Weekly Space Hangout – July 26, 2013

It’s time for another Weekly Space Hangout, where a dedicated team of space journalists run down all the big stories in space and astronomy for the week of July 26, 2013.

Host: Fraser Cain

Panel: Jason Major, Scott Lewis, David Dickinson

Stories:
Astrological Sign of the Royal Baby
Cosmos Trailer Showcased at Comiccon
Asteroid 2003 DZ15 Close Pass on Monday
Comet ISON Image with Galaxies
Delta Aquarids Meteor Shower
Pale Blue Dot II
Apollo 11 Anniversary
Some Success with the Kepler Recovery

We record the Weekly Space Hangout live as a Google+ Hangout on Air every Friday at Noon Pacific, 3:00 pm Eastern. You can watch the show live on Google+, or here on Universe Today. But you can also watch the archive after the fact, if live video isn’t your thing.

The Hunt for Exomoons Begins!

An artist's conception of a potentially-habitable exomoon. It seems reasonable that exoplanets have exomoons, and now we're going to look for them. Credit: NASA

The latest exciting undertaking in exoplanet research is the search for exomoons. A team led by Dr. David Kipping at the Harvard-Smithsonian Center for Astrophysics has jumped at this challenge. After having theoretically proven that detecting an Earth-sized exomoon is possible, the team carried out the first detailed search for an exomoon.

Are you leaning forward on the edge of your seat awaiting the results? Well here you go: the data show no evidence of a moon. That’s simply the luck of the draw. We didn’t discover an exoplanet on our first try either. I believe that this non-detection shows that we’re on the verge of our next greatest discovery.

The reasons for searching for exomoons are abundant. “Exomoons may be frequent, habitable abodes for life and so far we know next to nothing about the underlying frequency of such objects in the cosmos,” Dr. Kipping told Universe Today. “They also play an important role in the habitability of those planets which they orbit, for example the Moon is thought to stabilize the axial tilt of the Earth and so too the climate.”

The project titled “The Hunt of Exomoons with Kepler,” more commonly known as HEK, was formed with these reasons in mind. As such, the HEK project will search for exomoons that are likely to be habitable.

The first target is Kepler-22b – the first transiting exoplanet to have been detected in the habitable zone of its host star. At 2.4 Earth radii, it is too large to be considered an Earth-analog, but it could easily have an Earth-sized moon

There are currently two methods in which we may detect exomoons.

1.) Dynamic effects – the exomoon tugs the planet, which causes deviations in the times and durations of the host planet’s transits. This is similar to the radial velocity technique for detecting exoplanets.

2.) Transit effects – the exomoon may transit the star immediately before or just after the planet does. This will cause an added dip in the observed light. See this video for a great demonstration. This is similar to the light curve technique for detecting exoplanets.

The team modeled the initial transit light curves of Kepler-22b. They then injected an Earth-sized moon into the system in order to analyze the effects. While this caused clear variations in the light curve, such variations had to be above the level of noise.

As such, they also injected noise in the light curves, which mirrors that of the Kepler data. In the end, the variations in a star’s light curve due to the presence of an exomoon are much higher than the noise. The team is able to recover the correct answer with extremely high confidence.

Here Kipping et al. presents injected moon fits.  As an example, the upper left-hand figure shows an exoplanet transit, with a moon transiting as well. Here the moon transits first, causing the light to be blocked, then the planet follows, causing more of the light to be blocked.
Here Kipping et al. presents injected moon fits. As an example, the upper left-hand figure shows an exoplanet transit, with a moon transiting as well. Here the moon transits first, causing the light to be blocked, then the planet follows, causing more of the light to be blocked. Source: Kipping et al. 2013

The real data does not show deviations like the previous figure does. This non-detection implies that there is no moon with a mass greater than 0.54 times the mass of the Earth. While there is no Earth-analog in this system, there may be a smaller undetectable moon.

I asked Dr. Kipping about our chances of success in other systems. His answer: “That depends upon nature herself!” We have no idea how regularly nature produces moons in other solar systems. “There is nothing more exciting than working on a project where the answer is wholly unknown.”

But remember: two decades ago we were unsure if nature regularly produced planets. We have since observed them in abundance. I have to believe that with 168 moons in our solar system alone, we’re likely to find them in other systems.  We’re on the verge of the next greatest discovery. So stay tuned because I promise I’ll be writing about it when it happens.

