Shuttle Discovery Mated to 747 Carrier for her Final Flight to Smithsonian Home

At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, mating of space shuttle Discovery and the Shuttle Carrier Aircraft is complete in the mate-demate device nn April 15, 2012. Credit: NASA/Kim Shiflett

[/caption]

Following a busy weekend of work, Space Shuttle Discovery is now attached piggyback style to the Shuttle Carrier Aircraft (SCA) at NASA’s Kennedy Space Center and all set for the final flight to her ultimate resting place at the Smithsonian National Air and Space Museum’s Steven F. Udvar-Hazy Center in Virginia on Tuesday April 17. There she will reside on permanent display for the public just a short distance outside Washington D.C.

In the predawn hours on Saturday (April 14), Discovery was towed for the last time to the Mate- Demate Device (MDD) at the Shuttle Landing Facility and NASA’s specially outfitted Boeing 747 Jumbo Jet awaiting her in Florida. But howling winds in the subsequent hours delayed the hoist and mate on the back of the huge carrier plane.

Today (Sunday, April 15), the winds calmed and technicians raised Discovery and mechanically bolted her atop the SCA jet, designated NASA 905.

“It may have taken two days because of weather, but Discovery was attached to the Shuttle Carrier Aircraft today (April 15),” NASA KSC spokesman Allard Beutel told Universe Today after the mating operation was finished.

“And we’re on track to give Discovery a proper send off to its new home on Tuesday morning.”

NASA 905 will carry out all the remaining flights to ferry Space Shuttles Discovery, Enterprise and Endeavour to their permanent museum sites in Virginia, New York and California. The last remaining shuttle – Atlantis – will be towed later this year to her new home a few miles down the road at the Kennedy Space Center Visitor Complex.

Towing Discovery into the mate/demate device at the Shuttle Landing Facility at the Kennedy Space Center in Florida. Credit: NASA/Kim Shiflett

The initial mating of Discovery and the SCA in the mate/demate device was completed at about 11:15 a.m. EDT. The shuttle was finally secured to the carrier jet a few hours later on Sunday afternoon and will be backed out of the MDD on Monday, April 16.

NASA 905 will lift off at about 7 a.m. to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17 with a planned arrival between 10 to 11 a.m. depending on weather.

If you spot the shuttle along the way, send Ken your photos to post here at Universe Today.

The SCA will fly over multiple locations from Washington, DC to the Udvar-Hazy Center as low as 1500 feet for the public to enjoy before finally landing at Dulles Airport.

Ken hopes to be on hand at the Udvar-Hazy Center for Universe Today

Discovery’s final departure from the Kennedy Space Center marks a bittersweet time for all who worked on the shuttle program as well as fans and advocates of space exploration across the globe.

Yes, As a Matter of Fact It IS Rocket Science

Feb. 24, 2012 launch of Atlas V with MUOS-1. Credit: Jen Scheer (@flyingjenny)

[/caption]

On the afternoon of February 24, 2012, at 5:15 p.m. EST local time, a United Launch Alliance Atlas V rocket lifted off from the pad at Cape Canaveral Air Force Base carrying in its payload the US Navy’s next-generation narrowband communications satellite MUOS-1. After two scrubbed launches the previous week due to weather, the third time was definitely a charm for ULA, and the launch went nominally (that’s science talk for “awesome”.)

But what made that day, that time the right time to launch? Do they just like ending a work week with a rocket launch? (Not that I could blame them!) And what about the weather… why go through the trouble to prepare for a launch at all if the weather doesn’t look promising? Where’s the logic in that?

As it turns out, when it comes to launches, it really is rocket science.

There are a lot of factors involved with launches. Obviously all the incredible engineering it takes to even plan and build a launch vehicle, and of course its payload — whatever it happens to be launching in the first place. But it sure doesn’t end there.

Launch managers need to take into consideration the needs of the mission, where the payload has to ultimately end up in orbit… or possibly even beyond. Timing is critical when you’re aiming at moving targets — in this case the targets being specific points in space (literally.) Then there’s the type of rocket being used, and where it is launching from. Only then can weather come into the equation, and usually only at the last minute to determine if the countdown will proceed before the launch window closes.

How big that launch window may be — from a few hours to a few minutes — depends on many things.

Kennedy Space Center’s Anna Helney recently assembled an article “Aiming for an Open Window” that explains how this process works:

_________________

The most significant deciding factors in when to launch are where the spacecraft is headed, and what its solar needs are. Earth-observing spacecraft, for example, may be sent into low-Earth orbit. Some payloads must arrive at a specific point at a precise time, perhaps to rendezvous with another object or join a constellation of satellites already in place. Missions to the moon or a planet involve aiming for a moving object a long distance away.

For example, NASA’s Mars Science Laboratory spacecraft began its eight-month journey to the Red Planet on Nov. 26, 2011 with a launch aboard a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station in Florida. After the initial push from the powerful Atlas V booster, the Centaur upper stage then sent the spacecraft away from Earth on a specific track to place the laboratory, with its car-sized Curiosity rover, inside Mars’ Gale Crater on Aug. 6, 2012. Due to the location of Mars relative to Earth, the prime planetary launch opportunity for the Red Planet occurs only once every 26 months.

Additionally, spacecraft often have solar requirements: they may need sunlight to perform the science necessary to meet the mission’s objectives, or they may need to avoid the sun’s light in order to look deeper into the dark, distant reaches of space.

