Kepler Space Telescope Mission Extension Proposal

Artist's conception of the Kepler 16 system, where the planet Kepler 16-b orbits two stars, much like Tatooine from Star Wars. Credit: NASA/JPL-Caltech/R. Hurt

[/caption]

Some potentially good news for exoplanet fans, and Kepler fans in particular – Kepler scientists are asking for a mission extension and seem reasonably confident they will get it. Otherwise, funding is due to run out in November of 2012. It is crucial that Kepler receive renewed funding in order to continue its already incredibly successful search for planets orbiting other stars. Its primary goal — and the holy grail of exoplanet research — is finding worlds that are about the size of Earth, orbiting in the “habitable zone” of stars that are similar to our Sun, where temperatures could allow liquid water on their surfaces.

But finding those ideal smaller planets requires several years of observations, in order for Kepler to confirm a repeated orbit as a planet transits its star. The larger the orbit, the longer the observation time needed to view multilple transits. Most of the planetary candidates found already orbit much closer to their stars, hence taking less time to complete an orbit, and can more easily be detected within the first few years of the mission.

Kepler has already obtained very compelling data on a wide variety of planets since it was launched in 2009, with 1,235 candidates found so far (about 25 of which have been confirmed to date), but further refining of the data will take more time; a few more years would do just fine. The exciting trend has been that smaller, rocky planets appear to be much more common than gas giants; good news for those hoping to finds worlds similar to Earth that could be habitable (or, of course, inhabited!).

It is estimated it would cost about $20 million per year to keep Kepler functioning past 2012, which doesn’t sound too bad considering that about $600 million has already been invested in the mission. NASA’s budget, like everyone else’s, is tight though these days, so it isn’t a done deal yet.

The proposal will be submitted in January, with an answer expected by next April or May.

Kepler Mission Discovers “Tatooine-like” Planet

Artist's rendering of Kepler-16b Image Credit: NASA/JPL-Caltech/R. Hurt

[/caption]

In a news conference today, Kepler mission scientists announced the first confirmed circumbinary planet ( a planet that orbits a binary star system). The planet in question, designated Kepler-16b has been compared to the planet Tatooine from the Star Wars saga.

Would it be possible for someone like Luke Skywalker to stand on the surface of Kepler-16b and see the famous “binary sunset” as depicted in Star Wars?

Despite the initial comparison between Kepler-16b and Tatooine, the planets really only have their orbit around a binary star system in common. Kepler-16b is estimated to weigh about a third the mass of Jupiter, with a radius of around three-quarters that of Jupiter.

Given the mass and radius estimates, this makes Kepler-16b closer to Saturn than the rocky, desert-like world of Tatooine. Kepler-16b’s orbit around its two parent stars takes about 229 days, which is similar to Venus’ 225-day orbit. At a distance of about 65 million miles from its parent stars, which are both cooler than our sun, temperatures on Kepler-16b are estimated in the range of around -100 C.

The team did mention that Kepler-16b is just outside of the habitable zone of the Kepler-16 system. Despite being just outside the habitable zone, the team did mention that it could be possible for Kepler-16b to have a habitable moon, if said moon had a thick, greenhouse gas atmosphere.

Binary Sunset as seen on Tatooine
Tatooine appears to have twin stars like our sun, versus the orange (type K) and red (type M) stars of Kepler-16
During the press conference John Knoll, visual effects supervisor at ILM, mentioned: “When I was a kid, I didn’t think it was going to be possible to make discoveries like this.” Knoll also added, “The science is stranger and cooler than fiction!”

The Kepler mission detects exoplanet candidates by using the transit method which detects the dimming of the light emitted from a star as a planet crosses in front of it. In the case of Kepler-16b, the detection was complicated by the two stars in the system eclipsing each other.

The system’s brightness showed variations even when the stars were not eclipsing each other, which hinted at a third body. What further complicated matters was that the variations in brightness appeared at irregular time intervals. The irregular time intervals hinted that the stars were in different positions in their orbit each time the third body passed. After studying the data, the team came to the conclusion that the third body was orbiting, not just one, but both stars.

“Much of what we know about the sizes of stars comes from such eclipsing binary systems, and most of what we know about the size of planets comes from transits,” added Kepler scientist Laurance Doyle of the SETI Institute. “Kepler-16 combines the best of both worlds, with stellar eclipses and planetary transits in one system.” Doyle’s findings will be published in the Sept. 15th issue of the journal Science.

