Florida and the Orbital ATK team is “anxious to get flying again.”
Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Story/photos updated[/caption]
KENNEDY SPACE CENTER, FL – NASA’s Mobile Launcher (ML) is undergoing major upgrades and modifications at the Kennedy Space Center in Florida enabling the massive structure to launch the agency’s mammoth Space Launch System (SLS) rocket and Orion crew capsule on a grand ‘Journey to Mars.’
“We just finished up major structural steel modifications to the ML, including work to increase the size of the rocket exhaust hole,” Eric Ernst, NASA Mobile Launch project manager, told Universe Today during an exclusive interview and inspection tour up and down the Mobile Launcher.
Construction workers are hard at work upgrading and transforming the 380-foot-tall, 10.5-million-pound steel structure into the launcher for SLS and Orion – currently slated for a maiden blastoff no later than November 2018 on Exploration Mission-1 (EM-1).
“And now we have just started the next big effort to get ready for SLS.”
SLS and Orion are NASA’s next generation human spaceflight vehicles currently under development and aimed at propelling astronauts to deep space destinations, including the Moon and an asteroid in the 2020s and eventually a ‘Journey to Mars’ in the 2030s.
The mobile launcher was originally built several years ago to accommodate NASA’s less powerful, lighter and now cancelled Ares-1 rocket. It therefore requires extensive alterations to accommodate the vastly more powerful and heavier SLS rocket.
“The ML was initially developed for Ares 1, a much smaller rocket,” Ernst explained to Universe Today.
“So the exhaust hole was much smaller.”
Whereas the Ares-1 first stage booster was based on using a single, more powerful version of the Space Shuttle Solid Rocket Boosters, the SLS first stage is gargantuan and will be the most powerful rocket the world has ever seen.
The SLS first stage comprises two shuttle derived solid rocket boosters and four RS-25 power plants recycled from their earlier life as space shuttle main engines (SSMEs). They generate a combined 8.4 million pounds of thrust – exceeding that of NASA’s Apollo Saturn V moon landing rocket.
Therefore the original ML exhaust hole had to be gutted and nearly tripled in width.
“The exhaust hole used to be about 22 x 22 feet,” Ernst stated.
“Since the exhaust hole was much smaller, we had to deconstruct part of the tower at the base, in place. The exhaust hole had to be made much bigger to accommodate the SLS.”
Construction crews extensively reworked the exhaust hole and made it far wider to accommodate SLS compared to the smaller one engineered and already built for the much narrower Ares-1, which was planned to generate some 3.6 million pounds of thrust.
“So we had to rip out a lot of steel,” Mike Canicatti, ML Construction Manager told Universe Today.
“For the exhaust hole [at the base of the tower], lots of pieces of [existing] steel were taken out and other new pieces were added, using entirely new steel.”
“The compartment for the exhaust hole used to be about 22 x 22 feet, now it’s about 34 x 64 feet.”
In fact this involved the demolition of over 750 tons of old steel following by fabrication and installation of more than 1,000 tons of new steel. It was also reinforced due to the much heavier weight of SLS.
“It was a huge effort and structural engineers did their job. The base was disassembled and reassembled in place” – to enlarge the exhaust hole.
“So basically we gutted major portions of the base out, put in new walls and big structural girders,” Ernst elaborated.
“And we just finished up that major structural steel modification on the exhaust hole.”
Meanwhile the 380 foot-tall tower that future Orion astronauts will ascend was left in place.
“The tower portion itself did not need to be disassembled.”
The Ares rockets originally belonged to NASA’s Constellation program, whose intended goal was returning American astronauts to the surface of the Moon by 2020.
Ares-1 was slated as the booster for the Orion crew capsule. However, President Obama cancelled Constellation and NASA’s Return to the Moon soon after entering office.
Since then the Obama Administration and Congress worked together in a bipartisan manner together to fashion a new space hardware architecture and granted approval for development of the SLS heavy lift rocket to replace the Ares-1 and heavy lift Ares-5.
Sending astronauts on a ‘Journey to Mars’ is now NASA’s agency wide and overarching goal for the next few decades of human spaceflight.
But before SLS can be transported to its launch pad at Kennedy’s Space Launch Complex 39-B for the EM-1 test flight the next big construction step has to begin.
“So now we have just started the next big effort to get ready for SLS.”
This involves installation of Ground Support Equipment (GSE) and a wide range of launch support services and systems to the ML.
“The next big effort is the GSE installation contract,” Ernst told me.
“We have about 40+ ground support and facility systems to be installed on the ML. There are about 800 items to be installed, including about 300,000-plus feet of cable and several miles of piping and tubing.”