A Delta II arcs across the sky carrying NASA's Suomi NPP spacecraft. Image credit: NASA/Bill Ingalls

Such precision was needed for NASA’s Suomi National Polar-orbiting Partnership (NPP) spacecraft, which launched Oct. 28, 2011 aboard a ULA Delta II rocket from Vandenberg Air Force Base in California. The Earth-observing satellite circles at an altitude of 512 miles, sweeping from pole to pole 14 times each day as the planet turns on its axis. A very limited launch window was required so that the spacecraft would cross the ascending node at exactly 1:30 p.m. local time and scan Earth’s surface twice each day, always at the same local time.

All of these variables influence a flight’s trajectory and launch time. A low-Earth mission with specific timing needs must lift off at the right time to slip into the same orbit as its target; a planetary mission typically has to launch when the trajectory will take it away from Earth and out on the correct course.

According to [Eric Haddox, the lead flight design engineer in NASA’s Launch Services Program], aiming for a specific target — another planet, a rendezvous point, or even a specific location in Earth orbit where the solar conditions will be just right — is a bit like skeet shooting.

“You’ve got this object that’s going to go flying out into the air and you’ve got to shoot it,” said Haddox. “You have to be able to judge how far away your target is and how fast it’s moving, and make sure you reach the same point at the same time.”

But Haddox also emphasized that Earth is rotating on its axis while it orbits the sun, making the launch pad a moving platform. With so many moving players, launch windows and trajectories must be carefully choreographed.

__________________

It’s a fascinating and complex set of issues that mission managers need to get just right in order to ensure the success of a launch — and thus the success of a mission, whether it be putting a communication satellite into orbit or a rover onto Mars… or somewhere much, much farther than that.

Read the rest of the article here.

Orion Capsule Embarks on Cross Country Public Tour

Orion Test Capsule at Practice for Pad Abort 1 Test. The Orion test capsule is now on a cross country tour from New Mexico to Florida with stops in Oklahoma, Texas and Alabama. Ground teams in White Sands, New Mexico, practice stacking test versions of Orion and its launch abort system. This was being done in advance of Orion’s launch abort system test. Credit: NASA or National Aeronautics and Space Administration

[/caption]

Here’s your chance for a birds-eye view of an Orion capsule, up-close and personal ! Catch it if you can !

A full scale test version of one of NASA’s Orion spacecraft has embarked on a cross country tour from White Sands, New Mexico, across several states in the southern United States that ultimately lands at the Kennedy Space Center in Florida.

Starting today, Jan. 27, an Orion spacecraft is open for viewing by the public in Texas at Victory Park and the American Airlines Center in Dallas.

Orion fans in Texas
The Coopers from Southlake meet NASA astronaut Nick Patrick by the Orion crew module now on display at the American Airlines Center in Dallas, TX.

The display continues throughout this weekend after a well received visit to Oklahoma at the Science Museum Oklahoma in Oklahoma City.

Roller Derby team visits Orion test capsule now on public display in Texas

The next stop on the cross country journey is the U.S. Space and Rocket Center in Huntsville, Ala on Feb 1-2.

Orion is NASA’s next generation human spaceflight vehicle that will eventually replace the space shuttle and loft astronauts to low Earth orbit and beyond to deep space destinations such as the Moon, Asteroids and Mars. It can also dock at the International Space Station (ISS).

The Orion crew module journey is a wonderful and fun opportunity for individuals and families to see real space exploration hardware with your own eyes and learn all about the goals and plans of the US Space Program and your investment in it as a taxpayer.

Knowledgeable Orion experts will be on hand to speak with visitors in easy to understand ways. This includes astronauts, engineers, program officials and press spokespeople from NASA, Lockheed-Martin (Orion prime contractor) and other companies involved in building the Orion capsule and other components that will rocket the vehicle to orbit.

Veteran NASA Astronauts Nick Patrick and Clay Anderson will be on hand at the Dallas stop. NASA Astronauts Doug Hurley and Jim Dutton will attend the Alabama display.

Hurley was the pilot for the final shuttle mission by Space Shuttle Atlantis for the STS-135 mission to the International Space Station.

Orion fans in Oklahoma. Credit: NASA

The Orion tour also includes colorful and informative display panels and fun kids activities that I’ve personally witnessed on several occasions. In past years the Orion Launch Abort System (LAS) engaged in similar trips.

This Orion test vehicle was used by ground crews preparing for the PA-1 launch abort system flight test that took place in New Mexico in 2010.

The first orbital flight test of an unmanned Orion is scheduled for 2014 atop a Delta 4 Heavy booster..

Orion fans in Dallas, Texas - Mike, Darnell and Akeem
Orion Test capsule with test facility workers at White Sands Facility, New Mexico. Credit: NASA

Look here for more information on the Orion stops in Texas and Alabama

American Airlines Center: http://www.americanairlinescenter.com/

U.S. Space and Rocket Center: http://www.ussrc.com/

NASA’s future has suddenly become a hot topic in the GOP Presidential Debates. Orion is at the center of that debate on whether Americans will ever return to the Moon.