The Kepler mission is NASA’s first mission capable of finding Earth-size planets in or near the habitable zone – the region around a star where liquid water can exist on the surface of an orbiting planet. A considerable number of planets and planet candidates have been detected by the mission so far. If you’d like to learn more about the Kepler mission, visit: http://kepler.nasa.gov/

You can also read more about the Kepler-16b discovery at: http://kepler.nasa.gov/Mission/discoveries/kepler16b/

Source: NASA news conference / NASA TV

Ray Sanders is a Sci-Fi geek, astronomer and space/science blogger. Visit his website Dear Astronomer and follow on Twitter (@DearAstronomer) or Google+ for more space musings.

‘Invisible’ World Discovered Around a Distant Star

The "invisible" world Kepler-19c, seen in the foreground of this artist's conception, was discovered solely through its gravitational influence on the companion world Kepler-19b - the dot crossing the star's face. Kepler-19b is slightly more than twice the diameter of Earth, and is probably a "mini-Neptune." Nothing is known about Kepler-19c, other than that it exists. Credit: David A. Aguilar (CfA)

[/caption]

There’s a planet out there playing a game of ‘doorbell ditch’ with astronomers. Scientists can’t see this distant world, but they know it’s there because its gravity is having a noticeable effect on the orbit of a neighboring planet.

“It’s like having someone play a prank on you by ringing your doorbell and running away,” said astronomer Sarah Ballard of the Harvard-Smithsonian Center for Astrophysics (CfA), lead author on a new paper published in the The Astrophysical Journal. “This invisible planet makes itself known by its influence on the planet we can see.”

The planetary system of the visible and stealthy planets was discovered by the Kepler spacecraft, and the two worlds orbit a Sun-like star named Kepler-19. The system is located 650 light-years from Earth in the constellation Lyra. The 12th-magnitude star is well placed for viewing by backyard telescopes on September evenings in the northern hemisphere.

Launched in 2009, NASA’s Kepler spacecraft hunts for extra-solar planets around stars other than our Sun by watching for planets orbiting in front of their stars. These “transiting” planets block some of the starlight, and that’s how astronomers “see” that a planet is there.

However, the planet and star must line up exactly for us to see a transit.

That was the case for the first planet, Kepler-19b. It transits its star every 9 days and 7 hours, at a distance of 8.4 million miles from the star, where it is heated to a temperature of about 900 degrees Fahrenheit. The great thing about transits is that astronomers can deduce the planet’s physical size: the greater the dip in light, the larger the planet relative to its star. Kepler-19b has a diameter of 18,000 miles, making it slightly more than twice the size of Earth. It may resemble a “mini-Neptune,” however its mass and composition remain unknown.

If Kepler-19b were alone, each transit would follow the next like clockwork. Instead, the transits come up to five minutes early or five minutes late. Such transit timing variations show that another world’s gravity is pulling on Kepler-19b, alternately speeding it up or slowing it down.

If this sounds somewhat familiar, the planet Neptune in our own solar system was discovered similarly. Astronomers tracking Uranus noticed that its orbit didn’t match predictions. They realized that a more distant planet might be nudging or pulling on Uranus and calculated the expected location of the unseen world. Telescopes soon observed Neptune near its predicted position.

But this is the first time this method has been used to find a previously unknown planet in another solar system. Astronomers say no other current technique we have could have found the unseen companion.

“This method holds great promise for finding planets that can’t be found otherwise,” stated Harvard astronomer and co-author David Charbonneau.

So far, astronomers don’t know anything about the invisible world Kepler-19c, other than that it exists. It weighs too little to gravitationally tug the star enough for them to measure its mass. And Kepler hasn’t detected it transiting the star, suggesting that its orbit is tilted relative to Kepler-19b.

“Kepler-19c has multiple personalities consistent with our data. For instance, it could be a rocky planet on a circular 5-day orbit, or a gas-giant planet on an oblong 100-day orbit,” said co-author Daniel Fabrycky of the University of California, Santa Cruz (UCSC).