“So that’s the next big effort to get ready for SLS. It’s about a 1.5 year contract and it was just awarded to J.P. Donovan Construction Inc. of Rockledge, Florida.”
“The work just started at the end of August.”
NASA currently plans to roll the ML into the Vehicle Assembly Building in early 2017 for stacking of SLS and Orion for the EM-1 test flight.
The SLS/Orion mounted stack atop the ML will then roll out to Space Launch Complex 39B for the 2018 launch from the Kennedy Space Center.
Pad 39B is also undergoing radical renovations and upgrades, transforming it from its use for NASA’s now retired Space Shuttle program into a modernized 21st century launch pad. Watch for my upcoming story.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
A commercial Cygnus cargo freighter has just arrived at the Kennedy Space Center (KSC) in Florida to begin intensive processing for a critical mission to deliver some four tons of science experiments and supplies to the International Space Station (ISS) atop an Atlas V rocket in early December – as manufacturer Orbital ATK takes a big step in ramping up activities to fulfill its station resupply commitments and recover from the catastrophic launch failure of the firms Antares rocket last October.
Taking advantage of the built in flexibility to launch Cygnus on a variety of rockets, Orbital ATK quickly contracted rocket maker United Launch Alliance (ULA) to propel the cargo ship as soon as practical on the venerable Atlas V – as Orbital simultaneously endeavors to reengineer the Antares and bring that vehicle back to full flight status in 2016.
Since the fastest and most robust path back to on orbital cargo delivery runs through Florida via an Atlas V, Orbital ATK teamed up with ULA to launch a minimum of one Cygnus with an option for more.
Cygnus is comprised of a pressurized cargo module (PCM) manufactured by Thales Alenia Space’s production facility in Turin, Italy and a service module (SM) manufactured at Orbital ATK’s Dulles, Virginia satellite manufacturing facility.
The PCM arrived on Monday, Aug. 11 and is now being processed for the flight dubbed OA-4 at KSC inside the Space Station Processing Facility (SSPF). After the SM arrives in October it will be mated to the PCM inside the SSPF.
The first Cygnus cargo mission should liftoff sometime late in the fourth quarter of 2015, perhaps as soon as Dec. 3, aboard an Atlas V 401 vehicle from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Force Station in Florida.
Since ULA’s Atlas V manifest was already fully booked, ULA managers told me that they worked diligently to find a way to manufacture and insert an additional Atlas V into the tight launch sequence flow at the Cape.
And since the station and its six person crews can’t survive and conduct their scientific research work without a steady train of cargo delivery missions from the station’s partner nations, Orbital ATK is “devoting maximum efforts” to get their Antares/Cygnus ISS resupply architecture back on track as fast as possible.
Orbital ATK holds a Commercial Resupply Services (CRS) contract from NASA worth $1.9 Billion to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for eight Cygnus cargo delivery flights to the ISS.
However, the Cygnus missions were put on hold when the third operational Antares/Cygnus flight was destroyed in a raging inferno about 15 seconds after liftoff on the Orb-3 mission from launch pad 0A at NASA’s Wallops Flight Facility on Virginia’s eastern shore.
“We committed to NASA that we would resume CRS cargo delivery missions as soon as possible under a comprehensive ‘go-forward’ plan after the Antares launch failure last October,” said David W. Thompson, President and Chief Executive Officer of Orbital ATK.
“Since that time our team has been sharply focused on fulfilling that commitment. With a Cygnus mission slated for later this year and at least three missions to the Space Station planned in 2016, we are on track to meet our CRS cargo requirements for NASA.”
Orbital says they will deliver the full quantity of cargo specified in the CRS contract with NASA.
“Our team and our partners are devoting maximum efforts to ensuring the success of NASA’s ISS commercial cargo program.”
“We are committed to meeting all CRS mission requirements, and we are prepared to continue to supply the Space Station.”
For the OA-4 cargo mission, Cygnus will be loaded with its heaviest cargo to date on nearly four tons.
The weightier cargo is possible because a longer version of Cygnus will be employed.
This mission will fly with the extended Cygnus Pressurized Cargo Module (PCM) which will carry approximately 3,500 kg or 7,700 pounds of supplies to station.
“This is a very exciting time for the Cygnus team at Orbital ATK,” said Frank DeMauro, vice president of Human Space Systems and program director of the Commercial Resupply Services program at Orbital ATK.
“Not only are we launching from Kennedy on an Atlas V for the first time, but this will also be the first flight of the Enhanced Cygnus, which includes a larger cargo module and a more mass-efficient service module.”
Use of the enhanced Cygnus in combination with the added thrust ULA V is a game changer enabling the Cygnus to carry its maximum possible cargo load for NASA.