This is your opportunity to see history in the making

3 Generations of NASA’s Mars Rovers

Three Generations of Mars Rovers in the Mars Yard. This grouping shows 3 generations of NASA’s Mars rovers from 1997 to 2012 set inside the Mars Yard at the Jet Propulsion Lab in Pasadena, Calif. The Mars Pathfinder Project (front) landed the first Mars rover - Sojourner - in 1997. The Mars Exploration Rover Project (left) landed Spirit and Opportunity on Mars in 2004. The Mars Science Laboratory Project (right) is on course to land Curiosity on Mars in August 2012. Credit: NASA/JPL-Caltech

[/caption]

NASA Mars rovers have come a long way in terms of size and capability since the rebirth of Red Planet surface exploration just 15 years ago – spanning from 1997 to 2012.

To get a really excellent sense of just how far America’s scientists and engineers have pushed the state of the art in such a short time – when the willpower and funding existed and coincided to explore another world – take a good look at the new pictures here showing 3 generations of NASA’s Mars rovers; namely Mars Pathfinder (MPF), the 1st generation Mars rover, Mars Exploration Rover (MER), the 2nd generation, and Mars Science Laboratory (MSL), the 3rd and newest generation Mars rover.

The newly released pictures graphically display a side by side comparison of the flight spare for Mars Pathfinder (1997 landing) and full scale test rovers of the Mars Exploration Rover (2004 landing) and Mars Science Laboratory (in transit for a 2012 planned landing). The setting is inside the “Mars Yard” at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. where the teams conduct mission simulations.

It’s been nothing less than a quantum leap in advancement of the scientific and technological capability from one generation to the next.

Sojourner - NASA’s 1st Mars Rover
Sojourner takes an Alpha Proton X-ray Spectrometer (APXS) measurement of Yogi rock after Red Planet landing on July 4, 1997 landing. Sojourner was only 2 feet long, the size of a microwave oven.
Credit: NASA

Just consider the big increase in size – growing from a microwave oven to a car !

The “Marie Curie” flight spare and the actual “Sojourner” rover on Mars are 2 feet (65 centimeters) long – about the size of a microwave oven. The MER rovers “Spirit and Opportunity” and the “Surface System Test Bed” rover are 5.2 feet (1.6 meters) long – about the size of a golf cart. The MSL “Curiosity” and the “Vehicle System Test Bed” rover are 10 feet (3 meters) long – about the size of a car.

Side view of Three Generations of Mars Rovers
Front; flight spare for the first Mars rover, Sojourner. Left; Mars Exploration Rover Project test rover. Right; Mars Science Laboratory test rover Credit: NASA/JPL-Caltech

With your own eyes you can see the rapid and huge generational change in Mars rovers if you have the opportunity to visit the Kennedy Space Center Visitor Complex and stroll by the Mars exhibit with full scale models of all three of NASA’s Red Planet rovers.

At the KSC Visitor Complex in Florida you can get within touching distance of the Martian Family of Rovers and the generational differences in size and complexity becomes personally obvious and impressive.

NASA’s Family of Mars rovers at the Kennedy Space Center
Full scale models on display at the Kennedy Space Center Visitor Complex. Curiosity and Spirit/Opportunity are pictured here. Sojourner out of view. Credit: Ken Kremer

All of the Mars rovers blasted off from launch pads on Cape Canaveral Air Force Station, Florida.

Sojourner, Spirit and Opportunity launched atop Delta II rockets at Space Launch Complex 17 in 1996 and 2003. Curiosity launched atop an Atlas V at Space Launch Complex 41 in 2011.

Three Generations of Mars Rovers with Standing Mars Engineers
The rovers are pictured here with real Mars Engineers to get a sense of size and perspective. Front rover is the flight spare for the first Mars rover, Sojourner. At left is a Mars Exploration Rover Project test rover, working sibling to Spirit and Opportunity. At right is a Mars Science Laboratory test rover the size of Curiosity which is targeting a August 2012 Mars landing. The Mars engineers are JPL's Matt Robinson, left, and Wesley Kuykendall. Credit: NASA/JPL-Caltech

Opportunity is still exploring Mars to this day – 8 years after landing on the Red Planet, with a warranty of merely 90 Martian days.

Curiosity is scheduled to touch down inside Gale crater on 6 August 2012.

So, what comes next ? Will there be a 4th Generation Mars rover ?

Stay tuned – only time and budgets will tell.

NASA Terminates Power, Locks Cargo Doors on Retiring Shuttle Discovery

In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, space shuttle Discovery’s payload bay is moments away from being concealed from view as its doors swing shut with the aid of yellow-painted strongbacks, hardware used to support and operate the doors when the shuttle is not in space. Discovery was powered down and the doors were closed for the final time during Space Shuttle Program transition and retirement activities. Discovery is being prepared for public display at the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va., in 2012. Credit: NASA/Kim Shiflett

[/caption]

Space Shuttle Discovery was powered down forever and the payload bay doors were locked tight for the final time on Friday, Dec. 16, by technicians at NASA’s Kennedy Space Center (KSC) in Florida.

Take a good last glimpse inside the retiring Discovery’s payload bay as the clamshell like doors seal off all indigenous US human spaceflight capability for several years at a minimum.

The historic “Power Down” came after both of the 60 foot long cargo bay doors were swung shut this morning for the last time inside the shuttle hanger known as Orbiter Processing Facility-1 (OPF-1) – in the shadow of the cavernous Vehicle Assembly Building (VAB).

Workers at KSC are in the final stages of the transition and retirement activities that will soon lead to Discovery departing her Florida launch pad forever on her final voyage. They are converting the orbiter from active duty flight status to display as a nonfunctional and stationary museum piece.

