The once fanciful dream of rocket recycling is now closer than ever to becoming reality, after successful completion of the static fire test on a test stand in McGregor, Texas, paved the path to relaunch, SpaceX announced via twitter.
The history making first ever reuse mission of a previously flown liquid fueled Falcon 9 first stage booster equipped with 9 Merlin 1D engines could blastoff as soon as March 2017 from the Florida Space Coast with the SES-10 telecommunications satellite, if all goes well.
The booster to be recycled was initially launched in April 2016 for NASA on the CRS-8 resupply mission under contract for the space agency.
“Prepping to fly again — recovered CRS-8 first stage completed a static fire test at our McGregor, TX rocket development facility last week,” SpaceX reported.
The CRS-8 Falcon 9 first stage booster successfully delivered a SpaceX cargo Dragon to the International Space Station (ISS) in April 2016.
The Falcon 9 first stage was recovered about 8 minutes after liftoff via a propulsive soft landing on an ocean going droneship in the Atlantic Ocean some 400 miles (600 km) off the US East coast.
SpaceX, founded by billionaire and CEO Elon Musk, inked a deal in August 2016 with telecommunications giant SES, to refly a ‘Flight-Proven’ Falcon 9 booster.
Luxembourg-based SES and Hawthrone, CA-based SpaceX jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster.”
Exactly how much money SES will save by utilizing a recycled rocket is not known. But SpaceX officials have been quoted as saying the savings could be between 10 to 30 percent.
The SES-10 launch on a recycled Falcon 9 booster was originally targeted to take place before the end of 2016.
That was the plan until another Falcon 9 exploded unexpectedly on the ground at SpaceX’s Florida launch pad 40 during a routine prelaunch static fire test on Sept. 1 that completed destroyed the rocket and its $200 million Amos-6 commercial payload on Cape Canaveral Air Force Station.
The Sept. 1 launch pad disaster heavily damaged the SpaceX pad and launch infrastructure facilities at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida.
Pad 40 is still out of commission as a result of the catastrophe. Few details about the pad damage and repair work have been released by SpaceX and it is not known when pad 40 will again be certified to resume launch operations.
Therefore SpaceX ramped up preparations to launch Falcon 9’s from the firms other pad on the Florida Space Coast – namely historic Launch Complex 39A which the company leased from NASA in 2014.
Pad 39A is being repurposed by SpaceX to launch the Falcon 9 and Falcon Heavy rockets. It was previously used by NASA for more than four decades to launch Space Shuttles and Apollo moon rockets.
But SES-10 is currently third in line to launch atop a Falcon 9 from pad 39A.
The historic first launch of a Falcon 9 from pad 39A is currently slated for no earlier than Feb. 14 on the CRS-10 resupply mission for NASA to the ISS – as reported here.
The EchoStar 23 comsat is slated to launch next, currently no earlier than Feb 28.
SES-10 will follow – if both flights go well.
SpaceX successfully launched SES-9 for SES in March 2016.
Last July, SpaceX engineers conducted a test firing of another recovered booster as part of series of test examining long life endurance testing. It involved igniting all nine used first stage Merlin 1D engines housed at the base of a used landed rocket.
The Falcon 9 first stage generates over 1.71 million pounds of thrust when all nine Merlin engines fire up on the test stand for a duration of up to three minutes – the same as for an actual launch.
Watch the engine test in this SpaceX video:
Video Caption: Falcon 9 first stage from May 2016 JCSAT mission was test fired, full duration, at SpaceX’s McGregor, Texas rocket development facility on July 28, 2016. Credit: SpaceX
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – SpaceX announced Sunday (Jan. 29) a significant shuffle to the Falcon 9 launch schedule, saying that a key NASA mission to resupply the space station is moving to the head of the line and will now be their first mission to launch from historic pad 39A at the Kennedy Space Center – formerly used to launch space shuttles.
The late breaking payload switch will allow SpaceX, founded by billionaire CEO Elon Musk, additional time to complete all the extensive ground support work and pad testing required for repurposing seaside Launch Complex 39A from launching the NASA Space Shuttle to the SpaceX Falcon 9.
Blastoff of the 22-story tall SpaceX Falcon 9 carrying an unmanned Dragon cargo freighter with NASA as customer on the CRS-10 resupply mission to the International Space Station (ISS) could come as soon as mid-February, said SpaceX.
“SpaceX announced today that its first launch from Launch Complex 39A (LC-39A) at NASA’s Kennedy Space Center in Florida will be the CRS-10 mission to the International Space Station,” said SpaceX in a statement.
CRS-10 counts as SpaceX’s tenth cargo flight to the ISS since 2012 under contract to NASA.
Crews have been working long hours to modify pad 39A and get it ready for Falcon 9 launches. Also, the newly built transporter erector launcher was seen raised at the pad multiple times in recent days. The transporter will move the rocket horizontally up the incline at the pad, and then erect it vertically.
“This schedule change allows time for additional testing of ground systems ahead of the CRS-10 mission,” SpaceX announced in a statement.
The surprise switch in customers means that the previously planned first Falcon 9 launch from pad 39A of the commercial EchoStar 23 communications satellite is being pushed off to a later date – perhaps late February.
Until now, EchoStar 23 was slated to be the first satellite launched by a Falcon 9 from Launch Complex 39A on NASA’s Kennedy Space Center. It could have come as soon as by the end of this week.
However, the Falcon 9 launch date from pad 39A has slipped repeatedly in January, with this week on Feb. 3 as the most recently targeted ‘No Earlier Than’ NET date.
SpaceX successfully resumed launches of the Falcon 9 earlier this month when the first flock of 10 Iridium NEXT mobile voice and data relay satellites blasted off on the Iridium 1 mission from Vandenberg Air Force Base in California on Jan. 14, 2017.
