45 years ago on July 20, 1969, NASA astronaut and Apollo 11 Commander Neil Armstrong became the first human being to set foot on another celestial body when he stepped off the Apollo 11 Lunar Module Eagle and onto our Moon’s utterly alien surface.
Today, July 21, 2014, NASA officially renamed a historic facility at the Kennedy Space Center vital to human spaceflight in honor of Neil Armstrong during a a 45th anniversary ceremony at what until today was known as the ‘Operations and Checkout Building’ or O & C.
On that first moonwalk, Armstrong was accompanied by fellow NASA astronaut Buzz Aldrin on a two and a half hour excursion that lasted into the early morning hours of July 21. They came in peace representing all mankind.
Today’s ceremony was broadcast on NASA TV and brought together numerous dignitaries including Armstrong’s surviving crewmates Buzz Aldrin and Command Module pilot Mike Collins, Apollo 13 Commander Jim Lovell who was also Apollo 11’s backup commander, NASA Administrator Charlie Bolden, Kennedy Space Center Director Bob Cabana, and Armstrong’s family members including his sons Rick and Mark Armstrong who all spoke movingly at the dedication.
They were joined via a live feed from space by two NASA astronauts currently serving aboard the International Space Station (ISS) – Expedition 40 crew member Rick Wiseman and Commander Steve Swanson.
The backdrop for the ceremony was the Orion crew capsule, NASA’s next generation human rated spaceflight vehicle which is currently being assembled in the facility and is set to launch on its maiden unmanned test flight in December 2014. Orion will eventually carry US astronauts on journey’s to deep space destinations to the Moon, Asteroids and Mars.
Many of Armstrong’s colleagues and other officials working on Orion and NASA’s human spaceflight missions also attended.
The high bay of what is now officially the ‘Neil Armstrong Operations and Checkout Building’ was built in 1964 and previously was known as the Manned Spacecraft Operations Building.
It has a storied history in human spaceflight. It was used to process the Gemini spacecraft including Armstrong’s Gemini 8 capsule. Later it was used during the Apollo program to process and test the command, service and lunar modules including the Apollo 11 crew vehicles that were launched atop the Saturn V moon rocket. During the shuttle era it housed the crew quarters for astronauts KSC training and for preparations in the final days leading to launch.
“45 years ago, NASA’s journey to land the first human on the Moon began right here,” NASA Administrator Charlie Bolden said at the ceremony. “It is altogether fitting that today we rename this facility the Neil Armstrong Operations and Checkout Building. Throughout his life he served his country as an astronaut, an aerospace engineer, a naval aviator, a test pilot and a university professor, and he constantly challenged all of us to expand the boundaries of the possible.”
“He along with his crewmates, Buzz Aldrin and Michael Collins, are a bridge from NASA’s historic journey to the moon 45 years ago to our path to Mars today.”
The Apollo 11 trio blasted off atop a 363 foot-tall Saturn V rocket from Launch Complex 39A on their bold, quarter of a million mile moon mission from the Kennedy Space Center , Florida on July 16, 1969 to fulfill the lunar landing quest set by President John F. Kennedy early in the decade.
Armstrong and Aldrin safely touched down at the Sea of Tranquility on the lunar surface on July 20, 1969 at 4:18 p.m EDT as hundreds of millions across the globe watched in awe.
“Houston, Tranquility Base here. The Eagle has landed !,” Armstrong called out and emotional applause erupted at Mission Control – “You got a bunch of guys about to turn blue.”
Armstrong’s immortal first words:
“That’s one small step for [a] man, one giant leap for mankind.”
During their 2 ½ hours moonwalk Armstrong and Aldrin unveiled a plaque on the side of the lunar module. Armstrong read the words;
“Here men from the planet Earth first set foot upon the moon. July 1969 A.D. We came in peace for all mankind.”
Here is NASA’s restored video of the Apollo 11 EVA on July 20, 1969:
Video Caption: Original Mission Video as aired in July 1969 depicting the Apollo 11 astronauts conducting several tasks during extravehicular activity (EVA) operations on the surface of the moon. The EVA lasted approximately 2.5 hours with all scientific activities being completed satisfactorily. The Apollo 11 EVA began at 10:39:33 p.m. EDT on July 20, 1969 when Astronaut Neil Armstrong emerged from the spacecraft first. While descending, he released the Modularized Equipment Stowage Assembly on the Lunar Module’s descent stage.
Armstrong passed away at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here
Michael Collins concluded the ceremony with this tribute:
“He would not have sought this honor, that was not his style. But I think he would be proud to have his name so closely associated with the heart and the soul of the space business.”
“On Neil’s behalf, thank you for what you do every day.”
Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.
The Eagle Prepares to Land
The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine. Image Credit: NASA Watch the restored EVA video below and on NASA TV on July 20 starting at 10:39 p.m. EDT[/caption]
Man first walked on the Moon 45 years ago today on July 20, 1969 when American astronauts Neil Armstrong and Buzz Aldrin opened the hatch to the Apollo 11 Lunar Module Eagle, climbed down the ladder and set foot on the surface – marking mankind’s greatest achievement. They came in peace for all mankind!
You can relive the historic moment with the gallery of Apollo 11 NASA images collected here and by watching NASA’s restored video of the moonwalk, or extravehicular activity (EVA) by Armstrong and Aldrin – watch video below. The Apollo 11 EVA began at 10:39:33 p.m. EDT.
NASA TV is also broadcasting a replay of the historic moonwalk tonight (July 20) to commemorate the anniversary starting at 10:39 p.m. EDT, with the restored footage of Armstrong and Aldrin’s historic steps on the lunar surface.
You can view the NASA TV Apollo 11 EVA webcast – here.