Kennedy Space Center Director Robert Cabana, a former space shuttle commander, formally marked the final power down and sealing of Discovery’s payload bay doors at a ceremony in OPF-1 with the skeleton force of remaining shuttle personnel engaged in the decommissioning efforts.

Discovery’s payload bay is glimpsed for the final time as its doors swing shut with the aid of yellow-painted strongbacks, hardware used to support and operate the doors when the shuttle is not in space. Discovery's doors were closed and the vehicle was powered down for the final time. Discovery is being prepared for public display at the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va., in 2012. Credit: NASA/Kim Shiflett

Discovery was the Fleet leader and NASA’s oldest orbiter having flown the most missions. All told Discovery soared 39 times to space from her maiden flight in 1984 to her last touchdown on the STS-133 mission in March 2011.

In between, Discovery deployed the iconic Hubble Space Telescope, launched the Ulysses solar probe and numerous other science satellites and Department of Defense surveillance platforms, conducted the first shuttle rendezvous with Russia’s Mir Space Station and delivered key components to the International Space Station including the last habitable module.

Discovery payload bay and doors sealed for History inside Orbiter Processing Facility-1 at KSC. Credit: NASA/Kim Shiflett

Discovery flew both ‘return to flight’ missions following the Challenger and Columbia tragedies as well as the second flight of Astronaut and Senator John Glenn, first American to orbit the Earth.

Discovery has been thoroughly cleansed and cleared of all hazardous materials in preparation for making the vehicle safe for public display at her new and final resting place, the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va..

Technicians re-installed the three power generating fuel cells after draining and purging all the toxic materials and fuels from the fuel lines and assemblies. Three replica space shuttle main engines were also installed last week.

The "vehicle powered" sign is momentarily lit as KSC technicians prepare to power down space shuttle Discovery for the last time. Credit: NASA/Kim Shiflett
The "vehicle powered" sign is turned off following the final power down of space shuttle Discovery. Credit: NASA/Kim Shiflett

In 2012, the 100 ton orbiter will be hoisted piggyback atop NASA’s specially modified 747 carrier aircraft. Discovery will take flight for the last time in April and become the center piece at her new home inside the Smithsonian’s spaceflight exhibition in Virginia.

To make way for Discovery, the prototype shuttle Enterprise currently housed at the Smithsonian will be hauled out and flown to New York City for display at the Intrepid, Sea, Air and Space Museum.

Altogether, Discovery spent 365 days in space during the 39 missions, orbited Earth 5,830 times and traveled 148,221,675 miles during a career spanning 27 years.

There is nothing on the horizon comparable to NASA’s Space Shuttles. Their capabilities will be unmatched for several decades to come.

America is now totally dependent on the Russians for launching US astronauts to space until privately built ‘space taxis’ from firms like SpaceX, Boeing and Sierra Nevada are ready in perhaps 4 to 6 years.

Liftoff of Space Shuttle Discovery on the STS-133 mission from the Kennedy Space Center on 39th and historic final flight to space. Credit: Ken Kremer
Space Shuttle Discovery rolling to the Vehicle Assembly Building during summer 2011 as it's being processed for retirement before transport to permanent home at the Smithsonian Air & Space Museum in Virginia. Thrusters, OMS pods and main engines were removed for cleaning of toxic components and fuels. Credit: Ken Kremer

Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now

Curiosity Mars Science Laboratory Spacecraft During Cruise. Artist's concept of Curipsity during its cruise phase between launch on Nov. 26, 2011 and final approach to Mars in August 2012. The spacecraft includes a disc-shaped solar powered cruise stage (on the left) attached to the aeroshell (right). Curiosity and the descent stage are tucked inside the aeroshell. Along the way to Mars, the cruise stage will perform several trajectory correction maneuvers to adjust the spacecraft's path toward its final, precise landing site on Mars. Credit: NASA/JPL-Caltech

[/caption]

Curiosity’s interplanetary injection was spot on ! – following her Nov. 26 blastoff aboard the 2 million pound thrust Atlas V booster from Cape Canaveral in Florida.

For a birds-eye view of where it all started, watch the cool close-up launch video, below taken from within the Atlas pad security fence.

Indeed the launch precision was so good that mission controllers at NASA’s Jet Propulsion Lab in Pasadsena, Calif., have announced they postponed the first of six planned course correction burns for the agency’s newest Mars rover by at least a month. The firing had been planned for some two weeks after liftoff.

Curiosity is merrily sailing on a 254 day and 352-million-mile (567-million-kilometer) interplanetary flight from the Earth to Mars that will culminate on August 6, 2012 with a dramatic first-of-its-kind precision rocket powered touchdown inside Gale Crater.

“This was among the most accurate interplanetary injections ever,” said Louis D’Amario of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. He is the mission design and navigation manager for the Mars Science Laboratory.

Video Caption: View from inside the Pad 41 Security Fence at Cape Canaveral. Shot by a Canon 7D still camera during the launch of the Atlas V rocket carrying the MSL Curiosity rover to Mars. Thanks to a sound trigger my camera started firing at three frames per second from just after main engine ignition up until the exhaust plume finally envelops the camera and deadens all sound around it. The frames have been slowed down quite a bit for dramatic effect. Enjoy seeing what it is like for us media personnel who set out our remote cameras for launches at Kennedy Space Center and Cape Canaveral, Florida. Credit: Chase Clark/shuttlephotos.com

As of midday Friday, Dec. 2, the spacecraft had already traveled 10.8 million miles (17.3 million kilometers) and is moving at 7,500 mph (12,000 kilometers per hour) relative to Earth and at 73,800 mph (118,700 kilometers per hour) relative to the sun.