NASA now gets the first dibs for using pad 39A which has lain dormant for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.
The last Dragon resupply mission to the ISS blasted off on July 18, 2016 on the CRS-9 mission. The Falcon 9 first stage was also successfully recovered via a propulsive soft landing back at the Cape at night.
The last successful Falcon 9 launch from Space Launch Complex-40 took place on Aug. 14, 2016, carrying the JCSAT-16 Japanese communications satellite to orbit.
But following the unexpected launch pad explosion on Sept 1, 2016 that completely destroyed a Falcon 9 and the $200 million Amos-6 commercial payload during a prelaunch fueling test, pad 40 suffered extensive damage.
Furthermore it is not known when the pad will be ready to resume launches.
So SpaceX has had to switch launch pads for near term future flights and press pad 39A into service much more urgently, and the refurbishing and repurposing work is not yet complete.
To date SpaceX has not rolled a Falcon 9 rocket to pad 39A, not raised it to launch position, not conducted a fueling exercise and not conducted a static fire test. All the fit checks with a real rocket remain to be run.
Thus the current launch target of mid-February for CRS-10 remains a target date and not a firm launch date. EchoStar 23 is next in line.
“The launch is currently targeted for no earlier than mid-February,” SpaceX elaborated.
“Following the launch of CRS-10, first commercial mission from 39A is currently slated to be EchoStar XXIII.”
Once the pad is ready, SpaceX plans an aggressive launch schedule in 2017.
“The launch vehicles, Dragon, and the EchoStar satellite are all healthy and prepared for launch,” SpaceX stated.
The history making first use of a recycled Falcon 9 carrying the SES-10 communications satellite could follow as soon as March, if all goes well.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER VISITOR COMPLEX, FL – NASA unveiled a new tribute exhibit honoring three fallen astronaut heroes 50 years to the day of the Apollo 1 tragedy on January 27, 1967 when the three man crew perished in a flash fire on the launch pad during a capsule test that was not considered to be dangerous.
The Apollo 1 prime crew comprising NASA astronauts Gus Grissom, Ed White II and Roger Chaffee were killed during routine practice countdown testing when a fire suddenly erupted inside the cockpit as they were strapped to their seats in their Apollo command module capsule, on a Friday evening at 6:31 p.m. on January 27, 1967.
“It’s been 50 years since the crew of Apollo 1 perished in a fire at the launch pad, but the lives, accomplishments and heroism of the three astronauts are celebrated in a dynamic, new tribute that is part museum, part memorial and part family scrapbook,” says a NASA narrative that aptly describes the exhibit and the memorial ceremony I attended at the Apollo/Saturn V Center at NASA’s Kennedy Space Center in Florida on Friday, Jan. 27, 2017 on behalf of Universe Today.
It was the first disaster with a human crew and the worst day in NASA’s storied history to that point.
The tribute is named called “Ad Astra Per Aspera – A Rough Road Leads to the Stars.”
At the tribute dedication ceremony Kennedy Space Center Director and former astronaut Bob Cabana said the families of the fallen crew gave their approvals and blessing to the efforts that would at last tell the story of Apollo 1 to all generations – those who recall it and many more to young or not yet born to remember the tragedy of the early days of America’s space program.
“It’s long overdue,” said KSC center director and former astronaut Bob Cabana at the KSC dedication ceremony to family, friends and invited guests colleagues. “I’m proud of the team that created this exhibit.”
“Ultimately, this is a story of hope, because these astronauts were dreaming of the future that is unfolding today,” said Cabana. Generations of people around the world will learn who these brave astronauts were and how their legacies live on through the Apollo successes and beyond.”
The exhibit “showcases clothing, tools and models that define the men as their parents, wives and children saw them as much as how the nation viewed them.”
The main focus was to introduce the astronauts to generations who never met them and may not know much about them or the early space program, says NASA.
“This lets you now meet Gus Grissom, Ed White and Roger Chaffee as members of special families and also as members of our own family,” said NASA’s Luis Berrios, who co-led the tribute design that would eventually involve more than 100 designers, planners and builders to realize.
“You get to know some of the things that they liked to do and were inspired by. You look at the things they did and if anyone does just one of those things, it’s a lifetime accomplishment and they did all of it and more.”
The crew and the Apollo 1 command module were stacked atop the Saturn 1B rocket at Launch Complex 34 on what is now Cape Canaveral Air Force Station in Florida.
During the “plugs out” test the Saturn 1B rocket was not fueled. But the fatal flaw was the atmosphere of pure oxygen for the astronauts to breath inside the sealed Apollo 1 command module which was pressurized to 16.7 psi.
Another significantly contributing fatal flaw was the inward opening three layered hatch that took some 90 seconds to open under the best of conditions.
After working all afternoon through the practice countdown and encountering numerous problems, something went terribly awry. Without warning a flash fire erupted in the cockpit filled with 100 percent oxygen and swiftly spread uncontrollably creating huge flames licking up the side of the capsule, acrid smoke and a poisonous atmosphere that asphyxiated, burned and killed the crew.
With the scorching temperatures spiking and pressures rapidly rising in a closed system, the capsule exploded some 20 seconds after the fire started. And because of the pressure buildup inside with flames licking up the sides and the toxic atmosphere generated from burning materials, the crew succumbed and could not turn the latch to pull open the hatch against the pressure.
The pad crew tried bravely in vain to save them, fighting heavy smoke and fire and fearing that the attached launch abort system on top of the capsule would ignite and kill them all too.
An investigation would determine that the fire was likely caused by a spark from frayed wiring, perhaps originating under Grissom’s seat.
“An electrical short circuit inside the Apollo Command Module ignited the pure oxygen environment and within a matter of seconds all three Apollo 1 crewmembers perished,” NASA concluded.