The Eagle had landed on the Moon’s desolate surface on the Sea of Tranquility (see map below) barely 6 hours earlier at 4:18 p.m EDT. And only 30 seconds of fuel remained as Armstrong searched for a safe landing spot.
Neil Armstrong was the commander of the three man crew of Apollo 11, which included fellow moonwalker Buzz Aldrin and Command module pilot Michael Collins.
Here is NASA’s restored video of the Apollo 11 EVA on July 20, 1969:
Video Caption: Original Mission Video as aired in July 1969 depicting the Apollo 11 astronauts conducting several tasks during extravehicular activity (EVA) operations on the surface of the moon. The EVA lasted approximately 2.5 hours with all scientific activities being completed satisfactorily. The Apollo 11 EVA began at 10:39:33 p.m. EDT on July 20, 1969 when Astronaut Neil Armstrong emerged from the spacecraft first. While descending, he released the Modularized Equipment Stowage Assembly on the Lunar Module’s descent stage.
The trio blasted off atop a 363 foot-tall Saturn V rocket from Launch Complex 39A on their bold, quarter of a million mile moon mission from the Kennedy Space Center , Florida on July 16, 1969 to fulfill the lunar landing quest set by President John F. Kennedy early in the decade.
The three-stage Saturn V generated 7.5 million pounds of thrust and propelled the trio into space and immortality.
The Apollo 11 mission was truly a global event.
Armstrong and Aldrin safely touched down at the Sea of Tranquility on the lunar surface on July 20, 1969 at 4:18 p.m EDT as hundreds of millions across the globe watched in awe and united in purpose.
“Houston, Tranquility Base here. The Eagle has landed !,” Armstrong called out and emotional applause erupted at Mission Control – “You got a bunch of guys about to turn blue.”
Armstrong carried all of humanity with him when he stepped off the footpad of NASA’s Apollo 11 Lunar Module and became the first representative of the human species to walk on the surface of another celestial body.
Armstrong’s first immortal words:
“That’s one small step for [a] man, one giant leap for mankind.”
During their 2 ½ hours moonwalk Armstrong and Aldrin unveiled a plaque on the side of the lunar module. Armstrong read the words;
“Here men from the planet Earth first set foot upon the moon. July 1969 A.D. We came in peace for all mankind.”
The duo collected about 50 pounds (22 kg) of priceless moon rocks and set out the first science experiments placed by humans on another world. The moon rocks were invaluable in informing us about the origin of the Earth – Moon system.
Altogether Armstrong and Aldrin spent about 21 hours on the moon’s surface. Then they said goodbye to the greatest adventure and fired up the LM ascent engine to rejoin Michael Collins circling above in the Apollo 11 Command Module.
Following the triumphant moonwalk and docking, the crew set their sights for the journey back to the Home Planet.
The Apollo 11 mission ended with a successful splash down off Hawaii on July 24.
The crew, NASA and America achieved President Kennedy’s challenge of men walking on the Moon before the decade was out and returning safely to Earth.
Armstrong passed away at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here
Surviving crew members Aldrin and Collins will join NASA Administrator Charles Bolden at a ceremony on Monday at the Kennedy Space Center.
Altogether a dozen Americans have walked on the Moon during NASA’s five additional Apollo lunar landing missions. No human has returned since the final crew of Apollo 17 departed the Moon’s surface in December 1972.
One legacy of Apollo is the International Space Station (ISS) where six astronauts and cosmonauts work together on science research to benefit mankind.
Notably, the Cygnus commercial cargo ship berthed at the ISS on the 45th anniversary of the Apollo 11 liftoff bringing over 3600 pounds of science experiments and supplies to the station.
NASA’s next big human spaceflight goals are building commercial ‘space taxis’ to low Earth orbit in this decade, an asteroid retrieval mission in the 2020s and voyages to Mars in the 2030s using the new SLS rocket and Orion deep space crew capsule currently under development.
Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.
A test version of NASA’s Orion deep space capsule has completed its most complex and last full flight-like parachute drop test on June 25 ahead of the maiden launch on the EFT-1 mission now slated for early December 2014.
The descent test was conducted at an altitude of 35,000 feet over the Arizona desert at the U.S. Army’s Yuma Proving Ground by pulling the test vehicle out of a huge C-17 cargo aircraft.
The test also included the addition of several added stress tests to check out the ability of the parachute system to compensate and examine capsule and astronaut crew survival via several potential failure modes.
For example, engineers rigged one of the main parachutes to skip the intermediate phase of the three-phase process to unfurl each of Orion’s three parachutes, called reefing.
“This tested whether one of the main parachutes could go directly from opening a little to being fully open without an intermediary step, proving the system can tolerate potential failures,” according to NASA.
The goal is to prove that that parachute system will slow Orion to ensure a safe landing speed for the astronaut crews returning from deep space missions to the Moon, Asteroids and eventually Mars.
“We’ve put the parachutes through their paces in ground and airdrop testing in just about every conceivable way before we begin sending them into space on Exploration Flight Test (EFT)-1 before the year’s done,” said Orion Program Manager Mark Geyer in a state
“The series of tests has proven the system and will help ensure crew and mission safety for our astronauts in the future.”
Orion is slated to launch on its inaugural unmanned EFT-1 test flight in December 2014 atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket from Cape Canaveral, Florida.
This test also marked the last time that the entire parachute sequence involving the deployment of all three 116 foot-wide main chutes will be tested before the December launch.
For some of the parachutes, this was the highest altitude drop test attempted.
“Engineers also put additional stresses on the parachutes by allowing the test version of Orion to free fall for 10 seconds, which increased the vehicle’s speed and aerodynamic pressure,” NASA noted in a statement.