An interesting fact is that engineers deliberately planned the spacecraft’s initial trajectory to miss Mars by about 35,000 miles (56,400 kilometers) so that the Centaur upper stage does not hit Mars by accident. Both Centaur and Curiosity are currently following the same trajectory through the vast void of space and the actual trajectory puts them on course to miss Mars by about 38,000 miles (61,200 kilometers).

The Centaur has not been thoroughly cleaned of earthly microbes in the same way as Curiosity – and therefore cannot be permitted to impact the Martian surface and potentially contaminate the very studies Curiosity seeks to carry out in searching for the “Signs of Life”.

For the 8.5 month voyage to Mars, Curiosity and the rocket powered descent stage are tucked inside an aeroshell and are attached to the huge solar powered cruise stage.

Deceleration of Mars Science Laboratory in Martian Atmosphere
Artist's Concept depicts the interaction of NASA's Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing (EDL) of the Curiosity rover onto the Martian surface. EDL begins when the spacecraft reaches the top of Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover safe and sound on the surface of Mars some 7 minutes later. During EDL, the spacecraft decelerates from a velocity of about 13,200 miles per hour (5,900 meters per second) at the top of the atmosphere, to stationary on the surface. Credit: NASA/JPL-Caltech

The cruise stage is rotating at 2.05 rounds per minutes and is continuously generating electric power – currently about 800 watts – from the gleaming solar arrays. It also houses eight miniature hydrazine fueled thrusters. The propellant is stored inside titanium tanks.

Atlas V rocket and Curiosity Mars rover poised at Space Launch Complex 41 at Cape Canaveral, Florida prior to Nov. 26, 2011 liftoff. Credit: Ken Kremer/kenkremer.com

The historic voyage of the largest and most sophisticated Martian rover ever built by humans seeks to determine if Mars ever offered conditions favorable for the genesis of microbial life.

Curiosity is packed to the gills with 10 state of the art science instruments that are seeking to detect the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.

The car sized robot is equipped with a drill and scoop at the end of its 7 ft long robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into two distinct analytical laboratory instruments inside the rover.

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Curiosity Mars Rover Launch Gallery – Photos and Videos

NASA’s Curiosity Mars Science Laboratory (MSL) rover blasts off on Nov. 26. NASA's 1 ton Curiosity Mars rover soars skyward lift bound for Mars atop the United Launch Alliance Atlas V rocket at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST on Nov. 26. Credit: Alan Walters/awaltersphoto.com

[/caption]

NASA’s Curiosity Mars Science Lab (MSL) rover is speeding away from Earth on a 352-million-mile (567-million-kilometer) journey to Mars following a gorgeous liftoff from Cape Canaveral Air Force Station, Florida aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. EST on Nov. 26.

Enjoy the gallery of Curiosity launch images collected here from the Universe Today team and local photographers as well as NASA and United Launch Alliance.

The historic voyage of the largest and most sophisticated Martian rover ever built by humans seeks to determine if Mars ever offered conditions favorable for the genesis of microbial life.

Curiosity Mars Science Laboratory rover soars to Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Ken Kremer

“We are very excited about sending the world’s most advanced scientific laboratory to Mars,” NASA Administrator Charles Bolden said. “MSL will tell us critical things we need to know about Mars, and while it advances science, we’ll be working on the capabilities for a human mission to the Red Planet and to other destinations where we’ve never been.”

The mission will pioneer a first of its kind precision landing technology and a sky- crane touchdown to deliver the car sized rover to the foothills of a towering and layered mountain inside Gale Crater on Aug. 6, 2012.

Curiosity Mars rover launch. Credit: Mike Deep/David Gonzales

Curiosity is packed to the gills with 10 state of the art science instruments that are seeking the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.

Curiosity Mars rover launch. Credit: Mike Deep/David Gonzales

The robot is equipped with a drill and scoop at the end of its robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover.

The 1 ton Curiosity rover sports a science payload that’s 15 times heavier than NASA’s previous set of rovers – Spirit and Opportunity – which landed on Mars in 2004. Some of the tools are the first of their kind on Mars, such as a laser-firing instrument for checking the elemental composition of rocks from a distance, and an X-ray diffraction instrument for definitive identification of minerals in powdered samples.

Curiosity rover bound for Mars punches through Florida clouds. Credit: Ken Kremer
Curiosity rover launches to Mars on Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News
Curiosity rover launches to Mars on Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News
A United Launch Alliance Atlas V rocket blasts off from Space Launch Complex-41 at 10:02 p.m. EST with NASA’s Mars Science Lab rover Curiosity. Credit: Pat Corkery/ULA
Credit: NASA/KenThornsley
Curiosity Mars Science Laboratory launches. Credit: ULA


Launch Video – Credit: Matthew Travis/Spacearium

MSL launch. Credit: Julian Leek
MSL launch. Credit: Julian Leek

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?’