“During our first three missions, we delivered 3,629 kilograms to the space station, about the weight of two F-150 pickup trucks,” said Frank DeMauro.
The OA-4 Cygnus alone will deliver some 3,500 kilograms.
Once in orbit, Cygnus fires its onboard thrusters to precisely guide itself close to the space station so that the astronauts can grapple it with the robotic arm and berth it to a port on the station.
Be sure to read Ken’s earlier eyewitness reports about last October’s Antares failure at NASA Wallops and ongoing reporting about Orbital ATK’s recovery efforts – all here at Universe Today.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
An iconic section of the fuselage recovered from space shuttle Challenger with the American flag (left) and the flight deck windows recovered from space shuttle Columbia (right) are part of a new, permanent memorial, “Forever Remembered,” that opened on June 27, 2015 in the Space Shuttle Atlantis exhibit at the Kennedy Space Center Visitor Complex in Florida – featuring shuttle hardware and personal crew items never before on display for viewing by the public. Credit: Ken Kremer/kenkremer.com
Story/photos updated[/caption]
NASA’s two lost Shuttle crews from the searing Challenger and Columbia accidents are now memorialized in the newly opened, permanent and highly emotional “Forever Remembered” tribute display at the Kennedy Space Center Visitor Complex in Florida.
The “Forever Remembered” memorial tribute was officially opened by NASA Administrator Charles Bolden and Kennedy Space Center Director Bob Cabana, both veteran shuttle astronauts, at a very special and moving small private NASA ceremony attended by families of the 14 fallen crew members and invited members of the media including Universe Today on June 27, 2015.
“I believe that it’s important to share this story with everyone, and not just push it aside, or try to hide it,” Cabana said at the ceremony, as tears welled up in everyone present.
The shuttle tribute is located on the ground floor of the Space Shuttle Atlantis pavilion at the Kennedy Space Center Visitor Complex and features shuttle orbiter hardware recovered from both the Challenger STS-51L and Columbia STS-107 accidents, as well as personal crew items from all 14 courageous astronauts who lost their lives – items never before on display for viewing by the public.
The 2000 square foot exhibit features an iconic section of the fuselage recovered from space shuttle Challenger emblazoned with the American flag and the flight deck windows recovered from space shuttle Columbia, that are part of the permanent “Forever Remembered” memorial that opened on June 27, 2015 – see photo above.
It also holds the largest collection of personal items of both flight crews in individual displays about the 14 crew members in a hallway that leads to a plaque with a quote from U.S. President Ronald Reagan.
“The future doesn’t belong to the fainthearted, it belongs to the brave,” said President Ronald Reagan in remarks to the nation in mourning shortly after the explosion of Space Shuttle Challenger on Jan. 28, 1986.
The “Forever Remembered” display was conceived in private by a very small circle spearheaded by Cabana and unknown by outsiders until the day it was formally opened. It completes the display inside the Atlantis pavilion, which commemorates NASA’s three decade long Space Shuttle Program that flew 135 missions from 1981 to 2011 with the reusable delta-winged vehicles that “captivated a generation.”
It is intended to be an emotional experience and “designed to honor the crews, pay tribute to the spacecraft and emphasize the importance of learning from the past” and the tragic consequences. This will enable safer flights in the future and fortify the spirit of never giving up on the exploration of space.
“The tragedies galvanized the agency to learn from these painful events, not only to safely return the shuttle fleet to flight, but to help assure the safety of future explorers,” NASA said in a statement.
Several dozen family members attended the tearful, heartfelt opening ceremony of “Forever Remembered” with very emotional remarks from Cabana and Bolden.
“These crews and these vehicles are part of who we are as an agency, and a nation. They tell the story of our never ending quest to explore, and our undying spirit to never give up,” Cabana stated at the ceremony.
Columbia and Challenger were the nation’s first two orbiters to be built. Columbia launched on the maiden space shuttle flight on April 12, 1981 on what is revered by many as the “boldest test flight in history” with NASA astronauts John Young and Bob Crippen.
“When I look into those windows, I see John Young and Bob Crippen preparing to launch on the boldest test flight in history, the first flight of America’s space shuttle, Columbia,” Cabana added.
“I see a much younger Bob Cabana launching to space on his first command, and I see Rick and Willie and the rest of the 107 crew smiling and experiencing the wonders of space on the final flight of Columbia.”
The idea to create a permanent memorial originated with a team led by Bob Cabana, and approved by Charlie Bolden only after every one of the astronauts families were in complete and unqualified agreement that this tribute display was the right thing to do in memory of their loved ones, tragically lost during the in flight accidents in 1986 and 2003.
“The crews of Challenger and Columbia are forever a part of a story that is ongoing,” Bolden said at the ceremony.