Source: Kipping et al. 2013

Discovery! More Planets Found Orbiting In A Star Cluster

An artist's conception of an exoplanet transiting its home star. Credit: NASA's Goddard Space Flight Center

As Earthlings, we’re so used to thinking about planets being in simple orbits around a single star. But the Sun likely didn’t begin its life alone. It formed as part of a cluster of stars, all feeding from the same well of gas.

Could star clusters also host planets? Or do they have to wait for the little guys until the stars evolve and move further apart? Well, astronomers have actually just found planets — yes, two planets — orbiting Sun-like stars in a cluster 3,000 light-years from Earth.

 

These are the third and fourth star cluster planets yet discovered, but the first found “transiting” or passing across the face of their stars as seen from Earth. (The others were found through detecting gravitational wobbles in the star.)

This is no small feat for a planet to survive. In a telescope, a star cluster might look pretty benign, but up close it’s pretty darn harsh. A press release about the discovery used a lot of words like “strong radiation”, “harsh stellar winds” and “stripping planet-forming materials” in a description of what NGC 6811 would feel like.

An artist's conception of a planet in a star cluster. Credit: Michael Bachofner
An artist’s conception of a planet in a star cluster. Credit: Michael Bachofner

“Old clusters represent a stellar environment much different than the birthplace of the Sun and other planet-hosting field stars,” stated lead author Soren Meibom of the Harvard-Smithsonian Center for Astrophysics.

“We thought maybe planets couldn’t easily form and survive in the stressful environments of dense clusters, in part because for a long time we couldn’t find them.”

The find, as you would expect, comes from the prolific planet-hunting NASA Kepler spacecraft that is now battling problems with pointing in the right direction. Although the telescope is in the penalty box, there still are reams of data waiting to be analyzed and released.

The planets are known as Kepler-66b and Kepler-67b, and are both approaching the size of Neptune (which is four times the size of Earth). Their parent cluster, NGC 6811, is one billion years old. Astronomers are still puzzled as to how these little worlds survived for so long.

“Highly energetic phenomena including explosions, outflows and winds often associated with massive stars would have been common in the young cluster,” stated the journal paper in Nature.

“The degree to which the formation and evolution of planets is influenced by a such a dense and dynamically and radiatively hostile environment is not well understood, either observationally or theoretically.”

Check out the entire study in the latest edition of Nature.

Source: Harvard-Smithsonian Center for Astrophysics

Flying Space Toasters: Electrified Exoplanets Really Feel the Heat

Artist's concept of Jupiter-sized exoplanet that orbits relatively close to its star (aka. a "hot Jupiter"). Credit: NASA/JPL-Caltech)
Artist's concept of Jupiter-sized exoplanet that orbits relatively close to its star (aka. a "hot Jupiter"). Credit: NASA/JPL-Caltech)

Overheated and overinflated, hot Jupiters are some of the strangest extrasolar planets to be discovered by the Kepler mission… and they may be even more exotic than anyone ever thought. A new model proposed by Florida Gulf Coast University astronomer Dr. Derek Buzasi suggests that these worlds are intensely affected by electric currents that link them to their host stars. In Dr. Buzasi’s model, electric currents arising from interactions between the planet’s magnetic field and their star’s stellar wind flow through the interior of the planet, puffing it up and heating it like an electric toaster.

In effect, hot Jupiters are behaving like giant resistors within exoplanetary systems.

Many of the planets found by the Kepler mission are of a type known as “hot Jupiters.” While about the same size as Jupiter in our own solar system, these exoplanets are located much closer to their host stars than Mercury is to the Sun — meaning that their atmospheres are heated to several thousands of degrees.

One problem scientists have had in understanding hot Jupiters is that many are inflated to sizes larger than expected for planets so close to their stars. Explanations for the “puffiness” of these exoplanets have generally involved some kind of extra heating process — but no model successfully explains the observation that more magnetically active stars tend to have puffier hot Jupiters orbiting around them.

“This kind of electric heating doesn’t happen very effectively on planets in our solar system because their outer atmospheres are cold and don’t conduct electricity very well,” says Dr. Buzasi. “But heat up the atmosphere by moving the planet closer to its star and now very large currents can flow, which delivers extra heat to the deep interior of the planet — just where we need it.”

More magnetically active stars have more energetic winds, and would provide larger currents — and thus more heat — to their planets.