Curiosity Mars Science Laboratory (MSL) rover blast off on Mars Trek. NASA's Mars Science Laboratory spacecraft, sealed inside its payload fairing atop the United Launch Alliance Atlas V rocket, clears the tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.The mission lifted off at 10:02 a.m. EST on Nov. 26, beginning an eight-month interplanetary cruise to Mars. Credit: Mike Deep/David Gonzales

[/caption]

Atop a towering inferno of sparkling flames and billowing ash, Humankinds millennial long quest to ascertain “Are We Alone ?” soared skywards today (Nov. 26) with a sophisticated spaceship named ‘Curiosity’ – NASA’s newest, biggest and most up to date robotic surveyor that’s specifically tasked to hunt for the ‘Ingredients of Life’ on Mars, the most ‘Earth-like’ planet in our Solar System.

‘Mars Trek – Curiosity’s Search for Undiscovered Life’ zoomed to the heavens with today’s (Nov. 26) pulse pounding blastoff of NASA’s huge Curiosity Mars rover mounted atop a United Launch Alliance Atlas V rocket at 10:02 a.m. EST from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

Curiosity Mars Science Laboratory MSL) rover blasts off for Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Ken Kremer

Curiosity’s noble goal is to meticulously gather and sift through samples of Martian soil and rocks in pursuit of the tell-tale signatures of life in the form of organic molecules – the carbon based building blocks of life as we know it – as well as clays and sulfate minerals that may preserve evidence of habitats and environments that could support the genesis of Martian microbial life forms, past or present.

The Atlas V booster carrying Curiosity to the Red Planet vaulted off the launch pad on 2 million pounds of thrust and put on a spectacular sky show for the throngs of spectators who journeyed to the Kennedy Space Center from across the globe, crowded around the Florida Space Coast’s beaches, waterways and roadways and came to witness firsthand the liftoff of the $2.5 Billion Curiosity Mars Science Lab (MSL) rover.

Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. The car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and to help determine if this gas is from a biological or geological source. Credit: Ken Kremer

The car sized Curiosity rover is the most ambitious, important and far reaching science probe ever sent to the Red Planet – and the likes of which we have never seen or attempted before.

“Science fiction is now science fact,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the post launch briefing for reporters at KSC. “We’re flying to Mars. We’ll get it on the ground… and see what we find.”

“’Ecstatic’ – in a word, NASA is Ecstatic. We have started a new Era in the Exploration of Mars with this mission – technologically and scientifically. MSL is enormous, the equivalent of 3 missions frankly.”

“We’re exactly where we want to be, moving fast and cruising to Mars.”

Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Mike Deep/David Gonzales

NASA is utilizing an unprecedented, rocket powered precision descent system to guide Curiosity to a pinpoint touch down inside the Gale Crater landing site, with all six wheels deployed.

Gale Crater is 154 km (96 mi) wide. It is dominated by layered terrain and an enormous mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of ancient or extant Martian life.

“I hope we have more work than the scientists can actually handle. I expect them all to be overrun with data that they’ve never seen before.”

“The first images from the bottom of Gale Crater should be stunning. The public will see vistas we’ve never seen before. It will be like sitting at the bottom of the Grand Canyon,” said McCuistion.

Topography of Gale Crater - Curiosity Mars rover landing site
Color coding in this image of Gale Crater on Mars represents differences in elevation. The vertical difference from a low point inside the landing ellipse for NASA's Curiosity Mars Science Laboratory (yellow dot) to a high point on the mountain inside the crater (red dot) is about 3 miles (5 kilometers). Credit: NASA

The 197 ft tall Atlas booster’s powerful liquid and solid fueled engines ignited precisely on time with a flash and thunderous roar that grew more intense as the expanding plume of smoke and fire trailed behind the rapidly ascending rockets tail.

The Atlas rockets first stage is comprised of twin Russian built RD-180 liquid fueled engines and four US built solid rocket motors.

The engines powered the accelerating climb to space and propelled the booster away from the US East Coast as it majestically arced over in between broken layers of clouds. The four solids jettisoned 1 minute and 55 seconds later. The liquid fueled core continued firing until its propellants were expended and dropped away at T plus four and one half minutes.

The hydrogen fueled Centaur second stage successfully fired twice and placed the probe on an Earth escape trajectory at 22,500 MPH.

The MSL spacecraft separates and heads on its way to Mars. Credit: NASA TV

The Atlas V initially lofted the spacecraft into Earth orbit and then, with a second burst from the Centaur, pushed it out of Earth orbit into a 352-million-mile (567-million-kilometer) journey to Mars.

MSL spacecraft separation of the solar powered cruise stage stack from the Centaur upper stage occurred at T plus 44 minutes and was beautifully captured on a live NASA TV streaming video feed.

“Our spacecraft is in excellent health and it’s on its way to Mars,” said Pete Theisinger, Mars Science Laboratory Project Manager from the Jet Propulsion Laboratory in California at the briefing. “I want to thank the launch team, United Launch Alliance, NASA’s Launch Services Program and NASA’s Kennedy Space Center for their help getting MSL into space.”

Curiosity punches through Florida clouds on the way to Mars. Credit: Mike Deep/David Gonzales

“The launch vehicle has given us a first rate injection into our trajectory and we’re in cruise mode. The spacecraft is in communication, thermally stable and power positive.”

“I’m very happy.”

“Our first trajectory correction maneuver will be in about two weeks,” Theisinger added.

“We’ll do instrument checkouts in the next several weeks and continue with thorough preparations for the landing on Mars and operations on the surface.”

Curiosity is a 900 kg (2000 pound) behemoth. She measures 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as Spirit and Opportunity, NASA’s prior set of twin Martian robots.

NASA was only given enough money to build 1 rover this time.