“It is the story of humankind’s evolving journey into space, the unknown, and the outer-reaches of knowledge, discovery and possibility. It is a story of hope.”
The wives of the two shuttle commanders, shared their thoughts on the new exhibit:
“It’s a beautiful remembrance of all the shuttles, with the marvelous display of Atlantis. Nothing compares to it in the world,” said June Scobee Rodgers, whose husband, Dick Scobee, commanded Challenger on STS-51L, in a statement.
“But Challenger and Columbia are not forgotten, and they’re well represented.”
“I knew it would be very emotional to see, but honestly, I didn’t expect to be so impacted by it. I just can’t stop thinking about it. As you walk in, you know you’re in a special place,” Evelyn Husband Thompson said of the memorial. Her husband, Rick, commanded Columbia on STS-107.
Here is a NASA description of both the Columbia and Challenger accidents and crews:
“Temperatures at Kennedy Space Center were just a few degrees above freezing on the morning of Jan. 28, 1986, as Challenger lifted off on its 10th mission, STS-51L. One minute and 13 seconds into the flight, a booster failure caused an explosion that destroyed the vehicle, resulting in the loss of the crew of seven astronauts: Commander Francis Scobee, Pilot Michael J. Smith, Mission Specialists Judith Resnik, Ellison Onizuka and Ronald McNair, and Payload Specialists Gregory Jarvis and Christa McAuliffe, a New Hampshire schoolteacher.”
“Seventeen years later, on Jan. 16, 2003, NASA’s flagship orbiter Columbia thundered into orbit on STS-107, a 16-day science mission. On board were Commander Rick Husband, Pilot Willie McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla, David Brown and Laurel Clark, and Payload Specialist Ilan Ramon, Israel’s first astronaut. On Feb. 1, 2003, the orbiter broke apart in the skies above east Texas as it re-entered Earth’s atmosphere on the way to a planned landing at Kennedy. Seven more lives were lost.”
Today the fallen astronauts legacy of human spaceflight lives on at NASA with the International Space Station, the development of Commercial Crew manned capsules for low Earth orbit, and the development of the Orion deep space crew exploration vehicle and SLS rocket for NASA’s ambitious plans to send ‘Human to Mars’ in the 2030s.
Read more about both fallen shuttle crews and the Apollo 1 crew who perished in a launch pad accident in January 1967 in my tribute story posted here during NASA’s solemn week of remembrance in January.
I urge everyone to visit this hallowed “Forever Remembered” memorial at the Kennedy Space Center Visitor Complex and remember those who made the ultimate sacrifice to benefit all of us in the quest for new knowledge of the boundless expanse of space leading to new discoveries we cannot fathom today.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Soaring on the power of an octet of SuperDrago engines, SpaceX successfully completed a critical rapid fire life-saving test of their Dragon crew capsules pad abort emergency escape system that would ignite in a split second to save the astronauts lives in the unlikely event of a failure of the Falcon 9 booster rocket at the Cape Canaveral launch pad.
The uncrewed SpaceX Crew Dragon roared swiftly skywards upon ignition of the test vehicle’s integrated SuperDraco engines at 9 a.m EDT this morning, Wednesday, May 6, for the mile high test conducted from the SpaceX Falcon 9 launch pad from a specially built platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida.
A human-sized crash test dummy was seated inside for the test exercise which ended safely with a parachute assisted Atlantic Ocean splashdown after less than two minutes. There were no astronauts aboard.
The SuperDraco engines fired for approximately six seconds and accelerated the crew Dragon “from 0 to 100 mph in 1.2 seconds. It reached a top speed of about 345 mph,” said SpaceX CEO Elon Musk in a post test briefing.
“This bodes quite well for the future of the program. I don’t want to jinx it, but this is really quite a good indication for the future of Dragon.” said Elon Musk.
“We hope to launch the first crews to the ISS within about two years, plus or minus six months.”
The side mounted escape engines mark a revolutionary change from the traditional top mounted launch escape system used previously in the Mercury, Apollo, Soyuz and Orion human spaceflight capsules. The space shuttle had no escape system beyond ejections seats used on the first four flights.
Dragon was mounted atop the finned trunk section for the test. The entire Dragon/trunk assembly was about 20 feet (5 meters) tall.
The test is a critical milestone towards the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.
“This is a critical step toward ensuring crew safety for government and commercial endeavors in low-Earth orbit,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.
“Congratulations to SpaceX on what appears to have been a successful test on the company’s road toward achieving NASA certification of the Crew Dragon spacecraft for missions to and from the International Space Station.”