The currents start in the magnetosphere, the area where the stellar wind meets the planetary magnetic field, and enter the planet near its north and south poles. This so-called “global electric circuit” (GEC) exists on Earth as well, but the currents involved are only a few thousand amps at 100,000 volts or less.

On the hot Jupiters, though, currents can amount to billions of amps at voltages of millions of volts — a “significant current,” according to Dr. Buzasi.

A Spitzer-generated exoplanet weather map showing temperatures on a hot Jupiter HAT-P-2b.
A Spitzer-generated exoplanet weather map showing temperatures on hot Jupiter HAT-P-2b.

“It is believed that these hot Jupiter planets formed farther out and migrated inwards later, but we don’t yet fully understand the details of the migration mechanism,” Dr. Buzasi says. “The better we can model how these planets are built, the better we can understand how solar systems form. That in turn, would help astronomers understand why our solar system is different from most, and how it got that way.”

Other electrical heating processes have previously been suggested by other researchers as well, once hints of magnetic fields in exoplanets were discovered in 2003 and models of atmospheric wind drag — generating frictional heating — as a result of moving through these fields were made in 2010.

(And before anyone attempts to suggest this process supports the alternative “electric universe” (EU) theory… um, no.)

“No, nothing EU-like at all in my model,” Dr. Buzasi told Universe Today in an email. “I just look at how the field aligned currents that we see in the terrestrial magnetosphere/ionosphere act in a hot Jupiter environment, and it turns out that a significant fraction of the resulting circuit closes inside the planet (in the outer 10% of the radius, mostly) where it deposits a meaningful amount of heat.”

This work will be presented at the 222nd meeting of the American Astronomical Society on June 4, 2013.

Habitable Worlds? New Kepler Planetary Systems in Images

Relative sizes of Kepler habitable zone planets discovered as of 2013 April 18. Left to right: Kepler-22b, Kepler-69c, Kepler-62e, Kepler-62f, and Earth (except for Earth, these are artists' renditions). Credit: NASA/Ames/JPL-Caltech.

The Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the “habitable zone,” the range of distance from a star where the surface temperature of an orbiting planet might be suitable for liquid water.

The Kepler-62 system has five planets; 62b, 62c, 62d, 62e and 62f. The Kepler-69 system has two planets; 69b and 69c. Kepler-62e, 62f and 69c are the super-Earth-sized planets. (Read all the details in our full article here.)

The new planets brings the number of confirmed exoplanets to 861. According to the Planetary Habitability Laboratory, there are now nine potential habitable worlds outside of our solar system, with 18 more potentally habitable planetary candidates found by Kepler waiting to be confirmed. Additionally, astronomers predict there are 25 potentially habitable exomoons.

Here is some of the imagery (sorry, but they are artists concepts!), graphs and video used in today’s briefing about the new discoveries, as well as some some from the Planetary Habitability Laboratory:

Here’s a flythrough of the Kepler 62 system:

The diagram compares the planets of the inner solar system to Kepler-69, a two-planet system about 2,700 light-years from Earth. Image credit: NASA Ames/JPL-Caltech
The diagram compares the planets of the inner solar system to Kepler-69, a two-planet system about 2,700 light-years from Earth.
Image credit: NASA Ames/JPL-Caltech
Much like our solar system, Kepler-62 is home to two habitable zone worlds. The small shining object seen to the right of Kepler-62f is Kepler-62e. Orbiting on the inner edge of the habitable zone, Kepler-62e is roughly 60 percent larger than Earth. Image credit: NASA Ames/JPL-Caltech.
Much like our solar system, Kepler-62 is home to two habitable zone worlds. The small shining object seen to the right of Kepler-62f is Kepler-62e. Orbiting on the inner edge of the habitable zone, Kepler-62e is roughly 60 percent larger than Earth. Image credit: NASA Ames/JPL-Caltech.
The diagram compares the planets of the inner solar system to Kepler-62, a five-planet system about 1,200 light-years from Earth. Image credit: NASA Ames/JPL-Caltech
The diagram compares the planets of the inner solar system to Kepler-62, a five-planet system about 1,200 light-years from Earth. Image credit: NASA Ames/JPL-Caltech
Current known potentially habitable exoplanets. Credit: Planetary Habitability Laboratory/University of Puerto Rico, Arecibo.
Current known potentially habitable exoplanets. Credit: Planetary Habitability Laboratory/University of Puerto Rico, Arecibo.
Current potentially habitable exoplanets showing the new additions, Kepler-62e and Kepler-62f. Credit: Planetary Habitability Laboratory/University of Puerto Rico, Arecibo.
Current potentially habitable exoplanets showing the new additions, Kepler-62e and Kepler-62f. Credit: Planetary Habitability Laboratory/University of Puerto Rico, Arecibo.
Comparison of the orbit and size of the exoplanets of Kepler-62 with the terrestrial planets of our Solar Systems. The darker green shaded area corresponds to the 'conservative habitable zone' while its lighter borders to its 'optimistic habitable zone' extension. Planet sizes and orbits are not to scale between them. Credit: Planetary Habitability Laboratory/University of Puerto Rico, Arecibo.
Comparison of the orbit and size of the exoplanets of Kepler-62 with the terrestrial planets of our Solar Systems. The darker green shaded area corresponds to the ‘conservative habitable zone’ while its lighter borders to its ‘optimistic habitable zone’ extension. Planet sizes and orbits are not to scale between them. Credit: Planetary Habitability Laboratory/University of Puerto Rico, Arecibo.

Kepler Team Finds System with Two Potentially Habitable Planets

The newly discovered planets named Kepler-62e and -f are super-Earths in the habitable zone of a distant sun-like star. The largest planet in the image, Kepler-62f, is farthest from its star and covered by ice. Kepler-62e, in the foreground, is nearer to its star and covered by dense clouds. Closer in orbits a Neptune-size ice giant with another small planet transiting its star. Both habitable-zone planets may be capable of supporting life. Credit: David A. Aguilar (CfA)

This might be the most exciting exoplanet news yet. An international team of scientists analyzing data from NASA’s Kepler mission has found a planetary system with two small, potentially rocky planets that lie within the habitable zone of their star. The star, Kepler-62, is a bit smaller and cooler than our Sun, and is home to a five-planet system. Two of the worlds, Kepler-62e and Kepler-62f are the smallest exoplanets yet found in a habitable zone, and they might both be covered in water or ice, depending on what kind of atmosphere they might have.

“Imagine looking through a telescope to see another world with life just a few million miles from your own. Or, having the capability to travel between them on a regular basis. I can’t think of a more powerful motivation to become a space-faring society,” said Harvard astronomer Dimitar Sasselov, who is co-author of a new paper describing the discovery.

Masses and sizes for selected planets. The curves show the mass-radius-relation (average density) for different types of planets: The blue line indicates the loci of planets made mostly (75%) of water, the black line that of planets like our Earth that consist almost exclusively of rock (represented here by the mineral Enstatite, MgSiO3, a member of the pyroxite silicate mineral series that makes up most of the Earth's mantle), and so on. The measured radii of Kepler-62e and Kepler-62f plus an estimate of their mass places them in a region (blue areas) where it is highly probable for them to be earth-like planets, that is: planets with a solid (if possibly covered in water) surface. Kepler-11f, on the other hand, is a Mini-Neptune, showing clearly that a comparatively low mass does not necessarily make for a solid planet. Image: L. Kaltenegger (MPIA)
Masses and sizes for selected planets. The curves show the mass-radius-relation (average density) for different types of planets: The blue line indicates the loci of planets made mostly (75%) of water, the black line that of planets like our Earth that consist almost exclusively of rock (represented here by the mineral Enstatite, MgSiO3, a member of the pyroxite silicate mineral series that makes up most of the Earth’s mantle), and so on. The measured radii of Kepler-62e and Kepler-62f plus an estimate of their mass places them in a region (blue areas) where it is highly probable for them to be earth-like planets, that is: planets with a solid (if possibly covered in water) surface. Kepler-11f, on the other hand, is a Mini-Neptune, showing clearly that a comparatively low mass does not necessarily make for a solid planet. Image: L. Kaltenegger (MPIA)

Kepler-62 in the constellation Lyra, and is about 1,200 light-years from Earth.

62e is 1.61 times Earth’s size, circles the star in 122.4 (Earth) days. 62f is 1.4 times the size of Earth, and orbits its star in 267.3 days. Previously, the smallest planet with known radius inside a habitable zone was Kepler-22b, with a radius of 2.4 times that of the Earth.

A third planet in another star system was also announced at a press briefing today. Kepler-69c is 70 percent larger than the size of Earth, and orbits in the habitable zone of a star similar to our Sun. Researchers are uncertain about the composition of Kepler-69c, but astronomer Thomas Barclay from the BAER Institute said its closer orbit of 242 days around a Sun-like star means it is likely more like a super-Venus rather than a super-Earth.