The Kepler spacecraft will continue to monitor Kepler-19 throughout its mission. Those additional data will help nail down the orbit of Kepler-19c. Future ground-based instruments like HARPS-North will attempt to measure the mass of Kepler-19c. Only then will we have a clue to the nature of this invisible world.

Source: Harvard Smithsonian CfA

Two More Kepler Planets Confirmed

Artst concept of the Kepler telescope in orbit. Credit: NASA

[/caption]

Hot on the heels of confirming one Kepler planet, the Hobby-Eberly Telescope announces the confirmation of another planet. Another observatory, the Nordic Optical Telescope, confirms its first Kepler planet as well, this one as part of a binary system and providing new insights that may force astronomers to revisit and revise estimations on properties of other extrasolar planets.

The first reported of these planets was the announcement from the Nordic Optical Telescope of the confirmation of Kepler 14b. The team estimates the planet to be eight times the mass of Jupiter. It orbits its parent star in a short 7 days, putting this object into the class of hot Jupiters. As noted above, the star is in a binary system with the second star taking some 2,800 years to complete one orbit.

In the announcement the team analyzed the data taking into consideration an effect that has been left out of previous studies of extrasolar planets. The team found that the glare from the nearby star in the binary orbit spilled over onto the image of the star around which the planet orbited. This extra light would dilute the eclipse caused by the planet and subsequently, changed the estimations of the planets properties. The team reported that not correcting for this light pollution, “leads to an underestimate of the radius and mass of the planet by 10% and 60%, respectively.” While this consideration would only apply for planets orbiting stars that were in binary systems, or line of sight double stars, the Kepler 14 system did not appear to be a binary system without high resolution imaging from the Palomar Observatory. This begs the question of whether or not any of the other 500+ known extrasolar planets are in similar systems that have not yet been resolved and whether their parameters may need revision.

The next planet, reported at the end of July, has been dubbed Kepler 17b. Again, this planet falls into the category of Hot Jupiters, although this one is only two and a half time times the mass of Jupiter. It orbits a star very similar the Sun in mass and radius, although expected to be somewhat younger. The observations of the star outside of planetary transits revealed a good deal of activity with temporary dips that did not persist on a regular basis like the signal from the planet. Such variance is likely due to stellar activity and Sunspots and allowed the team to reveal more information about the planet.

Because the planet could also eclipse starspots, it created a stroboscopic effect and the team confirmed the planet orbits in the same direction as the star spins. This is notable since several planets are known to have retrograde orbits.

Kepler Drops In On Planetary Nebula

Gemini Observatory image of Kronberger 61 showing the ionized shell of expelled gas resembling a soccer ball. The light of the nebula here is primarily due to emission from twice-ionized oxygen, and its central star can be seen as the slightly bluer star very close to the center of the nebula. Credit: Gemini Observatory/AURA

[/caption]

Discovered by amateur Austrian astronomer, Matthias Kronberger, planetary nebula Kn 61 just happens to be in a relatively small piece of celestial real estate being monitored by NASA’s Kepler planet finding mission. Lucky for us, we’re able to take a look at the photographic results of the new nebula obtained with the Gemini Observatory.

“Kn 61 is among a rather small collection of planetary nebulae that are strategically placed within Kepler’s gaze,” said Orsola De Marco of Macquarie University in Sydney, Australia who is the author of a 2009 paper speculating on how companion stars or even planets may influence and shape the intricate structure seen in many planetary nebulae. “Explaining the puffs left behind when medium sized stars like our Sun expel their last-breaths is a source of heated debate among astronomers, especially the part that companions might play,” says De Marco, “it literally keeps us up at night!”

And visions like this keeps the Kepler Mission continually monitoring a 105 square degree area of sky located in Cygnus looking for changes in stellar brightness which could spell a planetary transit, companion star – or something else. “It is a gamble that possible companions, or even planets, can be found due to these usually small light variations,” says George Jacoby of the Giant Magellan Telescope Organization and the Carnegie Observatories (Pasadena). “However, with enough objects it becomes statistically very likely that we will uncover several where the geometries are favorable – we are playing an odds game and it isn’t yet known if Kn 61 will prove to have a companion.” Jacoby also serves as the Principal Investigator for a program to obtain follow-up observations of Kn 61’s central star with Kepler.

To help sift through the huge amount of data provided by Kepler, professional and amateur astronomers are working as partners to help locate objects such as planetary nebula. So far, six have been found in the digital sky survey – including Kn 61. “Without this close collaboration with amateurs, this discovery would probably not have been made before the end of the Kepler mission. Professionals, using precious telescope time, aren’t as flexible as amateurs who did this using existing data and in their spare time. This was a fantastic pro-am collaboration of discovery,” says Jacoby, who serves as the liaison with the Deep Sky Hunters (DSH) and requested their help to survey the Kepler field. Jacoby published a paper with DSH members in 2010 that describes the techniques used.

“Planetary nebulae present a profound mystery,” says De Marco. “Some recent theories suggest that planetary nebulae form only in close binary or even planetary systems – on the other hand, the conventional textbook explanation is that most stars, even solo stars like our sun, will meet this fate. That might just be too simple.” Jacoby also elucidates that terrestrial observations are unable to detect such phenomena with a high rate of regularity “This is quite likely due to our inability to detect these binaries from the ground and if so then Kepler is likely to push the debate strongly in one direction or the other.”

As for our own galaxy, over 3,000 planetary nebulae have been identified and cataloged. We know they are the end product of a dying star, but not what role companions stars (or even planets) may take in their structure. Of these, only 20% have binary central stars – but this low number may be our inability to resolve them. Hopefully the space-based Kepler telescope can one day reveal their mysteries us!

Original News Source: Gemini Observatory Image Release.

Another Kepler Planet Confirmed

Artist's concept of Kepler in action. NASA/Kepler mission/Wendy Stenzel.

[/caption]

The Kepler mission, launched in 2009, is looking to greatly improve our understanding of planets. Since beginning operation, the planet hunting spacecraft has made tentative identifications of over 1,200 planets, having spotted them as they transited their parent stars. However, these planets need confirmation from a more robust method, specifically the spectroscopically detected wobbles, before they’re added to the official list of extrasolar planets.

Thus far, confirmations have been slow to come; only 16 of the planets have been detected using other methods. But recently, astronomers using the Hobby-Eberly Telescope (HET), operated by the University of Texas, Austin have confirmed another.

The planet, Kepler-15b, is the first confirmed by this unique telescope. As opposed to most observatories, the mirror at the HET does not track the stars. Instead, the mirror remains stationary and the detecting instruments are moved along the focal plane to track the object in question. While this doesn’t allow for the object to track the entire night, it does let astronomers get continuous observation of the target for up to 2 hours. This unusual configuration was estimated to reduce the construction costs by as much as 80%.

From the Kepler observations, the tentative planet was expected to have an orbital period of just under 5 days and would transit the parent star for 3.5 hours, dimming the star’s light by about 1.2%. Using this information, the expectation was that the planet should have a radius of 1.4 times that of Jupiter, putting it in the class of “hot-Jupiters”.

The observations by the HET were taken from March until November of 2010. The team used the telescope’s spectrometer to search for the signs of variation between 2 and 100 days. When analyzed for periodicity, the team independently confirmed a strong signal with a period of 4.94 days.

Using the new spectroscopic data, the team estimates the new planet has a mass of 0.66 Jupiter masses, and reduces the estimated radius to 0.96 times that of Jupiter, giving a mean density of ~.9 grams per cubic centimeter. The parent star contains high amounts of heavy elements and is tied with Kepler-6 for the most metal rich parent star of the Kepler findings. If the planet, being formed from the same interstellar cloud, has similar metallicity, then it could be expected that the presence of these additional heavy elements could help to shrink the planet.

The team also reports that they have observed other purported Kepler planets and intends to include the findings in an upcoming publication. Additionally, the HET is scheduled for a major upgrade starting later this year. This will include upgrades to the tracking assembly, as well as the fiber optics used in the spectroscope. Currently, this instrument is only capable of performing confirmations for Jovian massed planets, but once upgrades are complete, the team expects to be able to use the system to search for lower mass candidates in the mass range of Neptune and those in the “Super-Earth” category.

Exoplanet Kepler-7b Unexpectedly Reflective

Artist concept of Kepler in space. Credit: NASA/JPL

[/caption]

 

Early on in the hunt for extra solar planets, the main method for discovering planets was the radial velocity method in which astronomers would search for the tug of planets on their parent stars. With the launch of NASA’s Kepler mission, the transit method is moving into the spotlight, the radial velocity technique provided an early bias in the detection of planets since it worked most easily at finding massive planets in tight orbits. Such planets are referred to as hot Jupiters. Currently, more than 30 of this class of exoplanet have had the properties of their emission explored, allowing astronomers to build a picture of the atmospheres of such planets. However, one of the new hot Jupiters discovered by the Kepler mission doesn’t fit the picture.

The consensus on these planets is that they are expected to be rather dark. Infrared observations from Spitzer have shown that these planets emit far more heat than they absorb directly in the infrared forcing astronomers to conclude that visible light and other wavelengths are absorbed and reemitted in the infrared, producing the excess heat and giving rise to equilibrium temperatures over 1,000 K. Since the visible light is so readily absorbed, the planets would be rather dull when compared to their namesake, Jupiter.

The reflectivity of an object is known as its albedo. It is measured as a percentage where 0 would be no reflected light, and 1 would be perfect reflection. Charcoal has an albedo of 0.04 while fresh snow has an albedo of 0.9. The theoretical models of hot Jupiters place the albedo at or below 0.3, which is similar to Earth’s. Jupiter’s albedo is 0.5 due to clouds of ammonia and water ice in the upper atmosphere. So far, astronomers have placed upper limits on their albedo. Eight of them confirm this prediction, but three of them seem to be more reflective.

In 2002, it was reported that the albedo for υAnd b was as high as 0.42. This year, astronomers have placed constraints on two more systems. For HD189733 b, astronomers found that this planet actually reflected more light than it absorbed. For Kepler-7b, an albedo of 0.38 has been reported.

Revisiting this for the latter case, a new paper, slated for publication in an upcoming issue of the Astrophysical Journal, a team of astronomers led by Brice-Olivier Demory of the Massachusetts Institute of Technology confirms that Kepler-7b has an albedo that breaks the expected limit of 0.3 set by theoretical models. However, the new research does not find it to be as high as the earlier study. Instead, they revise the albedo from 0.38 to 0.32.

To explain this additional flux, the team proposes two models. They suggest that Kepler-7b may be similar to Jupiter in that it may contain high altitude clouds of some sort. Due to the proximity to its parent star, it would not be ice crystals and thus, would not reach as high of an albedo as Jupiter, but preventing the incoming light from reaching lower layers where it could be more effectively trapped would help to increase the overall albedo.

Another solution is that the planet may be lacking the molecules most responsible for absorption such as sodium, potassium, titanium monoxide and vanadium monoxide. Given the temperature of the planet, it is unlikely that the molecular components would be present in the first place since they would be broken apart from the heat. This would mean that the planet would have to have 10 to 100 times less sodium and potassium than the Sun, whose chemical composition is the basis for models since our star’s composition is generally representative of stars around which planets have been discovered and presumably, the cloud from which it formed and would also form into planets.

Presently there is no way for astronomers to determine which possibility is correct. Since astronomers are slowly becoming able to retrieve spectra of extrasolar planets, it may be possible in the future for them to test chemical compositions. Failing that, astronomers will need to examine the albedo of more exoplanets and determine just how common such reflective hot Jupiters are. If the number remains low, the plausibility of metal deficient planets remains high. However, if the numbers start creeping up, it will prompt a revision to models of such planets and their atmospheres with greater emphasis on clouds and atmospheric haze.

Amazing Image: Kepler’s Transiting Exoplanets

Visualization of Kepler's planet candidates shown in transit with their parent stars. Credit: Jason Rowe/Kepler Mission/NASA

[/caption]

Wow. This remarkable visualization shows every Kepler planetary candidate host star with its transiting companion in silhouette. Jason Rowe from the Kepler science team created the image, and the sizes of the stars and transiting companions are properly scaled. For reference, Rowe has included the Sun with a transiting Earth and Jupiter (below the top row on the right by itself.) The largest star is 6.1 times larger that the Sun and the smallest stars are estimated to be only 0.3 times the radius of the Sun. On his Flickr page, Rowe says the colors of the stars represent how the eye would see the star outside of the Earths atmosphere. “Stars have been properly limb darkened and the companions have been offset relative to one another to match the modeled impact parameter. Some stars will even show more than one planet!” he writes.