The parachute deployment and unfurling can only begin after jettisoning of the spacecraft’s forward bay cover. The chutes are housed below the cover which protects the chutes until reentry into Earth’s atmosphere.
The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
One of the primary goals of NASA’s eagerly anticipated Orion EFT-1 uncrewed test flight is to test the efficacy of the heat shield in protecting the vehicle – and future human astronauts – from excruciating temperatures reaching 4000 degrees Fahrenheit (2200 C) during scorching re-entry heating.
At the conclusion of the EFT-1 flight, the detached Orion capsule plunges back and re-enters the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).
“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.
The parachute system comprising of two drogue parachutes and a trio of main parachutes – nearly the size of a football field – will then unfurl to slow Orion down to just 20 mph for a safe splashdown and recovery by the US Navy in the Pacific Ocean.
Another drop test scheduled for August will test the combined failure of one drogue parachute and one main parachute, as well as new parachute design features, says NASA.
Meanwhile, Orion’s prime contractor Lockheed Martin is finishing assembly and test operations of the EFT-1 capsule inside the Operations and Checkout Facility (O & C) at the Kennedy Space Center (KSC) flying in December’s launch
Stay tuned here for Ken’s continuing Orion, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
The Orion crew module for Exploration Flight Test-1 is shown in the Final Assembly and System Testing (FAST) Cell, positioned over the service module just prior to mating the two sections together. Credit: NASA/Rad Sinyak
Story updated[/caption]
KENNEDY SPACE CENTER, FL- Engineers have begun stacking operations for NASA’s maiden Orion deep space test capsule at the Kennedy Space Center (KSC) achieving a major milestone leading to its first blastoff from the Florida Space Coast less than six months from today.
The excitement is mounting as final assembly of NASA’s Orion crew vehicle into its launch configuration started on Monday, June 9, inside the Operations and Checkout (O&C) Facility at Kennedy.
Orion will eventually carry humans to destinations far beyond low Earth orbit on new voyages of scientific discovery in our solar system.
“Orion is the next step in our journey of exploration,” said NASA Associate Administrator Robert Lightfoot at a recent KSC media briefing.
“This mission is a stepping stone on NASA’s journey to Mars. The EFT-1 mission is so important to NASA.”
The main elements of the Orion spacecraft stack include the crew module (CM), service module (SM) and the launch abort system (LAS).
On Monday, technicians from Orion’s prime contractor Lockheed Martin began aligning and stacking the crew module on top of the already completed service module in the Final Assembly and System Testing (FAST) Cell in the O & C facility at KSC.
“Ballast weights were added to ensure that the crew module’s center of gravity can achieve the appropriate entry and descent performance and also ensure that the vehicle lands in the correct orientation to reduce structural impact loads,” according to Lockheed Martin.
Engineers will remain busy throughout this week continuing to work at a 24/7 pace to get Orion ready for the December liftoff.
The next steps involve completing the power and fluid umbilical connections between the CM and SM and firmly bolting the two modules together inside the FAST cell.
An exhaustive series of electrical, avionic and radio frequency tests will follow. The team will then conduct final systems checks to confirm readiness for flight.
The LAS will then be stacked on top. The entire stack will then be rolled out to the launch pad for integration with the Delta IV Heavy rocket.
The CM/SM stacking operation was able to move forward following the successful attachment of the world’s largest heat shield onto the bottom of the CM in late May. Read my prior story – here.
“Now that we’re getting so close to launch, the spacecraft completion work is visible every day,” said Mark Geyer, NASA’s Orion Program manager in a statement.
“Orion’s flight test will provide us with important data that will help us test out systems and further refine the design so we can safely send humans far into the solar system to uncover new scientific discoveries on future missions.”
Orion is NASA’s next generation human rated vehicle now under development to replace the now retired space shuttle. The state-of-the-art spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!
No humans have flown beyond low Earth orbit in more than four decades since Apollo 17, NASA’s final moon landing mission launched in December 1972.
The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
One of the primary goals of NASA’s eagerly anticipated Orion EFT-1 uncrewed test flight is to test the efficacy of the heat shield in protecting the vehicle – and future human astronauts – from excruciating temperatures reaching 4000 degrees Fahrenheit (2200 C) during scorching re-entry heating.
At the conclusion of the EFT-1 flight, the detached Orion capsule plunges back and re-enters the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).
“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.
A trio of parachutes will then unfurl to slow Orion down for a splashdown in the Pacific Ocean.
The EFT-1 mission will provide engineers with critical data about Orion’s heat shield, flight systems and capabilities to validate designs of the spacecraft, inform design decisions, validate existing computer models and guide new approaches to space systems development. All these measurements will aid in reducing the risks and costs of subsequent Orion flights before it begins carrying humans to new destinations in the solar system.
“We will test the heat shield, the separation of the fairing and exercise over 50% of the eventual software and electronic systems inside the Orion spacecraft. We will also test the recovery systems coming back into the Pacific Ocean,” said Lightfoot.
“Orion EFT-1 is really exciting as the first step on the path of humans to Mars,” said Lightfoot. “It’s a stepping stone to get to Mars.”
“We will test the capsule with a reentry velocity of about 85% of what to expect on returning [astronauts] from Mars.”
Concurrently, new American-made private crewed spaceships are under development by SpaceX, Boeing and Sierra Nevada – with funding from NASA’s Commercial Crew Program (CCP) – to restore US capability to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017.
Read my exclusive new interview with NASA Administrator Charles Bolden explaining the importance of getting Commercial Crew online to expand our reach into space- here.
Stay tuned here for Ken’s continuing Orion, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Caption: Animation of SpaceX Dragon V2 astronaut transporter. Credit: SpaceX
Would you like to meet and fly aboard SpaceX’s next generation manned Dragon V2 spacecraft?