NASA and contractor North American Aviation completely redesigned the capsule with major engineering changes including an atmosphere of 60 percent oxygen and 40 percent nitrogen at 5 psi blower pressure, new hatch that could open outwards in 5 seconds, removing flammable materials among many others that would make the Apollo spacecraft much safer for the upcoming journeys to the moon.
The multi-layed hatch serves as the centerpiece of the tribute exhibit. No piece of Apollo 1 has ever before been put on public display. Alongside the old hatch, the new hatch is displayed that was used on all the remaining Apollo missions.
Display cases highlights the lives and careers of the three astronauts in these NASA descriptions.
Gus Grissom was “one of NASA’s Original Seven astronauts who flew the second Mercury mission, a hunting jacket and a pair of ski boots are on display, along with a small model of the Mercury spacecraft and a model of an F-86 Sabre jet like the one he flew in the Korean War. A slide rule and engineering drafts typify his dedication to detail.”
“The small handheld maneuvering thruster that Ed White II used to steer himself outside his Gemini capsule during the first American spacewalk features prominently in the display case for the West Point graduate whose athletic prowess nearly equaled his flying acumen. An electric drill stands alongside the “zip gun,” as he called the thruster.”
“It was great to juxtaposition it with a drill which was also a tool that Ed loved to use,” Berrios said. “He had a tremendous passion for making things for his family.”
“Roger Chaffee, for whom Apollo 1 would have been his first mission into space, was an esteemed Naval aviator who became a test pilot in his drive to qualify as an astronaut later. Displayed are board games he played with his wife and kids on rare evenings free of training.”
Grissom, White and Chaffee composed NASA’s first three person crew following the one man Mercury program and two man Gemini program, that had just concluded in November 1966 with Gemini 12.
The trio had been scheduled to blastoff on February 21, 1967 on a 14 day long mission in Earth orbit to thoroughly check out the Apollo command and service modules.
Apollo 1 was to be the first launch in NASA’s Apollo moon landing program initiated by President John F. Kennedy in 1961.
Apollo 1 was planned to pave the way to the Moon so that succeeding missions would eventually “land a man on the Moon and return him safely to Earth before this decade is out” as Kennedy eloquently challenged the nation to do.
I remember seeing the first news flashes about the Apollo 1 fire on the TV as a child, as it unfolded on the then big three networks. It is indelibly marked in my mind. This new exhibit truly tells the story of these astronaut heroes vividly to those with distant memories and those with little or no knowledge of Apollo 1.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – A new age has begun in the nations weather forecasting capabilities with the release today (Jan. 23) of the spectacular first images gathered by the recently launched NASA/NOAA GOES-16 observatory.
“It will be like high-definition from the heavens,” says NOAA.
“Today’s release of the first images from #GOES16 signals the start of a new age in satellite weather observation!!!”
Thus the newly obtained and published imagery has been anxiously awaited by scientists, meteorologists and ordinary weather enthusiasts.
“This is such an exciting day for NOAA! One of our GOES-16 scientists compared this to seeing a newborn baby’s first pictures — it’s that exciting for us,” said Stephen Volz Ph.D. director of NOAA’s Satellite and Information Service, in a statement.
“These images come from the most sophisticated technology ever flown in space to predict severe weather on Earth. The fantastically rich images provide us with our first glimpse of the impact GOES-16 will have on developing life-saving forecasts.”
An especially eye-popping image taken by GOES -16 from its equatorial vantage point situated in geostationary orbit 22,300 miles (35,800 kilometers) above Earth and published today, shows both the Earth and the Moon together – as the lead image here.
The Earth/Moon combo shot is not only fantastically pleasing to the eye, but also serves a significant scientific purpose.
“Like earlier GOES satellites, GOES-16 will use the moon for calibration,” say NOAA officials.
“GOES-16 will boost the nation’s weather observation network and NOAA’s prediction capabilities, leading to more accurate and timely forecasts, watches and warnings.”
GOES-16 is the most advanced and powerful weather observatory ever built and will bring about a ‘quantum leap’ in weather forecasting.
“Seeing these first images from GOES-16 is a foundational moment for the team of scientists and engineers who worked to bring the satellite to launch and are now poised to explore new weather forecasting possibilities with this data and imagery,” said Volz.
“The incredibly sharp images are everything we hoped for based on our tests before launch. We look forward to exploiting these new images, along with our partners in the meteorology community, to make the most of this fantastic new satellite.”
It’s dramatic new imagery will show the weather in real time enabling critical life and property forecasting, help pinpoint evacuation zones and also save people’s lives in impacted areas of severe weather including hurricanes and tornadoes.
And the huge satellite can’t come online soon enough, as demonstrated by the severe winter weather and tornadoes that just wreaked havoc and death in various regions of the US.
Another breathtaking image product (seen below) produced by the GOES-16 Advanced Baseline Imager (ABI) instrument, built by Harris Corporation, shows a full-disc view of the Western Hemisphere in high detail — at four times the image resolution of existing GOES spacecraft.
The 11,000 pound satellite was built by prime contractor Lockheed Martin and is the first of a quartet of four identical satellites – comprising GOES-R, S, T, and U – at an overall cost of about $11 Billion. This will keep the GOES satellite system operational through 2036.
This next generation of GOES satellites will replace the currently operating GOES East and GOES West satellites.
NOAA will soon decide whether GOES-16 will replace either the East or West satellites. A decision from NOAA is expected in May. GOES-16 will be operational by November 2017 as either the GOES-East or GOES-West satellite. Of course everyone wants it first.
The next satellite is nearing assembly completion and will undergo about a year of rigorous environmental and acoustic testing before launch. It will go to whichever slot was not selected this year.