For more information and high resolution versions of the image, see Jason Rowe’s Flickr page. This image is featured on today’s (March 29, 2011) Astronomy Picture of the Day.

Orrery of Kepler’s Exoplanets

Here’s a terrific visualization of all the multiple-planet systems discovered by the Kepler spacecraft as of February 2, 2011. The planets’ orbits go through the entire 3.5 year mission. The different colors represent different sized planets — “hot” colors are the big planets, cooler colors are the smaller ones, relative to the other planets in the system.

And the creator (dfabrycky ) also put together another visualization of just the small systems, too:
Continue reading “Orrery of Kepler’s Exoplanets”

Spectacular ATV Kepler Launch Photo Captured from Orbiting ISS

This remarkable photo was taken by ESA astronaut Paolo Nespoli from the ISS on 16 February 2011, just minutes after ATV Johannes Kepler lifted off on board an Ariane 5 from Kourou at 22:50 UTC. It shows the rising exhaust trail of Ariane, still in its initial vertical trajectory. The trail can be seen as a thin streak framed just beneath the Station's remote manipulator arm. Credits: ESA/ NASA

[/caption]

Have you ever seen a space launch from orbit ?

Check out the spectacular launch photo (above) of the Johannes Kepler ATV streaking skyward atop an Ariane 5 rocket as captured by astronaut Paolo Nespoli from his unparalleled vantage point looking out the windows aboard the International Space Station (ISS), in orbit some 350 km above Earth.

The launch photo shows the rising exhaust trail from the rocket just minutes after blast off of the Ariane booster on Feb. 16 from the ESA rocket base in Kourou, French Guiana, South America. The rocket was still on a vertical ascent trajectory to orbit. Additional launch photos below from space and Earth.

Photo captured on 16 February 2011 from the real-time video from the Ariane 5 launcher during the flight V200 during the time of jettisoning the boosters.

The photo vividly illustrates the maturity of the European space effort since the launch base, Ariane booster rocket, Kepler payload and astronaut Nespoli all stem from Europe and are crucial to the future life of the ISS.

Ariane 5 rocket at the Launch pad at Europe's Spaceport in Kourou, French Guiana with Johannes Kepler ATV bolted on top prior to Feb. 16 blast off.

Kepler is set to dock at the ISS on Feb. 24 and an on time arrival is essential because of an impending orbital traffic jam.

Space Shuttle Discovery is due to link up with the ISS just six hous after Kepler if the orbiter launches according to schedule on Feb. 22.

Everything is nominal with Kepler’s spacecraft systems and orbital performance at this time say European Space Agency (ESA) officials, including the deployment of ATV’s four large solar wings.

Ariane 5 liftoff with Johannes Kepler ATV

The ATV, or Automated Transfer Vehicle, is a European built resupply vessel designed to transport essential cargo and provisions to the ISS. It is Europe’s contribution to stocking up the ISS.

Kepler is carrying carries more than seven metric tons of supplies and cargo for the ISS and will be used to reboost the outpost to a higher orbit during its planned four month mission.

“ATV is a truly European spacecraft. Flying it requires experts from ESA, partner agencies and industry across half a dozen countries,” said ESA’s Bob Chesson, Head of the Human Spaceflight Operations Department.

“Getting it built, into orbit and operating it in flight to docking requires a lot of hard work and dedication from hundreds of people.”

The ATV is named after Johannes Kepler (1571-1630), the German astronomer and mathematician who is best known for discovering the laws of planetary motion. NASA also named its powerful new planet hunting space telescope after Kepler, which recently discovered the first earth sized planets orbiting inside the habitable zone.

After the shuttle is forcibly retired later this year in 2011, the very survival and continued use of the ISS will be completely dependent on a steady train of cargo and payloads lofted by unmanned resupply vessels including the ATV from Europe, HTV from Japan, Progress from Russia and commercial carriers such as SpaceX and Orbital Sciences.

Photos of Ariane rockets rising exhaust trail from Feb. 16 ATV launch photographed from the ISS. Credits: ESA/ NASA

European Space Agency (ESA) astronaut Paolo Nespoli, Expedition 26 flight engineer, conducts a test run with the French/CNES neuroscientific research experiment 3D-Space (SAP) in the Columbus laboratory of the International Space Station.