Well hop aboard for a ride, take a seat and prepare for the thrill of a lifetime to the International Space Station (ISS) and back.
Watch the cool animation above to see exactly ‘How it Works!’
Now you can experience the opening salvo in the exciting new chapter of ‘Commercial Human Spaceflight.’
The commercial crew effort is led by a trio of private American aerospace company’s (SpaceX, Boeing & Sierra Nevada) in an intimate partnership with NASA to get American’s back in space on American rockets from American Soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to orbit.
“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview.
Billionaire entrepreneur and SpaceX CEO Elon Musk let the curtain to the future drop on Thursday, May 29 to reveal his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA.
And with a flair worthy of the premiere of a blockbuster Hollywood Science Fiction movie he unveiled the gum-dropped shaped Dragon V2 – and the lively animation. Although its not known if he’ll provide the crews with musical entertainment during the trip too.
As you’ll quickly notice watching the animation, the sleek styled V2 manned Dragon is a far cry ahead of the current V1 cargo Dragon.
“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level,” said Musk.
The top of the V2 is equipped to open up and expose a docking probe so it’s able to dock autonomously at the ISS – and at the same port as NASA’s now retired space shuttle orbiters.
‘Catching a Dragon by the tail’- with the Canadian built robot arm as the stations astronauts like to say and berthing it at an Earth-facing port on the Harmony module, will be a thing of the past.
“No robotic arm necessary!” Musk explained.
And for departure there’s another big difference – powerful SuperDraco landing rockets for pinpoint touchdown accuracy rather than an ocean splashdown.
The animation shows a thrilling land landing back at the Kennedy Space Center launch base.
“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter,” Musk said.
“I think that’s what a spaceship should be able to do.”
Musk and SpaceX are not alone aiming to get Americans back to space.
Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
Read my earlier “Dragon V2” unveiling event articles – here, here and here.
Enjoy!
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Lockheed Martin and NASA engineers are installing the largest heat shield ever built onto the Orion EFT-1 spacecraft’s crew module at the Kennedy Space Center. Liftoff is slated for late Fall 2014. Credit: Lockheed Martin
Story updated[/caption]
In a key milestone, technicians at the Kennedy Space Center (KSC) in Florida have attached the world’s largest heat shield to a pathfinding version of NASA’s Orion crew capsule edging ever closer to its inaugural unmanned test flight later this Fall on a crucial mission dubbed Exploration Flight Test-1 (EFT-1).
One of the primary goals of NASA’s eagerly anticipated Orion EFT-1 uncrewed test flight is to test the efficacy of the heat shield in protecting the vehicle – and future human astronauts – from excruciating temperatures reaching 4000 degrees Fahrenheit (2200 C) during scorching re-entry heating.
A trio of parachutes will then unfurl to slow Orion down for a splashdown in the Pacific Ocean.
Orion is NASA’s next generation human rated vehicle now under development to replace the now retired space shuttle. The state-of-the-art spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!
“The Orion heat shield is the largest of its kind ever built. Its wider than the Apollo and Mars Science Lab heat shields,” Todd Sullivan told Universe Today. Sullivan is the heat shield senior manager at Lockheed Martin, Orion’s prime contractor.
The heat shield measures 16.5 feet (5 m) in diameter.
Lockheed Martin and NASA technicians mated the heat shield to the bottom of the capsule during assembly work inside the Operations and Checkout High Bay facility at KSC.
“Holes were drilled into the heat shield from the inside to the outside at the structural attached points at the underside of the crew module,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during a recent exclusive interview by Universe Today inside the Orion clean room at KSC.
“Then its opened up from the outside and bolted in place underneath. Closeout plugs made of Avcoat are then installed to close it up and seal the gaps,” Schneider explained.
The heat shield is constructed from a single seamless piece of Avcoat ablator, that was applied by engineers at Textron Defense System near Boston, Mass.
“They applied the Avcoat ablater material to the outside. That’s what protects the spacecraft from the heat of reentry,” Sullivan explained.
The ablative material will wear away as it heats up during the capsules atmospheric re-entry thereby preventing the 4000 degree F heat from being transferred to the rest of the capsule and saving it and the human crew from utter destruction.
Orion EFT-1 is slated to launch in December 2014 atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket, currently the most powerful booster in America’s fleet.
The Delta IV Heavy is the only rocket with sufficient thrust to launch the Orion EFT-1 capsule and its attached upper stage to its intended orbit of 3600 miles altitude above Earth – about 15 times higher than the International Space Station (ISS) and farther than any human spacecraft has journeyed in 40 years.
At the conclusion of the two-orbit, four- hour EFT-1 flight, the detached Orion capsule plunges back and re-enters the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).
“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.
“The big reason to get to those high speeds during EFT-1 is to be able to test out the thermal protection system, and the heat shield is the biggest part of that.”
“Numerous sensors and instrumentation have been specially installed on the EFT-1 heat shield and the back shell tiles to collect measurements of things like temperatures, pressures and stresses during the extreme conditions of atmospheric reentry,” Wilson explained.
The heat shield arrived at KSC in December 2013 loaded inside NASA’s Super Guppy aircraft while I was onsite. Read my story – here.
The data gathered during the unmanned EFT-1 flight will aid in confirming. or refuting, design decisions and computer models as the program moves forward to the first flight atop NASA’s mammoth SLS booster in late 2017 on the EM-1 mission and more human crewed missions thereafter.
Recently, the EFT-1 launch was postponed three months from its long planned slot in mid-September to December 2014 when NASA was ordered to make way for the accelerated launch of recently declassified US Air Force Space Surveillance satellites that were given a higher priority.
The covert Geosynchronous Space Situational Awareness Program, or GSSAP, satellites were only unveiled in Feb. 2014 during a speech by General William Shelton, commander of the US Air Force Space Command.
Despite the EFT-1 launch postponement, Kennedy Space Center Director Bob Cabana said technicians are pressing forward and continue to work around the clock at KSC in order to still be ready in time to launch by the original launch window that opens in mid- September 2014.
“The contractor teams are working to get the Orion spacecraft done on time for the December 2017 launch,” said Cabana.
“They are working seven days a week in the Operations and Checkout High Bay facility to get the vehicle ready to roll out for the EFT-1 mission and be mounted on top of the Delta IV Heavy.”
“I can assure you the Orion will be ready to go on time, as soon as we get our opportunity to launch that vehicle on its first flight test and that is pretty darn amazing.”
“Our plan is to have the Orion spacecraft ready because we want to get EFT-1 out so we can start getting the hardware in for Exploration Mission-1 (EM-1) and start processing for that vehicle that will launch on the Space Launch System (SLS) rocket in 2017,” Cabana told me
Concurrently, new American-made private crewed spaceships are under development by SpaceX, Boeing and Sierra Nevada – with funding from NASA’s Commercial Crew Program (CCP) – to restore US capability to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017.
Read my exclusive new interview with NASA Administrator Charles Bolden explaining the importance of getting Commercial Crew online – here.
Stay tuned here for Ken’s continuing Orion, Boeing, SpaceX, Orbital Sciences, commercial space, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Ken Kremer Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com[/caption]
SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA Story updated[/caption]
SpaceX CEO, founder and chief designer Elon Musk is set to unveil the manned version of his firms commercial Dragon spaceship later this week, setting in motion an effort that he hopes will soon restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017.
Musk will personally introduce SpaceX’s ‘Space Taxi’ dubbed ‘Dragon V2’ at what amounts to sort of a world premiere event on May 29 at the company’s headquarters in Hawthorne, CA, according to an official announcement this evening (May 27) from SpaceX.
“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” according to the SpaceX statement.
The manned Dragon will launch atop the powerful SpaceX Falcon 9 v1.1 rocket from a SpaceX pad on the Florida Space Coast.
Dragon was initially developed as a commercial unmanned resupply freighter to deliver 20,000 kg (44,000 pounds) of supplies and science experiments to the ISS under a $1.6 Billion Commercial Resupply Services (CRS) contract with NASA during a dozen Dragon cargo spacecraft flights through 2016.
Musk is making good on a recent comment he posted to twitter on April 29, with respect to the continuing fallout from the deadly crisis in Ukraine which has resulted in some US economic sanctions imposed against Russia, that now potentially threaten US access to the ISS in a boomerang action from the Russian government:
“Sounds like this might be a good time to unveil the new Dragon Mk 2 spaceship that @SpaceX has been working on with @NASA. No trampoline needed,” Musk tweeted.
“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk added.
The ‘Dragon V2’ is an upgraded, man rated version of the unmanned spaceship that can carry a mix of cargo and up to a seven crewmembers to the ISS.
Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.
Since that day, US astronauts have been totally dependent on the Russian Soyuz capsules for ferry rides to orbit and back.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.
However, US progress getting the space taxis actually built and flying has been repeatedly stifled by the US Congress who have severely cut NASA’s budget request for the Commercial Crew Program by about half each year. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.
The situation with regard to US dependency on Russian rocketry to reach the ISS has always been awkward.
But it finally took on new found importance and urgency from politicos in Washington, DC, since the ongoing crisis in Ukraine this year exposed US vulnerability in a wide range of space endeavors affecting not just astronaut rides to the ISS but also the launch of the most critical US national security surveillance satellites essential to US defense.
US space vulnerability became obvious to everyone when Russia’s deputy prime minister, Dmitry Rogozin. who is in charge of space and defense industries, said that US sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”
Rogozin also threatened to cut off exports of the Russian made RD-180 rocket engines which power the first stage of the United Launch Alliance (ULA) Atlas V rocket used to launch numerous US National Security spy satellites.
“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” Rogozin said at a media briefing held on May 13.
NASA is also a hefty user of the Atlas V for many of the agency’s science and communication satellites like the Curiosity Mars rover, MAVEN Mars orbiter, MMS, Juno Jupiter orbiter and TDRS.
Musk and SpaceX have also filed lawsuits against the US Air Force to legally block the importation of the RD-180 engines by ULA for the Atlas V as a violation of the US economic sanctions.
So overall, US space policy is in a murky and uncertain situation and Musk clearly aims for SpaceX to be a central and significant player in a wide range of US space activities, both manned and unmanned.
Read my earlier articles about the Atlas V controversy, Rogozin’s statements, Musk’s suit and more about the effects of economic sanctions imposed by the US and Western nations in response to Russia’s actions in Ukraine and the annexation of Crimea; here, here, here, here and here.
The 3rd operational Dragon cargo resupply mission completed the 30 day SpaceX-3 flight to the ISS with a successful Pacific Ocean splashdown on May 18.
SpaceX will webcast the Dragon unveiling event LIVE on May 29 at 7 p.m. PST for anyone wishing to watch at: www.spacex.com/webcast
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
The private Dream Chaser mini-shuttle being developed by Sierra Nevada Corp. (SNC) has successfully completed a series of rigorous wind tunnel tests on scale models of the spacecraft – thereby accomplishing another key development milestone under NASA’s Commercial Crew Program to restore America’s human spaceflight access to low Earth orbit.
Engineers from SNC and NASA’s Langley Research Center in Hampton, Virginia conducted six weeks of intricate testing with several different Dream Chaser scale model spacecraft to study its reaction to subsonic, transonic and supersonic conditions that will be encountered during ascent into space and re-entry from low-Earth orbit.