“We are ready to go for landing on the surface of Mars, and we couldn’t be happier,” said John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology at the briefing. “I think this mission will be a great one. It is an important next step in NASA’s overall goal to address the issue of life in the universe.”

Pete Theisinger, Mars Science Laboratory Project Manager from the Jet Propulsion Laboratory in California and John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology at the Nov. 26 post-launch media briefing at the Kennedy Space Center (KSC), pose with model of Atlas V rocket. Credit: Ken Kremer

Curiosity is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times more than its predecessor’s science payloads.

Curiosity rover launches to Mars atop an Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News

A drill and scoop located at the end of the robotic arm will gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover. A laser will zap rocks to determine elemental composition.

“We are not a life detection mission.”

“It is important to distinguish that as an intermediate mission between the Mars Exploration Rovers, which was the search for water, and future missions, which may undertake life detection.”

“Our mission is about looking for ancient habitable environments – a time on Mars which is very different from the conditions on Mars today.”

“The promise of Mars Science Laboratory, assuming that all things behave nominally, is we can deliver to you a history of formerly, potentially habitable environments on Mars,” Grotzinger said at the briefing. “But the expectation that we’re going to find organic carbon, that’s the hope of Mars Science Laboratory. It’s a long shot, but we’re going to try.”

Today’s liftoff was the culmination of about 10 years of efforts by the more than 250 science team members and the diligent work of thousands more researchers, engineers and technicians spread around numerous locations across the United States and NASA’s international partners including Canada, Germany, Russia, Spain and France.

“Scientists chose the site they wanted to go to for the first time in history, because of the precision engineering landing system. We are going to the very best place we could find, exactly where we want to go.”

“I can’t wait to get on the ground,” said Grotzinger.

John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology and Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the post launch briefing for reporters at KSC. Credit: Ken Kremer

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:

Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

NASA’s Curiosity Set to Search for Signs of Martian Life

Curiosity at work firing a laser on Mars. This artist's concept depicts the rover Curiosity, of NASA's Mars Science Laboratory mission, as it uses its Chemistry and Camera (ChemCam) instrument to investigate the composition of a rock surface. ChemCam fires laser pulses at a target and views the resulting spark with a telescope and spectrometers to identify chemical elements. The laser is actually in an invisible infrared wavelength, but is shown here as visible red light for purposes of illustration. Credit: NASA

[/caption]

Nov 19 Update: MSL launch delayed 24 h to Nov. 26 – details later

In just 7 days, Earth’s most advanced robotic roving emissary will liftoff from Florida on a fantastic journey to the Red Planet and the search for extraterrestrial life will take a quantum leap forward. Scientists are thrilled that the noble endeavor of the rover Curiosity is finally at hand after seven years of painstaking work.

NASA’s Curiosity Mars Science Laboratory (MSL) rover is vastly more capable than any other roving vehicle ever sent to the surface of another celestial body. Mars is the most Earth-like planet in our Solar System and a prime target to investigate for the genesis of life beyond our home planet.

Curiosity is all buttoned up inside an aeroshell at a seaside launch pad atop an Atlas V rocket and final preparations are underway at the Florida Space Coast leading to a morning liftoff at 10:25 a.m. EST on Nov. 25, the day after the Thanksgiving holiday.

MSL is ready to go,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington, at a media briefing. “It’s a momentous occasion. We’re just thrilled that we’re at this point.”

“Curiosity is ‘Seeking the Signs of Life’, but is not a life detection mission. It is equipped with state-of-the-art science instruments.”

This oblique view of Gale Crater shows the landing site and the mound of layered rocks that NASA's Mars Science Laboratory will investigate. The landing site is in the smooth area in front of the mound. Image credit: NASA/JPL-Caltech/ASU/UA

“It’s not your father’s rover. It’s a 2000 pound machine that’s over 6 feet tall – truly a wonder of engineering,” McCuistion stated.

“Curiosity is the best of US imagination and US innovation. And we have partners from France, Canada, Germany, Russia and Spain.”

“Curiosity sits squarely in the middle of our two decade long strategic plan of Mars exploration and will bridge the gap scientifically and technically from the past decade to the next decade.”

Mars Science Laboratory builds upon the improved understanding about Mars gained from current and recent missions,” said McCuistion. “This mission advances technologies and science that will move us toward missions to return samples from and eventually send humans to Mars.”

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

The car sized rover is due to arrive at Mars in August 2012 and land inside Gale Crater near the base of a towering and layered Martian mountain, some 5 kilometers (3 miles) high. Gale Crater is 154 km (96 mi) in diameter.

The landing site was chosen because it offers multiple locations with different types of geologic environments that are potentially habitable and may have preserved evidence about the development of microbial life, if it ever formed.

Gale Crater is believed to contain clays and hydrated minerals that formed in liquid water eons ago and over billions of years in time. Water is an essential prerequisite for the genesis of life as we know it.

NASA's most advanced mobile robotic laboratory, the Mars Science Laboratory carrying the Curiosity rover, is set to launch atop an Atlas V rocket at 10:25 a.m. EST on Nov. 25 on a mission to examine one of the most intriguing areas on Mars at Gale crater. Credit: NASA

The one ton robot is a behemoth, measuring 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as NASA’s prior set of twin rovers – Spirit and Opportunity.

Curiosity is equipped with a powerful array of 10 science instruments weighing 15 times as much as its predecessor’s science payloads. The rover can search for the ingredients of life including water and the organic molecules that we are all made of.