The six instrument science suite includes the Advanced Baseline Imager (ABI) built by Harris Corporation, the Geostationary Lightning Mapper (GLM) built by Lockheed Martin, Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS), and the Magnetometer (MAG).
ABI is the primary instrument and will collect 3 times more spectral data with 4 times greater resolution and scans 5 times faster than ever before – via the primary Advanced Baseline Imager (ABI) instrument – compared to the current GOES satellites.
“The higher resolution will allow forecasters to pinpoint the location of severe weather with greater accuracy. GOES-16 can provide a full image of Earth every 15 minutes and one of the continental U.S. every five minutes, and scans the Earth at five times the speed of NOAA’s current GOES imagers.”
KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Gene Cernan, the last man to walk on the Moon, and one of America’s most famous and renowned astronauts, was honored in a ceremony held at Kennedy Space Center Visitor Complex, Florida, on Jan. 18. [Story/photos expanded]
Cernan passed away earlier this week on Monday, January 16, 2017 at age 82, after a long illness, surrounded by his family.
Cernan, a naval aviator, flew on three groundbreaking missions for NASA during the Gemini and Apollo programs that paved the way for America’s and humanity’s first moon landing missions.
His trio of historic space flights ultimately culminated with Cernan stepping foot on the moon in Dec. 1972 during the Apollo 17 mission- NASA final moon landing of the Apollo era.
No human has set foot on the Moon since Apollo 17 – an enduring disappointment to Cernan and all space fans worldwide.
Cernan also flew on the Gemini 9 and Apollo 10 missions, prior to Apollo 17.
The Gemini 9 capsule is on display at the KSC Visitor Complex. Cernan was the second NASA astronaut to perform an EVA – during Gemini 9.
The Cernan remembrance ceremony was held at the U.S. Astronaut Hall of Fame inside the newly opened ‘Heroes & Legends’ exhibit at the KSC Visitor Complex – two days after Cernan died. It included remarks from two of his fellow NASA astronauts from the Space Shuttle era, Kennedy Space Center Director Bob Cabana, and space shuttle astronaut Jon McBride, as well as Therrin Protze, chief operating officer, Kennedy Space Center Visitor Complex.
A NASA portrait and floral wreath were on display for visitors during the ceremony inside and outside of the ‘Heroes and Legends’ exhibit.
“He was an advocate for the space program and hero that will be greatly missed,” said Kennedy Space Center Director Bob Cabana during the ceremony inside.
“I don’t believe that Gene is going to be the last man on the moon. And one of the things that he was extremely passionate about was our exploring beyond our own planet, and developing that capability that would allow us to go back to the moon and go beyond.
“I feel badly that he wasn’t able to stay alive long enough to actually see this come to fruition,” Cabana said.
NASA is now developing the SLS heavy lift rocket and Orion deep space capsule to send our astronauts to the Moon, Mars and Beyond. The maiden launch of SLS-1 on the uncrewed EM-1 mission to the Moon is slated for Fall 2018.
“We are saddened of the loss of our American hero, Astronaut Gene Cernan. As the last man to place footsteps on the surface of the moon, he was a truly inspiring icon who challenged the impossible,” said Therrin Protze, chief operating officer of Kennedy Space Center Visitor Complex.
“People throughout generations have been and will forever be inspired by his actions, and the underlying message that what we can achieve is limited only by our imaginations. He will forever be known as ‘The Last Man on the Moon,” and for the extraordinary impact he had on our country and the world.”
Cernan was one of only 12 astronauts to walk on the moon. Neil Armstong and Buzz Aldrin were the first during the Apollo 11 moon landing mission in 1969 that fulfilled President Kohn F. Kennedy’s promise to land on the Moon during the 1960’s.
Cernan retired from NASA and the U.S. Navy in 1976. He continued to advise NASA as a consultant and appeared frequently on TV news programs during NASA’s manned space missions as an popular guest explaining the details of space exploration and why we should explore.
He advocated for NASA, space exploration and science his entire adult life.
“As an astronaut, Cernan left an indelible impression on the moon when he scratched his daughter’s initials in the lunar surface alongside the footprints he left as the last human to walk on the moon. Guests of Kennedy Space Center Visitor Complex can learn more about Cernan’s legacy at the new Heroes & Legends exhibit, where his spacewalk outside the actual Gemini IX space capsule is brought to life through holographic imagery.”
From NASA’s profile page:
“Cernan was born in Chicago on March 14, 1934. He graduated from Proviso Township High School in Maywood, Ill., and received a bachelor of science degree in electrical engineering from Purdue University in 1956. He earned a master of science degree in aeronautical engineering from the U.S. Naval Postgraduate School in Monterey, Calif.
Cernan is survived by his wife, Jan Nanna Cernan, his daughter and son-in-law, Tracy Cernan Woolie and Marion Woolie, step-daughters Kelly Nanna Taff and husband, Michael, and Danielle Nanna Ellis and nine grandchildren.”
The following is a statement released by NASA on the behalf of Gene Cernan’s family:
A funeral service for Capt. Eugene A. Cernan, who passed away Monday at the age of 82, will be conducted at 2:30 p.m. CST on Tuesday, Jan. 24, at St. Martin’s Episcopal Church, 717 Sage Road in Houston.
NASA Television will provide pool video coverage of the service.
The family will gather for a private interment at the Texas State Cemetery in Austin at a later date, where full military honors will be rendered.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
NASA’s new announcement entails awarding an additional four crew rotation missions each to commercial partners, Boeing and SpaceX, on top of the two demonstration fights previously awarded to each company under the agency’s Commercial Crew Program (CCP) initiative, in a Jan. 3 statement.
However, the newly awarded crew rotation missions will only take place after NASA has certified that each provider is fully and satisfactorily meeting NASA’s long list of stringent safety and reliability requirements to ensure the private missions will be safe to fly with humans aboard from NASA and its partner entities.
And NASA officials were careful to point out that these orders “do not include payments at this time.”
In other words, NASA will pay for performance, not mere promises of performance – because human lives are on the line.
“They fall under the current Commercial Crew Transportation Capability contracts, and bring the total number of missions awarded to each provider to six,” NASA officials announced.
The goal of the CCP program is to ensure robust and reliable crew transportation to the International Space Station in this decade and beyond – using American rockets and capsules launching from American soil.
A further goal is to end America’s sole reliance on Russia for transporting American astronauts to and from the space station using Russia’s Soyuz crew capsules.
Since the forced retirement of NASA’s Space Shuttle’s in July 2011, NASA astronauts and its partners have been 100% dependent on Russia for rides to space – currently to the tune of over $80 million per seat.
By awarding these new contracts, Boeing and SpaceX should be able to plan further ahead in the future, order long lead time hardware and software, and ultimately cut costs through economy of scale.
“Awarding these missions now will provide greater stability for the future space station crew rotation schedule, as well as reduce schedule and financial uncertainty for our providers,” said Phil McAlister, director, NASA’s Commercial Spaceflight Development Division, in a statement.
“The ability to turn on missions as needed to meet the needs of the space station program is an important aspect of the Commercial Crew Program.”
Boeing and SpaceX were awarded contracts by NASA Administrator Charles Bolden in September 2014 worth $6.8 Billion to complete the development and manufacture of the privately developed Starliner CST-100 and Crew Dragon astronaut transporters, respectively, under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.
The CCP initiative was started back in 2010 under the Obama Administration to replace NASA’s outgoing space shuttle orbiters.
However, launch targets for first fight by the Boeing Starliner and SpaceX Crew Dragon have been repeatedly postponed from 2015 to 2018 – in the latest iteration – due to severe and extremely shortsighted funding cutbacks by Congress year after year.
Thus NASA has been forced to order several years more additional Soyuz taxi seat flights and send hundreds and hundreds of millions of more US dollars to Putin’s Russia – thanks to the US Congress.
Congress enjoys whining about Russia on one hand, while at the same time they put America’s aerospace workers on the unemployment line by curtailing NASA’s ability to move forward and put Americans back to work. There is ample bipartisan blame for this sad state of affairs.
The Boeing Starliner and SpaceX Crew Dragon are both Made in America.
The Boeing Starliner is being manufactured at the Kennedy Space Center inside a repurposed and renovated former Space Shuttle Orbiter Processing hangar. This author has visited the C3PF facility periodically to observe and assess Boeing’s progress.
Indeed, Boeing has already started construction of the first flight worthy Starliner – currently dubbed Spacecraft 1- at KSC this past summer 2016.
The SpaceX Crew Dragon is being manufactured at company headquarters in Hawthorne, California.
Blastoff of the first SpaceX Crew Dragon spacecraft on its first unmanned test flight, or Demonstration Mission 1, is postponed from May 2017 to November 2017, according to the latest quarterly revision just released by NASA last month in Dec. 2016.
Liftoff of the first piloted Crew Dragon with a pair of NASA astronauts strapped in has slipped from August 2017 to May 2018.
Launch of the first uncrewed Boeing Starliner, known as an Orbital Flight Test, has slipped to June 2018.
Liftoff of the first crewed Starliner is now slated for August 2018, possibly several months after SpaceX. But the schedules keep changing so it’s anyone’s guess as to when these commercial crew launches will actually occur.
Boeing’s uncrewed flight test, known as an Orbital Flight Test, is currently scheduled for June 2018 and its crewed flight test currently is planned for August 2018.
“Once the flight tests are complete and NASA certifies the providers for flight, the post-certification missions to the space station can begin,” NASA official said.
Meanwhile the rockets and launch pads for Boeing and SpaceX are also being developed, modified and refurbished as warranted.
The launch pads for both are located on Florida’s Space Coast.
KENNEDY SPACE CENTER, FL – Launching Americans back to space and the International Space Station (ISS) from American soil on American rockets via NASA’s commercial crew program (CCP) has just suffered another significant but not unexpected delay, with an announcement from NASA that the target date for inaugural crewed flight aboard a SpaceX commercial Crew Dragon has slipped significantly from 2017 to 2018.
NASA announced the revised schedule on Dec. 12 and SpaceX media affairs confirmed the details of the launch delay to Universe Today.
The postponement of the demonstration mission launch is the latest fallout from the recent launch pad explosion of a SpaceX Falcon 9 rocket at Cape Canaveral, Florida, on Sept. 1 during final preparations and fueling operations for a routine preflight static fire test.
Since the Falcon 9 is exactly the same booster that SpaceX will employ to loft American astronauts in the SpaceX Crew Dragon to the space station, the stakes could not be higher with astronauts lives on the line.
Blastoff of the first Crew Dragon spacecraft on its first unmanned test flight is postponed from May 2017 to August 2017, according to the latest quarterly revision just released by NASA. Liftoff of the first piloted Crew Dragon with a pair of NASA astronauts strapped in has slipped from August 2017 to May 2018.
“The Commercial crew updated dates for Demo 1 (no crew) is Q4 2017,” SpaceX’s Phil Larson told Universe Today. “For Demo 2 (with 2 crew members) the updated commercial crew date is Q2 2018 [for Crew Dragon].”
Although much has been accomplished since NASA’s commercial crew program started in 2010, much more remains to be done before NASA will approve these launches.
“The next generation of American spacecraft and rockets that will launch astronauts to the International Space Station are nearing the final stages of development and evaluation,” said NASA KSC public affairs officer Stephanie Martin.
Above all both of the commercial crew providers – namely Boeing and SpaceX – must demonstrate safe, reliable and robust spacecraft and launch systems.
“NASA’s Commercial Crew Program will return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety and mission requirements. To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station.”
These latest launch delays come on top of other considerable delays announced earlier this year when SpaceX has still hoping to launch the unpiloted Crew Dragon mission before the end of 2016 – prior to the Sept 1 launch pad catastrophe.
“We are finalizing the investigation of our Sept. 1 anomaly and are working to complete the final steps necessary to safely and reliably return to flight,” Larson told me.
“As this investigation has been conducted, our Commercial Crew team has continued to work closely with NASA and is completing all planned milestones for this period.”
SpaceX is still investigating the root causes of the Sept. 1 anomaly, working on fixes and implementing any design changes – as well as writing the final report that must be submitted to the FAA, before they can launch the planned ‘Return to Flight’ mission from their California launch pad at Vandenberg Air Force Base.
No launch can occur until the FAA grants a license after fully assessing the SpaceX anomaly report.
Last week SpaceX announced a delay in resuming launches at Vandenberg until no earlier than January 2017.
“We are carefully assessing our designs, systems, and processes taking into account the lessons learned and corrective actions identified. Our schedule reflects the additional time needed for this assessment and implementation,” Larson elaborated.
Boeing has likewise significantly postponed their debut unpiloted and piloted launches of their CST-100 Starliner astronaut space taxi by more than six months this year alone.
The first crewed Boeing Starliner is now slated for a launch in August 2018, possibly several months after SpaceX. But the schedules keep changing so it’s anyone’s guess as to when these commercial crew launches will actually occur.
Another big issue that has cropped up since the Sept. 1 pad disaster, regards the procedures and timing for fueling the Falcon 9 rocket with astronauts on board. SpaceX is proposing to load the propellants with the crew already on board, unlike the practice of the past 50 years where the astronauts climbed aboard after the extremely dangerous fueling operation was completed.
SpaceX proposes this change due to their recent use of superchilled liquid oxygen and resulting new operational requirement to fuel the rocket in the last 30 minutes prior to liftoff.
Although a SpaceX hazard report outlining these changes was approved by NASA’s Safety Technical Review Board in July 2016, an objection was raised by former astronaut Maj. Gen. Thomas Stafford and the International Space Station Advisory Committee.
“SpaceX has designed a reliable fueling and launch process that minimizes the duration and number of personnel exposed to the hazards of launching a rocket,” Larson explained.
“As part of this process, the crew will safely board the Crew Dragon, ground personnel will depart, propellants will be carefully loaded and then the vehicle will launch. During this time the Crew Dragon launch abort system will be enabled.”
SpaceX says they have performed a detailed safety analysis with NASA of all potential hazards with this process.
“The hazard report documenting the controls was approved by NASA’s Safety Technical Review Board in July 2016.”
SpaceX representatives recently met with Stafford and the ISS review board to address their concerns, but the outcome and whether anything was resolved is not known.
“We recently met with Maj. Gen. Stafford and the International Space Station Advisory Committee to provide them detailed information on our approach and answer a number of questions. SpaceX and NASA will continue our ongoing assessment while keeping the committee apprised of our progress,” Larson explained.
The Falcon 9 fueling procedure issue relating to astronaut safety must be satisfactorily resolved before any human launch with Dragon can take place, and will be reported on further here.
Whenever the Crew Dragon does fly it will launch from the Kennedy Space Center (KSC) at Launch Complex 39A – the former shuttle launch pad which SpaceX has leased from NASA.
SpaceX is currently renovating pad 39A for launches of manned Falcon 9/Dragon missions. And the firm has decided to use it for commercial missions as well while pad 40 is repaired following the pad accident.
This week a Falcon 9 first stage was spotted entering Cape Canaveral to prepare for an upcoming launch.
Getting our astronauts back to space with home grown technology is proving to be far more difficult and time consuming than anyone anticipated – despite the relative simplicity of developing capsule-like vehicles vs. NASA’s highly complex and hugely capable Space Shuttle vehicles.
And time is of the essence for the commercial crew program.
Because for right now, the only path to the ISS for all American astronauts is aboard a Russian Soyuz capsule through seats purchased by NASA – at about $82 million each. But NASA’s contract with Roscosmos for future flight opportunities runs out at the end of 2018. So there is barely a few months margin left before the last available contracted seat is taken.
It takes about 2 years lead time for Russia to build the Soyuz and NASA is not planning to buy any new seats.
So any further delays to SpaceX or Boeing could result in an interruption of US and partner flights to the ISS in 2019 – which is primarily American built.
Since its inception, the commercial crew program has been severely and shortsightedly underfunded by the US Congress. They have repeatedly cut the Administration’s annual budget requests, delaying forward progress and first crewed flights from 2015 to 2018, and forcing NASA to buy additional Soyuz seats from Russia at a cost of hundreds of millions of dollars.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – An exciting new chapter in hurricane monitoring and forecasting intensity prediction is due to open Monday morning at NASA’s Kennedy Space Center when a new constellation of microsatellites dubbed CYGNSS are slated to be deployed from an air-launched Orbital ATK Pegasus XL rocket.
The fleet of eight identical spacecraft comprising the Cyclone Global Navigation Satellite System (CYGNSS) system will be delivered to Earth orbit by an Orbital ATK Pegasus XL rocket.
The Pegasus/CYGNSS vehicle is attached to the bottom of the Orbital ATK L-1011 Stargazer carrier aircraft.
“The CYGNSS constellation consists of eight microsatellite observatories that will measure surface winds in and near a hurricane’s inner core, including regions beneath the eyewall and intense inner rainbands that previously could not be measured from space,” according to a NASA factsheet.
The data obtained by studying the inner core of tropical cyclones “will help scientists and meteorologists better understand and predict the path of a hurricane.”
Improved hurricane forecasts can help protect lives and mitigate property damage in coastal areas under threat from hurricanes and cyclones.
CYGNSS is an experimental mission to demonstrate proof-of-concept that could eventually turn operational in a future follow-up mission if the resulting data returns turn out as well as the researchers hope.
The Pegasus XL rocket with the eight observatories are tucked inside the nose cone will be air-launched by dropping them from the belly of Orbital’s modified L-1011 carrier aircraft, nicknamed Stargazer, after taking off from the “Skid Strip” runway at Cape Canaveral Air Force Station in Florida.
If all goes well, the rocket will be dropped from Stargazer’s belly for the launch currently planned for Monday, Dec. 12 at 8:24 a.m. EST.
Five seconds after the rocket is deployed at 39,000 feet, the solid fueled Pegasus XL first stage engine with ignite for the trip to low earth orbit.
They will be deployed from a dispenser at an altitude of about 510 km and an inclination of 35 degrees above the equator.
The launch window lasts 1 hour with the actual deployment timed to occur 5 minutes into the window.
NASA’s Pegasus/CYGNUS launch coverage and commentary will be carried live on NASA TV – beginning at 6:45 a.m. EDT
Live countdown coverage on NASA’s Launch Blog begins at 6:30 a.m. Dec. 12.
The weather forecast from the Air Force’s 45th Weather Squadron at Cape Canaveral is currently predicting a 40% chance of favorable conditions on Monday Dec 12.
The primary weather concerns are for flight through precipitation and cumulus clouds.
The Pegasus rocket cannot fly through rain or clouds due to a negative impact on the thermal protection system.
In the event of a delay, the range is also reserved for Tuesday, Dec. 13 where the daily outlook increases significantly to an 80% chance of favorable weather conditions.
After Stargazer takes off from the Skid Strip early Monday morning around 6:30 a.m. EST, it will fly north to a designated point about 126 miles east of Daytona Beach, Florida over the Atlantic Ocean. The crew can search for a favorable launch point if needed.
The rocket will be dropped for a short freefall of about 5 seconds. It launches horizontally in midair with ignition of the first stage engine burn, and then tilts up to space to begin the trek to LEO.
The $157 million CYGNSS constellation works in coordination with the Global Positioning System (GPS) satellite constellation.
The eight satellite CYGNSS fleet “will team up with the Global Positioning System (GPS) constellation to measure wind speeds over Earth’s oceans and air-sea interactions, information expected to help scientists better understand tropical cyclones, ultimately leading to improved hurricane intensity forecasts.”
They will receive direct and reflected signals from GPS satellites.
“The direct signals pinpoint CYGNSS observatory positions, while the reflected signals respond to ocean surface roughness, from which wind speed is retrieved.”
“Forecasting capabilities are going to be greatly increased,” NASA Launch Manager Tim Dunn said at the prelaunch media briefing at the Kennedy Space Center on Dec. 10. “As a Floridian, I will really appreciate that, certainly based on what we had to do this fall with Hurricane Matthew.”
The nominal mission lifetime for CYGNSS is two years but the team says they could potentially last as long as five years or more if the spacecraft continue functioning.
Pegasus launches from the Florida Space Coast are infrequent. The last once took place over 13 years ago.
Typically they take place from Vandenberg Air Force Base in California or the Reagan Test Range on the Kwajalein Atoll.
CYGNSS counts as the 20th Pegasus mission for NASA.
The CYGNSS spacecraft were built by Southwest Research Institute in San Antonio, Texas. Each one weighs approx 29 kg. The deployed solar panels measure 1.65 meters in length.
The Space Physics Research Laboratory at the University of Michigan College of Engineering in Ann Arbor leads overall mission execution in partnership with the Southwest Research Institute in San Antonio, Texas.
The Climate and Space Sciences and Engineering Department at the University of Michigan leads the science investigation, and the Earth Science Division of NASA’s Science Mission Directorate oversees the mission.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Iridium Communications announced on Thursday that the first launch of a slew of its next-generation global satellite constellation, dubbed Iridium NEXT, will launch atop a SpaceX Falcon 9 rocket on December 16, 2016 at 12:36 p.m. PST from SpaceX’s west coast launch pad on Vandenberg Air Force Base in California.
However the launch is dependent on achieving FAA approval for the Falcon 9 launch.
All SpaceX Falcon 9 launches immediately ground to a halt following the colossal eruption of a fireball from the Falcon 9 at the launch pad that suddenly destroyed the rocket and completely consumed its $200 million Israeli Amos-6 commercial payload on Sept. 1 during a routine fueling and planned static fire engine test at Cape Canaveral Air Force Station in Florida.
The explosive anomaly resulted from a “large breach” in the cryogenic helium system of the second stage liquid oxygen tank and subsequent ignition of the highly flammable oxygen propellant.
“This launch is contingent upon the FAA’s approval of SpaceX’s return to flight following the anomaly that occurred on September 1, 2016 at Cape Canaveral Air Force Station, Florida,” Iridium said in a statement.
SpaceX quickly started an investigation to determine the cause of the anomaly that destroyed the rocket and its payload and significantly damaged the infrastructure at launch pad 40.
“The investigation has been conducted with FAA oversight. Iridium expects to be SpaceX’s first return to flight launch customer.”
The goal of the privately contracted mission is to deliver the first 10 Iridium NEXT satellites into low-earth orbit to inaugurate what will be a new constellation of satellites dedicated to mobile voice and data communications.
Iridium eventually plans to launch a constellation of 81 Iridium NEXT satellites into low-earth orbit.
“At least 70 of which will be launched by SpaceX,” per Iridium’s contract with SpaceX.
“We’re excited to launch the first batch of our new satellite constellation. We have remained confident in SpaceX’s ability as a launch partner throughout the Falcon 9 investigation,” said Matt Desch, chief executive officer at Iridium, in a statement.
“We are grateful for their transparency and hard work to plan for their return to flight. We are looking forward to the inaugural launch of Iridium NEXT, and what will begin a new chapter in our history.”
Altogether seven Falcon 9 launches will be required to deploy the constellation of 70 Iridium NEXT satellites by early 2018, if all goes well.
The initial batch of Iridium NEXT satellites for this launch began arriving at SpaceX’s Vandenberg AFB satellite processing facility in early August 2016. They were built by Orbital ATK.
Following up on earlier statements by SpaceX President Gwynne Shotwell, SpaceX founder and CEO Elon Musk had said in a televised CNBC interview on Nov. 4 that the firm was aiming to resume launches of the booster in mid-December.
“We are looking forward to return to flight with the first Iridium NEXT launch,” said Gwynne Shotwell, president and chief operating officer of SpaceX.
“Iridium has been a great partner for nearly a decade, and we appreciate their working with us to put their first 10 Iridium NEXT satellites into orbit.”
Musk said the Sept 1 explosion at pad 40 was related to some type of interaction between the liquid helium bottles , carbon composites and solidification of the liquid oxygen propellant in the SpaceX Falcon 9 second stage.
“It basically involves a combination of liquid helium, advanced carbon fiber composites, and solid oxygen, Musk elaborated to CNBC.
“Oxygen so cold that it enters the solid phase.”
The explosion took place without warning as liquid oxygen and RP-1 propellants were being loaded into the second stage of the 229-foot-tall (70-meter) Falcon 9 during a routine fueling test and engine firing test at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl.
But the rocket blew up during the fueling operations and the SpaceX launch team never even got to the point of igniting the first stage engines for the static fire test.
Pad 40 is out of action until extensive repairs and testing are completed.
The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and called into question the rockets overall reliability.
The first Falcon 9 failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.
SpaceX maintains launch pads on both the US East and West coasts.
On the Florida Space Coast, SpaceX plans to initially resume launches at the Kennedy Space Center (KSC) from pad 39A, the former shuttle pad that SpaceX has leased from NASA, while pad 40 is repaired and refurbished.
KSC launches could start as soon as early January 2017 with the EchoStar 23 communications satellite.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about ULA Delta 4 launch on Dec 7, GOES-R weather satellite, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6 & CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Dec 5-7: “ULA Delta 4 Dec 7 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
KENNEDY SPACE CENTER, FL – The fire and fury of the mighty ULA Atlas V got the gorgeous NASA/NOAA GOES-R weather observatory to geostationary orbit just days ago – as a ‘Thanksgiving’ present to all the people of Earth through the combined efforts of the government/industry/university science and engineering teams of hard working folks who made it possible.
Check out this dazzling photo and video gallery from myself and several space journalist colleagues showing how GOES got going – from prelaunch to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 (SLC-41) Cape Canaveral Air Force Station at 6:42 p.m. EST in the evening on Saturday, Nov. 19, 2016.
Three and a half hours after liftoff, the bus sized spacecraft successfully separated from the Atlas Centaur upper stage and deployed its life giving solar arrays.
GOES-R is the most advanced and powerful weather observatory ever built and will bring about a ‘quantum leap’ in weather forecasting.
It’s dramatic new imagery will show the weather in real time enabling critical life and property forecasting, help pinpoint evacuation zones and also save people’s lives in impacted areas of severe weather including hurricanes and tornadoes.
Here’s a pair of beautiful launch videos from space colleague Jeff Seibert and myself:
Video Caption: 5 views from the launch of the NOAA/NASA GOES-R weather satellite on 11/19/2016 from Pad 41 CCAFS on a ULA Atlas. Credit: Jeff Seibert
Video Caption: Launch of the NOAA/NASA GOES-R weather observatory satellite on Nov. 19, 2016 from pad 41 on Cape Canaveral Air Force Station on a ULA Atlas V rocket – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com
GOES-R is the first in a new series of revolutionary NASA/NOAA geostationary weather satellites that will soon lead to more accurate and timely forecasts, watches and warnings for the Earth’s Western Hemisphere when it becomes fully operational in about a year.
GOES-R, which stands for Geostationary Operational Environmental Satellite – R Series – is a new and advanced transformational weather satellite that will vastly enhance the quality, speed and accuracy of weather forecasting available to forecasters for Earth’s Western Hemisphere.
The 11,000 pound satellite was built by prime contractor Lockheed Martin and is the first of a quartet of four identical satellites – comprising GOES-R, S, T, and U – at an overall cost of about $11 Billion. This will keep the GOES satellite system operational through 2036.
The science suite includes the Advanced Baseline Imager (ABI) built by Harris Corporation, the Geostationary Lightning Mapper (GLM) built by Lockheed Martin, Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS), and the Magnetometer (MAG).
ABI is the primary instrument and will collect 3 times more spectral data with 4 times greater resolution and scans 5 times faster than ever before – via the primary Advanced Baseline Imager (ABI) instrument – compared to the current GOES satellites.
GOES-R launched on the massively powerful Atlas V 541 configuration vehicle, augmented by four solid rocket boosters on the first stage.
The payload fairing is 5 meters (16.4 feet) in diameter. The first stage is powered by the Russian built duel nozzle RD AMROSS RD-180 engine. And the Centaur upper stage is powered by a single-engine Aerojet Rocketdyne RL10C engine.
This was only the fourth Atlas V launch employing the 541 configuration.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.