The habitable zone (in which liquid water on a planet's surface can exist) for different types of stars. The inner planets of our Solar System are shown on top, with Earth and Mars in the habitable zone. Kepler-62 is a notably cooler star, and Kepler-62e and -62f are in its habitable zone. For Kepler-69c, another planet announced today by NASA, the error bars for the star's radiation are such that it could possibly in the habitable zone as well. Kepler-22b, the smallest planet found in a habitable zone before the recent discoveries, is very likely a Mini-Neptune, and not a solid planet. In what is denoted the empirical habitable zone, liquid water can exist on the surface of a planet if that planet has sufficient cloud cover. In the narrow habitable zone, liquid water can exist on the surface even without the presence of a cloud cover. Image: L. Kaltenegger (MPIA)
The habitable zone (in which liquid water on a planet’s surface can exist) for different types of stars. The inner planets of our Solar System are shown on top, with Earth and Mars in the habitable zone. Kepler-62 is a notably cooler star, and Kepler-62e and -62f are in its habitable zone. For Kepler-69c, another planet announced today by NASA, the error bars for the star’s radiation are such that it could possibly in the habitable zone as well. Kepler-22b, the smallest planet found in a habitable zone before the recent discoveries, is very likely a Mini-Neptune, and not a solid planet. In what is denoted the empirical habitable zone, liquid water can exist on the surface of a planet if that planet has sufficient cloud cover. In the narrow habitable zone, liquid water can exist on the surface even without the presence of a cloud cover. Image: L. Kaltenegger (MPIA)

The team says that while the sizes of Kepler 62e and 62f are known, their mass and densities are not. However, every planet found in their size range so far has been rocky, like Earth.

Kepler-62 system. Five planets, two of which are in the Habitable Zone. Credit: NASA
Kepler-62 system. Five planets, two of which are in the Habitable Zone. Credit: NASA

“These planets are unlike anything in our solar system. They have endless oceans,” said lead author Lisa Kaltenegger of the Max Planck Institute for Astronomy and the Harvard Smithsonian Center for Astrophysics. “There may be life there, but could it be technology-based like ours? Life on these worlds would be under water with no easy access to metals, to electricity, or fire for metallurgy. Nonetheless, these worlds will still be beautiful blue planets circling an orange star — and maybe life’s inventiveness to get to a technology stage will surprise us.”

As the warmer of the two worlds, Kepler-62e would have a bit more clouds than Earth according to computer models. More distant Kepler-62f would need the greenhouse effect from plenty of carbon dioxide to warm it enough to host an ocean. Otherwise, it might become an ice-covered snowball.

“Kepler-62e probably has a very cloudy sky and is warm and humid all the way to the polar regions. Kepler-62f would be cooler, but still potentially life-friendly,” said Harvard astronomer and co-author Dimitar Sasselov. “The good news is — the two would exhibit distinctly different colors and make our search for signatures of life easier on such planets in the near future. “

The Kepler spacecraft is able to detect planets that transit or cross the face of their host star. Measuring a transit tells astronomers the size of the planet relative to its star.

“All of the other interesting planets in the habitable zone were until now discovered by what is known as the radial velocity method,” said Kaltenegger. “This method gives you a lower limit for the planet’s mass, but no information about its radius. This makes it difficult to assess whether or not a planet is rocky, like the Earth. A small radius (less than 2 Earth radii), on the other hand, is a strong indicator that a planet around is indeed rocky – unless we are talking about a planet around a very young star.”

“What makes Kepler-62e and Kepler-62f so exciting is a combination of two factors,” Kaltenegger added. “We know their radius, which indicates that these are indeed rocky planets, and they orbit their star in the habitable zone. That makes them our best candidates for habitable planets out there yet.

Kaltenegger provides more details on these exoplanets in this video:

Sources: Max Planck Institute for Astronomy, CfA

Kepler’s Weirdest Exoplanets

Artist's concept of Kepler in action. NASA/Kepler mission/Wendy Stenzel.

Captain Kirk has nothing on the “strange new worlds” the Kepler space telescope has found.

NASA’s planet-probing orbiting observatory launched its quest to find more Earths four years ago this week. Since then, it’s found thousands of planets ranging from ginormous gas giants to tiny rocky worlds that are even smaller than our planet. NASA extended its mission to 2016 last year, putting the telescope into planet-hunting overtime and, we assume, scientists into overdrive.

Along the way, Kepler has revealed some bizarre star systems. Check out some of the weirdest exoplanets Kepler has found so far:

‘Tatooine’ (Kepler-16b)

Kepler 16b. Credit: NASA/JPL-Caltech
Kepler-16b. Credit: NASA/JPL-Caltech

“Circumbinary” is the scientific explanation for Kepler-16b’s 2 star-system. But “Tatooine” is the name that took the public by storm (or is that Stormtrooper?) when this world, orbiting two stars, was revealed in 2011. Although it’s named after Luke Skywalker’s home in Star Wars, proving Kepler-16b is habitable would be a bit of a stretch. The planet’s mass is about one-third that of Jupiter, and surface temperatures reach an estimated and frigid -100 degrees Celsius.

Deciphering a tune (Kepler-37b)

Kepler-37b, a moon-sized exoplanet. Credit: NASA/Ames/JPL-Caltech
Kepler-37b, a moon-sized exoplanet. Credit: NASA/Ames/JPL-Caltech

Scientists found Kepler 37-b through listening to its parent star sing. Seriously. The planet (just slightly larger than our moon) was revealed through measuring oscillations in brightness caused by star-quakes, then converting those to sound. “The bigger the star, the lower the frequency, or ‘pitch’ of its song,” said Steve Kawaler, a research team member from Iowa State University in a past Universe Today interview.

The 6-planet swarm (Kepler-11b, 11c, 11d, 11e, 11f, 11g)

Kepler's planets displayed by size comparison. The six new planets around Kepler 11 are on the bottom. Image credit: NASA/Wendy Stenzel
Kepler’s planets displayed by size comparison. The six new planets around Kepler 11 are on the bottom. Image credit: NASA/Wendy Stenzel

It’s sure crowded around the star Kepler-11. There are six planets orbiting in circles smaller than Venus’ orbit around the Sun. Not only that, but five of those planets are even closer to their parent star than Mercury is to our sun. Excited astronomers said the system will rewrite planetary formation theories. “We really were just amazed at his gift that nature has given us,” said Jack Lissauer, co-investigator of the Kepler mission, in 2011. “With six transiting planets, and five so close and getting the sizes and masses of five of these worlds, there is only one word that adequately describes the new finding: Supercalifragilisticexpialidocious.”

The warring siblings (Kepler-36b and 36c)

In this artist’s conception, a “hot Neptune” known as Kepler-36c looms in the sky of its neighbor, the rocky world Kepler-36b. The two planets have repeated close encounters, experiencing a conjunction every 97 days on average. At that time, they are separated by less than 5 Earth-Moon distances. Such close approaches stir up tremendous gravitational tides that squeeze and stretch both planets, which may promote active volcanism on Kepler-36b. Credit: David A. Aguilar (CfA)
In this artist’s conception, a “hot Neptune” known as Kepler-36c looms in the sky of its neighbor, the rocky world Kepler-36b. The two planets have repeated close encounters, experiencing a conjunction every 97 days on average. At that time, they are separated by less than 5 Earth-Moon distances. Such close approaches stir up tremendous gravitational tides that squeeze and stretch both planets, which may promote active volcanism on Kepler-36b.
Credit: David A. Aguilar (CfA)

Take a planet the size of Neptune and put it near Earth, and you’d have some scary results. Tides from the constant interaction would raise the water and the ground, causing fissures and no end of local zoning headaches for municipal authorities as the ground shifts, to say the least. Seriously, though, Kepler-36b (the rocky world) comes within less than 5 Earth-Moon distances of Kepler 36-c (a gaseous world about 8 times larger) every 97 days or so. They’ll never crash into each other, but just like young human siblings, they can cause quite a bit of chaos.

The mirror (Kepler-7b)

Kepler 7b, at right, was one of the first planets discovered by Kepler. Credit: NASA
Kepler 7b, at right, was one of the first planets discovered by Kepler. Credit: NASA

Well, Kepler-7b isn’t quite as reflective as a mirror, but it certainly catches more sunlight than scientists expected. This “hot Jupiter” was among the first planets that Kepler spotted. In 2011, however, it was revealed that its albedo, or reflectivity, flirted with the upper limit for these humongous planets. What’s causing this? Could be clouds, or could be the composition of its atmosphere. Shows we still have a lot to learn about these exoplanets.

Earthlike Exoplanets Are All Around Us

Artist's impression of a Jupiter-sized exoplanet orbiting an M-dwarf star

Artist’s impression of a rocky planet orbiting a red dwarf. Credit: David A. Aguilar (CfA)

We may literally be surrounded by potentially habitable exoplanets, according to new research by a team from the Harvard-Smithsonian Center for Astrophysics.

Using data gathered by NASA’s exoplanet-hunting Kepler spacecraft, the CfA researchers discovered that many red dwarf stars harbor planets, and some of those planets are rocky, Earth-sized worlds. Considering that red dwarfs, albeit optically dim, are the most abundant type of stars in our galaxy, this means that even a small percentage of them being host to Earthlike exoplanets puts the total number of potentially habitable worlds very high — and some of them could be right next door.

“We thought we would have to search vast distances to find an Earth-like planet,” said CfA astronomer and the paper’s lead author Courtney Dressing. “Now we realize another Earth is probably in our own backyard, waiting to be spotted.”

And our own backyard, in cosmic terms, could mean a mere 13 light-years away.

Our solar system is surrounded by red dwarfs. You can’t see them in the night sky because they are much too dim — less than a thousandth the brightness of the Sun. But they make up 75% of the stars in the local neighborhood, and based on the Kepler data the CfA team estimates that 6% of those red dwarfs likely have an Earth-sized planet in orbit around them.

And with at least 75 billion red dwarfs scattered across the galaxy… well, you do the math.*

“We now know the rate of occurrence of habitable planets around the most common stars in our galaxy,” said co-author David Charbonneau (CfA). “That rate implies that it will be significantly easier to search for life beyond the solar system than we previously thought.”

Red-Dwarfs

A visualization of the “unseen” red dwarfs in the night sky. Credit: D. Aguilar & C. Pulliam (CfA) See original here.

The conditions on a planet orbiting a red dwarf wouldn’t be exactly like Earth, of course. The planet would have to orbit rather closely to its star to be within its habitable zone, and would have to have a reasonably thick atmosphere to regulate heat and protect it from stellar outbursts. But one benefit to orbiting a red dwarf is that they have very long life spans — potentially longer than the current age of the Universe! So a habitable world around a red dwarf would literally have billions of years for life to evolve, thrive and develop on it.

“We might find an Earth that’s 10 billion years old,” Charbonneau said.

The team’s findings were presented today, Feb. 6, by Dressing during a press conference at the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. The results will be published in The Astrophysical Journal. (Added 2/7/13: here’s the video of the press conference.)

press_conference_d+c2013.pptxCfA astronomers identified 95 planetary candidates circling red dwarf stars. Of those, three orbit within the habitable zone (marked in green) – the distance at which they should be warm enough to host liquid water on the surface. Those three planetary candidates (marked with blue dots) are 0.9, 1.4, and 1.7 times the size of Earth. Credit: C. Dressing (CfA)

Read more on the CfA news release here.

*Ok, I did the math. That’s 4,500,000,000 Earth-like exoplanets around red dwarfs alone!

Kepler Spacecraft Back in Action After Reaction Wheel Problem

Artist's concept of Kepler in action. NASA/Kepler mission/Wendy Stenzel.

There has been some concern about the Kepler spacecraft after one of the devices that provide the ability for super-precise pointing began misbehaving. Reaction wheels are devices which aim a spacecraft in different directions without firing rockets or jets, which reduces the amount of fuel a spacecraft needs; Kepler has four of them. Earlier this year, elevated friction was detected in reaction wheel #4, and so as a precaution for wheel safety, and as a measure to mitigate the friction, the reaction wheels were spun down to zero-speed and the spacecraft was placed in a thruster-controlled safe mode.

But now after a “rest” of the wheels for ten days, Kepler has now returned to science data collection beginning on January 28, 2013, and reaction wheel #4 seems to be operating normally, for now. During the 10-day resting safe mode, daily health and status checks with the spacecraft using NASA’s Deep Space Network were normal.

This is of special concern because last year, reaction wheel #2 failed. Kepler scientists say the spacecraft needs at least three wheels must operate until at least 2016 for Kepler to achieve its prime objective of finding Earth-like planets around sun-like stars. Last year, NASA approved an extended mission for Kepler through 2016, and so a lot is riding on the health of the spacecraft’s reaction wheels.

During much of the mission, ground controllers have observed intermittent friction on wheel # 4. Wheel # 2, on the other hand, showed no problems until early 2012, and it failed several months later.