The tests are among the milestones SNC must complete to receive continued funding from the Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.
The Dream Chaser is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station (ISS) by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.
Since that day, seats on the Russian Soyuz are US astronauts only way to space and back.
The SpaceXDragon and BoeingCST-100 ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
“What we have seen from our industry partners is a determination to make their components and systems work reliably, and in turn they’ve been able to demonstrate the complex machinery that makes spaceflight possible will also work as planned,” said Kathy Lueders, NASA’s Commercial Crew Program manager. “These next few months will continue to raise the bar for achievement by our partners.”
To prepare for the wind tunnel testing, technicians first meticulously hand glued 250 tiny sand grains to the outer surface of the 22-inch long Dream Chaser scale model in order to investigate turbulent flow forces and flight dynamic characteristics along the vehicle that simulates what the actual spacecraft will experience during ascent and re-entry.
Testing encompassed both the Dream Chaser spacecraft by itself as well as integrated in the stacked configuration atop the Atlas V launch vehicle that will boost the vehicle to space from Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
The testing of the Dream Chaser model was conducted at different angles and positions and around the clock inside the Unitary Plan Wind Tunnel at NASA Langley to collect the data as quickly as possible.
“All the data acquired will be used to validate computer models and populate the Dream Chaser spacecraft performance database,” according to NASA test engineer Bryan Falman.
NASA says that the resulting data showed the existing computer models were accurate.
Additonal wind tunnel testing was done at NASA’s Ames Research Center in Moffett Field, California and the CALSPAN Transonic Wind Tunnel in New York.
The wind tunnel work will also significantly aid in refining the Dream Chaser’s design and performance as well as accelerate completion of the Critical Design Review (CDR) before the start of construction of the full scale vehicle for orbital flight tests by late 2016.
Video Caption: Engineers used a wind tunnel at NASA’s Langley Research Center in Hampton, Virginia, to evaluate the design of Sierra Nevada Corporation’s Dream Chaser spacecraft. Credit: NASA
“The aerodynamic data collected during these tests has further proven and validated Dream Chaser’s integrated spacecraft and launch vehicle system design. It also has shown that Dream Chaser expected performance is greater than initially predicted,” said Mark N. Sirangelo, corporate vice president and head of SNC’s Space Systems.
“Our program continues to fully complete each of our CCiCap agreement milestones assisted through our strong collaboration efforts with our integrated ‘Dream Team’ of industry, university and government strategic partners. We are on schedule to launch our first orbital flight in November of 2016, which will mark the beginning of the restoration of U.S. crew capability to low-Earth orbit.”
The Dream Chaser design builds on the experience gained from NASA Langley’s earlier exploratory engineering work with the HL-20 manned lifting-body vehicle.
“The NASA-SNC effort makes for a solid, complementary relationship,” said Andrew Roberts, SNC aerodynamics test lead. “It is a natural fit. NASA facilities and the extensive work they’ve done with the Dream Chaser predecessor, HL-20, combined with SNC’s engineering, is synergistic and provides great results.”
Dream Chaser will be reusable and can carry a mix of cargo and up to a seven crewmembers to the ISS. It will also be able to land on commercial runways anywhere in the world, according to SNC.
Stay tuned here for Ken’s continuing Sierra Nevada, Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Story updated[/caption]
KENNEDY SPACE CENTER, FL – Boeing expects to begin “assembly operations of our commercial CST-100 manned capsule soon at the Kennedy Space Center,” Chris Ferguson, commander of NASA’s final shuttle flight and now director of Boeing’s Crew and Mission Operations told Universe Today in an exclusive one-on-one interview about Boeing’s space efforts. In part 1, Ferguson described the maiden orbital test flights to the ISS set for 2017 – here.
In part 2, we focus our discussion on Boeings’ strategy for building and launching the CST-100 ‘space taxi’ as a truly commercial space endeavor.
To begin I asked; Where will Boeing build the CST-100?
“The CST-100 will be manufactured at the Kennedy Space Center (KSC) in Florida inside a former shuttle hanger known as Orbiter Processing Facility 3, or OPF-3, which is now [transformed into] a Boeing processing facility,” Ferguson told me. “Over 300 people will be employed.”
During the shuttle era, all three of NASA’s Orbiter Processing Facilities (OPFs) were a constant beehive of activity for thousands of shuttle workers busily refurbishing the majestic orbiters for their next missions to space. But following Ferguson’s final flight on the STS-135 mission to the ISS in 2011, NASA sought new uses for the now dormant facilities.
So Boeing signed a lease for OPF-3 with Space Florida, a state agency that spent some $20 million modernizing the approximately 64,000 square foot hanger for manufacturing by ripping out all the no longer needed shuttle era scaffolding, hardware and equipment previously used to process the orbiters between orbital missions.
Boeing takes over the OPF-3 lease in late June 2014 following an official handover ceremony from Space Florida. Assembly begins soon thereafter.
“The pieces are coming one by one from all over the country,” Ferguson explained. “Parts from our vendors are already starting to show up for our test article.
“Assembly of the test article in Florida starts soon.”
The CST-100 is being designed at Boeing’s Houston Product Support Center in Texas.
It is a reusable capsule comprised of a crew and service module that can carry a mix of cargo and up to seven crew members to the International Space Station (ISS) and must meet stringent safety and reliability standards.
How will the pressure vessel be manufactured? Will it involve friction stir welding as is the case for NASA’s Orion deep space manned capsule?
“There are no welds,” he informed.
“The pressure vessel is coming from Spincraft, an aerospace manufacturing company in Massachusetts.”
Spincraft has extensive space vehicle experience building tanks and assorted critical components for the shuttle and other rockets.
“The capsule is produced by Spincraft using a weld-free process. It’s made as a single piece by a proprietary spun form process and machined out from a big piece of metal.”
The capsule measures approximately 4.56 meters (175 inches) in diameter.
“The service module will be fabricated in Florida.”
The combined crew and service modules are about 5.03 meters (16.5 feet) in length.
“In two years in 2016, our CST-100 will look like the Orion EFT-1 capsule does now at KSC, nearly complete [and ready for the maiden test flight]. Orion is really coming along,” Ferguson beamed while contemplating a bright future for US manned spaceflight.
He is saddened that it’s been over 1000 days since his crew’s landing inside shuttle Atlantis in July 2011.
With Boeing’s long history in aircraft and aerospace manufacturing, the CST-100 is being designed and built as a truly commercial endeavor.
Therefore the spacecraft team is able to reach across Boeing’s different divisions and diverse engineering spectrum and draw on a vast wealth of in-house expertise, potentially giving them a leg up on commercial crew competitors like SpaceX and Sierra Nevada Corp.
Nevertheless, designing and building a completely new manned spaceship is a daunting task for anyone. And no country or company has done it in decades.
How hard has this effort been to create the CST-100? – And do it with very slim funding from NASA and Boeing.
“Well any preconceived notion I had on building a human rated spacecraft has been completely erased. This is really hard work to build a human rated spacecraft!” Ferguson emphasized.
“And the budget is very small – without a lucrative government contract as used in the past to build these kind of spacecraft.”
“Our budget now is an order of magnitude less than to build the shuttle – which was about $35 to $42 Billion in 2011 dollars. The budget is a lot less now.”
Read more about the travails of NASA’s commercial crew funding situation in Part 1.
The team size now is just a fraction of what it was for past US crewed spaceships.
“So to support this we have a pretty small team.”
“The CST-100 team of a couple hundred folks works very hard!”
“For comparison, the space shuttle had 30,000 people working on it at the peak. By early 2011 there were 11,000. We flew on STS-135 with only 4,000 people in July 2011.”
Boeing’s design philosophy is straightforward; “It’s a simple ride up to and back from space,” Ferguson emphasized to me.
Next we turned to the venerable Atlas V rocket that will launch Boeing’s proposed space taxi. But before it can launch people it must first be human rated, certified as safe and outfitted with an Emergency Detection System (EDS) to save astronauts lives in a split second in case of a sudden and catastrophic in-flight anomaly.
United Launch Alliance (ULA) builds the two stage Atlas V and is responsible for human rating the vehicle which has a virtually unblemished launch record of boosting a wide array of advanced US military satellites and NASA’s precious one-of-a-kind robotic science explorers like Curiosity, JUNO, MAVEN and MMS on far flung interplanetary voyages of discovery.
What modifications are required to man rate the Atlas V to launch humans on Boeing’s CST-100?
“We will launch on an Atlas V that’s being retrofitted to meet NASA’s NPR human rating standards for redundancy and the required levels of fault tolerance,” Ferguson explained.
“So the rocket will have all the safety NASA wants when it flies humans.”
“Now with the CST-100 you can do all that in a smaller package [compared to shuttle].”
“The Atlas V will also be modified by ULA to include an Emergency Detection System (EDS). It’s a system not unlike what Apollo and Gemini had, which was much more rudimentary but quite evolved for its day.”
“Their EDS would monitor critical parameters like pitch, roll, yaw rates, critical engine parameters. It measures the time to criticality. You know the time to criticality for certain failures is so short that they didn’t think humans could react to it in time. So it was essentially automated.”
“So if it [EDS] sensed large pitch or yaw excursions, it would self jettison. And the escape system would kick in automatically.”
The Atlas V is already highly reliable. The EDS is one of the few systems that had to be added for human flights?
“Yes.”
“We also wanted a better abort system performance to go with the two engine Centaur upper stage we elected to use instead of the single engine Centaur.”
The purpose is to shut down the Centaur engine firing [in an emergency].”
“The two engine Centaur has flown many times. But it has never flown on an Atlas V. So there is a little bit of recertification and qualification to be done by ULA to go along with that also.”
Does that require a lot of work?
“ULA doesn’t seem to think the work to be done is all that significant. There is some work to be done.”
So it’s not a showstopper. Can ULA meet your 2017 launch schedule?
“Yes.”
“Before an engine fails it vibrates. So when you talk about automated ‘Red Lines’ you have to be careful that first you “Do No Harm” – and not make the situation even worse.”
“So we’ll see how ULA does building this,” Ferguson stated.
The future of the CST-100 project hinges on whether NASA awards Boeing a contract to continue development and assembly work in the next round of funding (dubbed CCtCAP) from the agency’s Commercial Crew Program (CCP). The CCP seed money fosters development of a safe, reliable and new US commercial human spaceship to low Earth orbit as a public/private partnership.
NASA’s announcement of the CCP contract winners is expected around late summer 2014.
Based on my discussions with NASA officials, it seems likely that the agency could select at least two winners to move on – to spur competition and thereby innovation – from among the trio of American aerospace firms competing.
Besides Boeing’s CST-100, the SpaceXDragon and Sierra Nevada Dream Chaser vehicles are also in the running for the contract to restore America’s capability to fly humans to Earth orbit and the International Space Station (ISS) by 2017.
In Part 3 we’ll discuss with Chris Ferguson the requirements for how many and who will fly aboard the CST-100 and much more. Be sure to read Part 1 here.
Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
KENNEDY SPACE CENTER, FL – Boeing expects to launch the first unmanned test flight of their commercial CST-100 manned ‘space taxi’ in “early 2017,” said Chris Ferguson, commander of NASA’s final shuttle flight in an exclusive one-on-one interview with Universe Today for an inside look at Boeing’s space efforts. Ferguson is now spearheading Boeing’s human spaceflight capsule project as director of Crew and Mission Operations.
“The first unmanned orbital test flight is planned in January 2017 … and may go to the station,” Ferguson told me during a wide ranging, in depth discussion about a variety of human spaceflight topics and Boeing’s ambitious plans for their privately developed CST-100 human rated spaceship – with a little help from NASA.
Boeing has reserved a launch slot at Cape Canaveral with United Launch Alliance (ULA), but the details are not yet public.
If all goes well, the maiden CST-100 orbital test flight with humans would follow around mid-2017.
“The first manned test could happen by the end of summer 2017 with a two person crew,” he said.
Boeing is among a trio of American aerospace firms, including SpaceX and Sierra Nevada Corp, vying to restore America’s capability to fly humans to Earth orbit and the space station by late 2017, using seed money from NASA’s Commercial Crew Program (CCP) in a public/private partnership. The next round of contracts will be awarded by NASA about late summer 2014.
That’s a feat that America hasn’t accomplished in nearly three years.
“It’s been over 1000 days and counting since we landed [on STS-135],” Ferguson noted with some sadness as he checked the daily counter on his watch. He is a veteran of three space flights.
Since the shuttles retirement in July 2011 following touchdown of Space Shuttle Atlantis on the last shuttle flight (STS-135) with Ferguson in command, no American astronauts have launched to space from American soil on American rockets and spaceships.
The only ticket to the ISS and back has been aboard the Russian Soyuz capsule.
Chris and the Boeing team hope to change the situation soon. They are chomping at the bits to get Americas back into space from US soil and provide reliable and cost-effective US access to destinations in low Earth orbit like the ISS and the proposed private Bigelow space station.
Boeing wants to send its new private spaceship all the way to the space station starting on the very first unmanned and manned test flights currently slated for 2017, according to Ferguson.
“NASA wants us to provide [crew flight] services by November 2017,” said Ferguson, according to the terms of the CCP contact award.”
The CST-100 will launch atop a man rated Atlas V rocket and carry a mix of cargo and up to seven crew members to the ISS.
“So both the first unmanned and manned test flight will be in 2017. The first unmanned orbital flight test is currently set for January 2017. The first manned test could be end of summer 2017,” he stated.
I asked Chris to outline the mission plans for both flights.
“Our first flight, the CST-100 Orbital Flight Test – is scheduled to be unmanned.”
“Originally it was just going to be an on orbital test of the systems, with perhaps a close approach to the space station. But we haven’t precluded our ability to dock.
“So if our systems mature as we anticipate then we may go all the way and actually dock at station. We’re not sure yet,” he said.
So I asked whether he thinks the CST-100 will also go dock at the ISS on the first manned test flight?
“Yes. Absolutely. We want go to all the way to the space station,” Ferguson emphatically told me.
“For the 1st manned test flight, we want to dock at the space station and maybe spend a couple weeks there.”
“SpaceX did it [docking]. So we think we can too.”
“The question is can we make the owners of the space station comfortable with what we are doing. That’s what it really comes down to.”
“As the next year progresses and the design matures and it becomes more refined and we understand our own capability, and NASA understands our capabilities as the space station program gets more involved – then I’m sure they will put the same rigor into our plan as they did into the SpaceX and Orbital Sciences plans.”
“When SpaceX and Orbital [wanted to] come up for the grapple [rather than just rendezvous], NASA asked ‘Are these guys ready?’ That’s what NASA will ask us.”
“And if we [Boeing] are ready, then we’ll go dock at the station with our CST-100.”
“And if we’re not ready, then we’ll wait another flight and go to the station the next time. It’s just that simple.”
“We looked at it and this is something we can do.”
“There are a lot of ways we have to make NASA and ourselves happy. But as a company we feel we can go do it,” Ferguson stated.
So the future looks promising.
But the schedule depends entirely on NASA funding levels approved by Congress. And that vital funding has been rather short on supply. It has already caused significant delays to the start of the space taxi missions for all three companies contending for NASA’s commercial crew contracts because of the significant slashes to the agency’s CCP budget request, year after year.
In fact the schedule has slipped already 18 months to the right compared to barely a few years ago.
So I asked Chris to discuss the CCP funding cuts and resulting postponements – which significantly affected schedules for Boeing, SpaceX and Sierra Nevada.
Here it is in a nutshell.
“No Bucks, No Buck Rogers,” explained Ferguson.
“The original plan was to conduct both the unmanned and manned CST-100 test flights in 2015.”
“Originally, we would have flown the unmanned orbital test in the summer of 2015. The crewed test would have been at the end of 2015.”
“So both flights are now a full year and a half later.” Ferguson confirmed.
“For the presidents [CCP] funding requests for the past few years of roughly about $800 million, they [Congress] only approved about half. It was significantly less than the request.”
Now at this very moment Congress is deliberating NASA’s Fiscal 2015 budget.
NASA Administrator Charles Bolden has said he will beg Congress to approve full funding for the commercial crew program this year – on his hands and knees if necessary.
Otherwise there will be further delays to the start of the space taxi missions. And the direct consequence is NASA would be forced to continue buying US astronaut rides from the Russians at $70 Million per seat. All against the backdrop of Russian actions in the Ukraine where deadly clashes potentially threaten US access to the ISS in a worst case scenario if the ongoing events spin even further out of control and the West ratchets up economic sanctions against Russia.
The CST-100 is designed to be a “simple ride up to and back from space,” Ferguson emphasized to me.
It is being designed at Boeing’s Houston Product Support Center in Texas.
In Part 2 of my interview, Chris Ferguson will discuss the details about the design, how and where the CST-100 capsule will be manufactured at a newly renovated, former space shuttle facility at NASA’s Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.