Here is a video of the Pad Abort Test:
Video caption: Powered by its SuperDraco engines, the uncrewed SpaceX Crew Dragon flies through its paces in the Pad Abort Test from Cape Canaveral Air Force Station in Florida. Credit: NASA
After all the monomethylhydrazine and nitrogen tetroxide hypergolic propellants were consumed, Dragon soared as planned to an altitude of about 1500 meters (.93 mi) above the launch pad. At about T+21 seconds the trunk was jettisoned and the spacecraft began a slow rotation with its heat shield pointed toward the ground again as it arced out eastwards over the ocean.
The drogue chutes and trio of red and white main parachutes deployed as planned for a picturesque Dragon splashdown in the Atlantic Ocean about a mile offshore of its Cape Canaveral launch pad. The capsule was retrieved from the ocean by waiting recovery boats.
Today’s pad abort demonstration tested the ability of the set of eight SuperDraco engines integrated directly into the side walls of the crew Dragon to ignite simultaneously and pull the vehicle away from the launch pad in a split second – in a simulated emergency to save the astronauts lives in the event of a real emergency.
Therefore the Pad Abort Test did not include an actual Falcon 9 booster since it was focused on a checkout of the capsule’s escape capability.
The SuperDraco engines are located in four jet packs built into the capsule around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds in under one second, to propel the astronauts safely away.
The entire test lasted less than two minutes.
The test was webcast live on NASA TV: http://www.nasa.gov/nasatv
The crew Dragon is outfitted with 270 sensors to measure a wide range of vehicle, engine, acceleration and abort test parameters.
The pad abort test was accomplished under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA, that will eventually lead to certification of the Dragon for crewed missions to low Earth orbit and the ISS.
A second Dragon flight test follows later in the year, perhaps in the summer. It will launch from a SpaceX pad at Vandenberg Air Force Base in California and involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure (Max-Q) at about T plus 1 minute, to save astronauts lives.
The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the ocean.
“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX, at a prelaunch briefing.
“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
SpaceX and NASA are just days away from a crucial test of a crew capsule escape system that will save astronauts lives in the unlikely event of a launch failure with the Falcon 9 rocket.
Buster the Dummy is already strapped into his seat aboard the SpaceX Crew Dragon test vehicle for what is called the Pad Abort Test, that is currently slated for Wednesday, May 6.
The test is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.
Boeing was also selected by NASA to build the CST-100 spaceship to provide a second, independent crew space taxi capability to the ISS during 2017.
The May 6 pad abort test will be performed from the SpaceX Falcon 9 launch pad from a platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. The test will not include an actual Falcon 9 booster.
The SpaceX Dragon and trunk together stand about 20 feet tall and are positioned atop the launch mount at SLC-40 for what is clearly labeled as a development test to learn how the Dragon, engines and abort system perform.
Buster will soar along inside the Dragon that will be rapidly propelled to nearly a mile high height solely under the power of eight SpaceX SuperDraco engines.
The trunk will then separate, parachutes will be deployed and the capsule will splashdown about a mile offshore from Florida in the Atlantic Ocean, said Hans Koenigsmann, vice president of Mission Assurance at SpaceX during a May 1, 2015 press briefing on the pad abort test at the Kennedy Space Center, Florida.
The entire test will take about a minute and a half and recovery teams will retrieve Dragon from the ocean and bring it back on shore for detailed analysis.
The test will be broadcast live on NASA TV. The test window opens at 7 a.m. EDT May 6 and extends until 2:30 p.m. EDT. The webcast will start about 20 minutes prior to the opening of the window. NASA will also provide periodic updates about the test at their online Commercial Crew Blog.
The test is designed to simulate an emergency escape abort scenario from the test stand at the launch pad in the unlikely case of booster failing at liftoff or other scenario that would threaten astronauts inside the spacecraft.
The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency to save the astronauts lives in the event of a real emergency.
The SuperDraco engines are located in four jet packs around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds, to carry astronauts to safety, according to Koenigsmann.
“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX.
“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”
SpaceX and NASA hope to refurbish and reuse the same Dragon capsule for another abort test at high altitude later this year. The timing of the in flight abort test hinges on the outcome of the pad abort test.
“No matter what happens on test day, SpaceX is going to learn a lot,” said Jon Cowart, NASA’s partner manager for SpaceX. “One test is worth a thousand good analyses.”
Beside Buster the dummy, who is human-sized, the Dragon is outfitted with 270 sensors to measure a wide range of vehicle, engine, acceleration and abort test parameters.
“There’s a lot of instrumentation on this flight – a lot,” Koenigsmann said. “Temperature sensors on the outside, acoustic sensors, microphones. This is basically a flying instrumentation deck. At the end of the day, that’s the point of tests, to get lots of data.”
Buster will be accelerated to a force of about 4 to 4½ times the force of Earth’s gravity, noted Koenigsmann.
The pad abort test is being done under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA that will eventually lead to certification of the Dragon for crewed missions to low Earth orbit and the ISS.
“The point is to gather data – you don’t have to have a flawless test to be successful,” Cowart said.
The second Dragon flight test follows later in the year, perhaps in the summer. It will launch from a SpaceX pad at Vandenberg Air Force Base in California and involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure (Max-Q) at about T plus 1 minute, to save astronauts lives.
The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the Ocean.
Koenigsmann notes that the SpaceX abort system provides for emergency escape all the way to orbit, unlike any prior escape system such as the conventional launch abort systems (LAS) mounted on top of the capsule.
“Whatever happens to Falcon 9, you will be able to pull out the astronauts and land them safely on this crew Dragon,” said Koenigsmann. “In my opinion, this will make it the safest vehicle that you can possibly fly.”
The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP), as the worlds privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).
Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.
During the Sept. 16, 2014 news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.
The next Falcon 9 launch is slated for mid-June carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS. On April 14, a flawless Falcon 9 launch boosted the SpaceX CRS-6 Dragon to the ISS.
There was no attempt to soft land the Falcon 9 first stage during the most recent launch on April 27. Due to the heavy weight of the TurkmenÄlem52E/MonacoSat satellite there was not enough residual fuel for a landing attempt on SpaceX’s ocean going barge.
The next landing attempt is set for the CRS-7 mission.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Video caption: High resolution and color corrected SpaceX Falcon 9 first stage landing video of CRS-6 first stage landing following launch on April 14, 2015. Credit: SpaceX
KENNEDY SPACE CENTER, FL – A new high resolution video from SpaceX shows just how close the landing attempt of their Falcon 9 first stage on an ocean floating barge came to succeeding following the rockets launch on Tuesday afternoon, April 14, from Cape Canaveral, Florida, on a resupply run for NASA to the International Space Station (ISS).
Newly added video shows video taken from the barge:
The SpaceX Falcon 9 carrying the Dragon cargo vessel blasted off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 mission bound for the space station.
The flawless Falcon 9 liftoff came a day late following a postponement from Monday, April 13, due to threatening clouds rolling towards the launch pad in the final minutes of the countdown. See an up close video view of the launch from a pad camera, below.
Video caption: SpaceX CRS-6 Falcon 9 Launch to the International Space Station on April 14, 2015. Credit: Alex Polimeni
The dramatic hi res landing video was released by SpaceX CEO Elon Musk. It clearly reveals the deployment of the four landing legs at the base of the booster as planned in the final moments of the landing attempt, aimed at recovering the first stage booster.
By about three minutes after launch, the spent fourteen story tall first stage had separated from the second stage and reached an altitude of some 125 kilometers (77 miles) following a northeastwards trajectory along the U.S. east coast.
SpaceX engineers relit a first stage Merlin 1D engine some 200 miles distant from the Cape Canaveral launch pad to start the process of a precision guided descent towards the barge, known as the ‘autonomous spaceport drone ship’ (ASDS).
It had been pre-positioned offshore of the Carolina coast in the Atlantic Ocean.
SpaceX initially released a lower resolution view taken from a chase plane captured dramatic footage of the landing.
“Looks like Falcon landed fine, but excess lateral velocity caused it to tip over post landing,” tweeted SpaceX CEO Elon Musk.
The Falcon successfully reached the tiny ocean floating barge in the Atlantic Ocean, but tilted over somewhat over in the final moments of the approach, and tipped over after landing and exploded in a fireball.
“Either not enough thrust to stabilize or a leg was damaged. Data review needed.”
“Looks like the issue was stiction in the biprop throttle valve, resulting in control system phase lag,” Musk elaborated. “Should be easy to fix.”
The next landing attempt is set for the SpaceX CRS-7 launch, currently slated for mid- June, said Hans Koenigsmann, SpaceX Director of Mission assurance, at a media briefing at KSC.
Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.
The 20 story tall Falcon 9 hurled Dragon on a three day chase of the ISS where it will rendezvous with the orbiting outpost on Friday, April 17. Astronauts will grapple and berth Dragon at the station using the robotic arm.
Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:
Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club
The clock is ticking towards the next launch of a SpaceX cargo vessel to the International Space Station (ISS) hauling critical supplies to the six astronauts and cosmonauts serving aboard, that now includes the first ever ‘One-Year Mission’ station crew comprising NASA’s Scott Kelly and Russia’s Mikhail Kornienko.
The mission, dubbed SpaceX CRS-6 (Commercial Resupply Services-6) will also feature the next daring attempt by SpaceX to recover the Falcon 9 booster rocket through a precision guided soft landing onto an ocean-going barge.
SpaceX and NASA are now targeting blastoff of the Falcon 9 rocket and Dragon spacecraft for Monday, April 13, just over a week from now, at approximately 4:33 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
NASA Television plans live launch coverage starting at 3:30 p.m.
The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays due to weather or technical factors will force a scrub.
The backup launch day in case of a 24 hour scrub is Tuesday, April 14, at approximately 4:10 p.m.
Falcon 9 launches have been delayed due to issues with the rockets helium pressurization bottles that required investigation.
The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the mission.
An on time launch on April 13 will result in the Dragon spacecraft rendezvousing with the Earth orbiting outpost Wednesday, April 15 after a two day orbital chase.
After SpaceX engineers on the ground maneuver the Dragon close enough to the station, European Space Agency (ESA) astronaut Samantha Cristoforetti will use the station’s 57.7-foot-long (17-meter-long) robotic arm to reach out and capture Dragon at approximately 7:14 a.m. EDT on April 15.
Cristoforetti will be assisted by fellow Expedition 43 crew member and NASA astronaut Terry Virts, as they work inside the stations seven windowed domed cupola to berth Dragon at the Earth-facing port of the Harmony module.
Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.
CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.
Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.
The ship will remain berthed at the ISS for about five weeks.
The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.
The prior resupply mission, CRS-5, concluded in February with a successful Pacific Ocean splashdown and capsule recovery.
The CRS-5 mission also featured SpaceX’s history making attempt at recovering the Falcon 9 first stage as a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.
As I wrote earlier at Universe Today, despite making a ‘hard landing’ on the vessel dubbed the ‘autonomous spaceport drone ship,’ the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.
Listen to my live radio interview with BBC 5LIVE conducted in January 2015, discussing SpaceX’s first attempt to land and return their Falcon-9 booster.
Watch for Ken’s onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – NASA’s constellation of state-of-the-art magnetospheric science satellites successfully rocketed to orbit late Thursday night, March 12, during a spectacular nighttime launch on a mission to unravel the mysteries of the process known as magnetic reconnection.
The $1.1 Billion Magnetospheric Multiscale (MMS) mission is comprised of four formation flying satellites blasted to Earth orbit atop a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station, Florida, precisely on time at 10:44 p.m. EDT.
Magnetic reconnection is a little understood natural process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy. It occurs throughout the universe.
NASA’s fleet of four MMS spacecraft will soon start the first mission devoted to studying the phenomenon called magnetic reconnection. Scientists believe that it is the catalyst for some of the most powerful explosions in our solar system.
The night launch of the venerable Atlas V booster turned night into day as the 195 foot tall rocket roared to life on the fiery fury of about a million and a half pounds of thrust, thrilling spectators all around the Florida space coast and far beyond.
NASA’s four Magnetospheric Multiscale (MMS) spacecraft were stacked like pancakes on top of one another and encapsulated inside the rocket extended nose cone atop the Atlas V.
The venerable rocket continues to enjoy a 100% success rate. It launched in the Atlas V 421 configuration with a 4-meter diameter Extra Extended Payload Fairing along with two Aerojet Rocketdyne solid rocket motors attached to the Atlas booster first stage.
The two stage Atlas V delivered the MMS satellites to a highly elliptical orbit. They were then deployed from the rocket’s Centaur upper stage sequentially, in five-minute intervals beginning at 12:16 a.m. Friday, March 13. The last separation occurred at 12:31 a.m.
About 10 minutes later at 12:40 a.m., NASA scientists and engineers confirmed the health of all four spacecraft.
“I am speaking for the entire MMS team when I say we’re thrilled to see all four of our spacecraft have deployed and data indicates we have a healthy fleet,” said Craig Tooley, project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
This marked ULA’s 3rd launch in 2015, the 53nd Atlas V mission and the fourth Atlas V 421 launch in the programs life.
Each of the identically instrumented spacecraft are about four feet tall and eleven feet wide.
The deployment and activation of all four spacecraft is absolutely essential to the success of the mission, said Jim Burch, principal investigator of the MMS instrument suite science team at Southwest Research Institute (SwRI) in San Antonio, Texas.
They will fly in a pyramid formation to conduct their science mission, spaced about 10 miles apart. That separation distance will vary over time during the two year primary mission.
NASA scientists and engineers will begin deploying multiple booms and antennas on the spacecraft in a few days, MMS mission scientist Glyn Collinson of NASA Goddard told Universe Today.
The deployment and calibration process will last about six months, Collinson explained. Science observations are expected to begin in September 2015.
“After a decade of planning and engineering, the science team is ready to go to work,” said Burch.
“We’ve never had this type of opportunity to study this fundamental process in such detail.”
The spacecraft will fly in a tight formation through regions of reconnection activity.
The instruments will conduct their science observations at rates100 times faster than any previous mission.
“MMS is a crucial next step in advancing the science of magnetic reconnection – and no mission has ever observed this fundamental process with such detail,” said Jeff Newmark, interim director for NASA’s Heliophysics Division at the agency’s Headquarters in Washington.
“The depth and detail of our knowledge is going to grow by leaps and bounds, in ways that no one can yet predict.”
MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.
The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere. This will lead to better predictions of space weather phenomena.
Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.
MMS is a Solar Terrestrial Probes Program, or STP, mission within NASA’s Heliophysics Division. The probes were built, integrated and tested at NASA Goddard which is responsible for overall mission management and operations.
Watch for Ken’s ongoing MMS coverage. He was onsite at the Kennedy Space Center in the days leading up to the launch and for the liftoff on March 12.
Stay tuned here for Ken’s continuing MMS, Earth and planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – A state of the art quartet of identical science satellites aimed at unraveling the mysteries of the process known as magnetic reconnection is slated for a spectacular nighttime blastoff tonight, March 12, atop a United Launch Alliance Atlas V rocket on Cape Canaveral, Florida.
The $1.1 Billion Magnetospheric Multiscale (MMS) mission is comprised of four formation flying and identically instrumented observatories whose objective is providing the first three-dimensional views of a fundamental process in nature known as magnetic reconnection.
Magnetic reconnection is a little understood natural process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy. It occurs throughout the universe.
Liftoff is slated for 10:44 p.m. EDT Thursday March 12 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.
The launch window extends for 30 minutes. You can watch the MMS launch live on NASA TV, below, starting at 8 p.m.
Spectators ringing the Florida space coast region and ranging well beyond should be treated to a magnificent fireworks display and skyward streak of perhaps several minutes – weather and clouds permitting.
Currently the weather forecast is 70 percent “GO” for favorable conditions at launch time. The primary concerns for a safe and successful launch are for cumulus clouds and thick clouds.
In the event of a 24 hour delay for any reason the weather forecast is 60 percent “GO.”
The 195 foot tall rocket and encapsulated MMS satellite payload were rolled out to Space Launch Complex-41 on Wednesday March 10 at 10 a.m. on the Mobile Launch Platform (MLP) about 1800 feet from the Vertical Integration Facility or VIF to the Cape Canaveral pad.
The two stage Atlas V rocket will deliver the MMS constellation to a highly elliptical orbit.
The venerable rocket with a 100% success rate will launch in the Atlas V 421 configuration with a 4-meter diameter Extra Extended Payload Fairing along with two Aerojet Rocketdyne solid rocket motors attached to the Atlas booster first stage.
The Atlas first stage is powered by the RD AMROSS RD-180 engine and the Centaur upper stage is powered by the Aerojet Rocketdyne RL10A engine producing 22,300 lb of thrust.
The first stage is 12.5 ft in diameter and fueled with liquid propellants. The RD-180 burns RP-1 highly purified kerosene and liquid oxygen and delivers 860,200 lb of sea level thrust.
This is ULA’s 4th launch in 2015, the 53nd Atlas V mission and the fourth Atlas V 421 launch.
“This is the perfect time for this mission,” said Jim Burch, principal investigator of the MMS instrument suite science team at Southwest Research Institute (SwRI) in San Antonio, Texas.
“MMS is a crucial next step in advancing the science of magnetic reconnection. Studying magnetic reconnection near Earth will unlock the ability to understand how this process works throughout the entire universe.”
After a six month check out phase the probes will start science operation in September.
Unlike previous missions to observe the evidence of magnetic reconnection events, MMS will have sufficient resolution to measure the characteristics of ongoing reconnection events as they occur.
The four probes were built in-house by NASA at the agency’s Goddard Space Flight Center in Greenbelt, Maryland where I visited them during an inspection tour by NASA Administrator Charles Bolden.
I asked Bolden to explain the goals of MMS during a one-on-one interview.
“MMS will help us study the phenomena known as magnetic reconnection and help us understand how energy from the sun – magnetic and otherwise – affects our own life here on Earth,” Bolden told Universe Today.
“MMS will study what effects that process … and how the magnetosphere protects Earth.”
MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.
The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere. This will lead to better predictions of space weather phenomena.
Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.
MMS is a Solar Terrestrial Probes Program, or STP, mission within NASA’s Heliophysics Division
Watch for Ken’s ongoing MMS coverage and he’ll be onsite at the Kennedy Space Center in the days leading up to the launch on March 12.
Stay tuned here for Ken’s continuing MMS, Earth and planetary science and human spaceflight news.