“Since the failure of reaction wheel #2 in July 2012, the performance of the spacecraft on three wheels has been excellent,” said Kepler Project Manager Roger Hunter, writing an update on the Kepler website, noting that when reaction wheel #2 began to fail, it also exhibited elevated and somewhat chaotic friction.

“Reaction wheel #4 has been something of a free spirit since launch, with a variety of friction signatures, none of which look like reaction wheel #2, and all of which disappeared on their own after a time,” Hunter said. “Resting the wheels can provide an opportunity for the lubricant in the bearings to redistribute and potentially return the friction to nominal levels. Over the next month, the engineering team will review the performance of reaction wheel #4 before, during, and after the safe mode to determine the efficacy of the rest operation.”

As Emily Lakdawalla noted in one of the Weekly Space Hangouts, engineers are getting creative in how to deal with hardware issues in spacecraft, and compared the Kepler team’s approach to “resting” the reaction wheel to how engineers working with the Spirit Mars rover came up with the plan to have the rover drive backwards when one of the wheels started acting up, and the lubricant lasted longer when the wheel was used in the opposite direction.

Engineers for Kepler have implemented additional procedures to extend the lives of the reaction wheels, including running the wheels at warmer temperatures and alternating their spin directions.

Kepler was launched in March 2009, and is in an Earth-trailing solar orbit. It is pointed toward constellations Cygnus and Lyra, observing a 10-degree-wide field containing at least 4.5 million stars. Kepler is focusing on approximately 156,000 stars for the purposes of its research. Kepler scientists have found 105 new planets around other stars, and the mission’s data archive has evidence for more than 2,700 planet candidates.

A Moon With Two Suns: Making Art from Science

A view of Kepler 47c and binary stars. ©Digital Drew. All rights reserved.

What would it look like on a hypothetical icy moon orbiting the exoplanet Kepler 47c? Perhaps something like this.

This is an illustration by an artist who goes by the name Digital Drew on Flickr. Drew creates landscapes of imagined alien worlds orbiting stars (and sometimes planets) that actually exist in the Universe. With 3D software, a little science and a lot of imagination, Drew shows us what skies might look like on other planets.

Kepler 47c (KOI-3154.02) is a Neptune-sized exoplanet orbiting a binary star pair 4,600 light-years away. It is part of the first circumbinary system ever discovered — one of at least two planets orbiting a pair of stars. In the image here, Kepler 47c is seen at upper left.

681737main_K47system_diagram_4x3_946-710What makes this exoplanet so exciting is that it is within the habitable zone around the stellar pair. So even though the planet itself may be a gas giant and thus not particularly suitable for life, any moons it has in orbit just might be.

While its slightly smaller planetary companion Kepler 47b orbits much too closely to the twin suns for water to exist as a liquid, 47c’s orbit is much farther out, completing one revolution every 303 days. Mainly illuminated by a star like our Sun but about 15% dimmer, this is a region where you could very well find a large rocky moon with conditions similar to Earth’s.

Fly a spacecraft over its higher elevations and you just might see a scene like this, a double sunset over a glacier-filled valley with a crescent gas giant dominating the sky. (Makes one wonder what the balmier regions might look like!)

“Unlike our sun, many stars are part of multiple-star systems where two or more stars orbit one another. The question always has been — do they have planets and planetary systems? This Kepler discovery proves that they do. In our search for habitable planets, we have found more opportunities for life to exist.”

– William Borucki, Kepler mission principal investigator (Sept. 2012)

And as more giant planets are discovered within their system’s habitable zones, the more there’s a chance that habitable moons could exist — or perhaps even be more common than habitable planets! Just recently the citizen science project Planet Hunters announced the potential exoplanet PH2 b, a Jupiter-sized world that orbits within a habitable zone. In our Solar System Jupiter has lots of moons; PH2 b could very well have a large number of moons of its own, any number of them with liquid water on their surfaces and temperatures “just right” for life.

Read more: Exciting Potential for Habitable Exomoons

While it will likely be quite some time before we see any direct observations of an actual exomoon, and possibly never from one, we must rely on the work of artists like Digital Drew to illustrate the many possibilities that exist.

See more of Drew’s work on his Flickr page here, and read more about the discovery of the Kepler 47 system here.

Inset image: Diagram of the Kepler 47 system compared to the inner Solar System. Credit: NASA/JPL-Caltech/T. Pyle.