Curiosity will embark on a minimum two year expedition across the craters highly varied terrain, collecting and analyzing rock and soil samples in a way that’s never been done before beyond Earth.

Eventually our emissary will approach the foothills and climb the Martian mountain in search of hitherto untouched minerals and habitable environments that could potentially have supported life’s genesis.

With each science mission, NASA seeks to take a leap forward in capability and technology to vastly enhance the science return – not just to repeat past missions. MSL is no exception.

Watch a dramatic action packed animation of the landing and exploration here:

Curiosity was designed at the start to be vastly more capable than any prior surface robotic explorer, said Ashwin Vasavada, Curiosity’s Deputy Project Scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif

“This is a Mars scientist’s dream machine.”

Therefore this mission uses new technologies to enable the landing of a heavier science payload and is inherently risky. The one ton weight is far too heavy to employ the air-bag cushioned touchdown system used for Spirit and Opportunity and will use a new landing method instead.

Curiosity will pioneer an unprecedented new precision landing technique as it dives through the Martian atmosphere named the “sky-crane”. In the final stages of touchdown, a rocket-powered descent stage will fire thusters to slow the descent and then lower the rover on a tether like a kind of sky-crane and then safely set Curiosity down onto the ground.

NASA has about three weeks to get Curiosity off the ground from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida before the planetary alignments change and the launch window to Mars closes for another 26 months.

“Preparations are on track for launching at our first opportunity,” said Pete Theisinger, MSL project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “If weather or other factors prevent launching then, we have more opportunities through Dec. 18.”

Mars Science Laboratory Briefing. Doug McCuistion, Mars program director, left, Ashwin Vasavada, MSL deputy project scientist, and Pete Theisinger, MSL project manager, share a laugh during a news briefing, Nov. 10, 2011, at NASA Headquarters in Washington. Curiosity, NASA's most advanced mobile robotic laboratory, will examine one of the most intriguing areas on Mars. The Mars Science Laboratory (MSL) mission is set for launch from Florida's Space Coast on Nov. 25 and is scheduled to land on the Red Planet in August 2012 where it will examine the Gale Crater during a nearly two-year prime mission. Credit: NASA/Paul E. Alers

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 25 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Closing the Clamshell on a Martian Curiosity

In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, sections of an Atlas V rocket payload fairing engulf NASA's Mars Science Laboratory (MSL) as they close in around it. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: NASA/Jim Grossmann

[/caption]

Curiosity’s clamshell has been closed.

And it won’t open up again until a few minutes after she blasts off for the Red Planet in just a little more than 3 weeks from now on Nov. 25, 2011 – the day after Thanksgiving celebrations in America.

The two halves of the payload fairing serve to protect NASA’s next Mars rover during the thunderous ascent through Earth’s atmosphere atop the powerful Atlas V booster rocket that will propel her on a fantastic voyage of hundreds of millions of miles through interplanetary space.

Spacecraft technicians working inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center (KSC) in Florida have now sealed Curiosity and her aeroshell inside the payload fairing shroud. The fairing insulates the car sized robot from the intense impact of aerodynamic pressure and heating during ascent. At just the right moment it will peal open and be jettisoned like excess baggage after the rocket punches through the discernable atmosphere.

Clamshell-like payload fairing about to be closed around Curiosity at KSC. Credit: NASA/Jim Grossmann

The next trip Curiosity takes will be a few miles to the Launch Pad at Space Launch Complex 41 at adjacent Cape Canaveral Air Force Station. She will be gingerly loaded onto a truck for a sojourn in the dead of night.

Curiosity in front of one payload fairing shell. Credit: NASA/Jim Grossmann

“Curiosity will be placed onto the payload transporter on Tuesday and goes to Complex 41 on Wednesday, Nov. 2,” KSC spokesman George Diller told Universe Today. “The logo was applied to the fairing this weekend.”

At Pad 41, the payload will then be hoisted atop the United Launch Alliance Atlas V rocket and be bolted to the Centaur upper stage.

Installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source is one of the very last jobs and occurs at the pad just in the very final days before liftoff for Mars.

The MMRTG will be installed through a small porthole in the payload fairing and the aeroshell (see photo below).

MMRTG power source will be installed on Curiosity through the porthole at right just days before Nov. 25 launch. Credit: NASA/Jim Grossmann

The plutonium dioxide based power source has more than 40 years of heritage in interplanetary exploration and will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to the solar powered rovers Spirit and Opportunity.

After a 10 month voyage, Curiosity is due to land at Gale Crater in August 2012 using the revolutionary sky crane powered descent vehicle for the first time on Mars.

Camera captures one last look at Curiosity before an Atlas V rocket payload fairing is secured around it. Credit: NASA/Jim Grossmann

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Technicians monitor Curiosity about to be engulfed by the two halves of the payload fairing. Credit: NASA/Jim Grossmann
Payload fairing sealed around Curiosity at the Payload Hazardous Servicing Facility at KSC. Credit: NASA/Jim Grossmann
Atlas V rocket at Launch Complex 41 at Cape Canaveral, Florida
An Atlas V rocket similar to this one utilized in August 2011 for NASA’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 25, 2011 from Florida. Credit: Ken Kremer

Phobos-Grunt, Earth’s other mission to Mars courtesy of Russia is due to blast off first from the Baikonur Cosmodrome on November 9, 2011.

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff