Supernova Wreckage is Still Expanding at Extreme Speeds After 400 Years

Visible, infrared, and X-ray light image of Kepler's supernova remnant (SN 1604) located about 13,000 light-years away. Credit: NASA, ESA, R. Sankrit and W. Blair (Johns Hopkins University).

Four centuries ago, Johannes Kepler observed a bright new star in the night sky. Astronomers from all over the world noticed it, but it came to be known as Kepler’s star. It was caused by a stellar explosion 20,000 light-years from Earth, and it was the most recent naked-eye supernova to appear in our galaxy.

Continue reading “Supernova Wreckage is Still Expanding at Extreme Speeds After 400 Years”

This Galaxy Has Been Home to 5 Supernovae in the Last 20 Years

Some of the most dramatic events in the Universe occur when certain stars die — and explode catastrophically in the process. Such explosions, known as supernovae, mainly occur in a couple of ways: either a massive star depletes its fuel at the end of its life, become dynamically unstable and unable to support its bulk, collapses inwards, and then violently explodes; or a white dwarf in an orbiting stellar couple syphons more mass off its companion than it is able to support, igniting runaway nuclear fusion in its core and beginning the supernova process. Both types result in an intensely bright object in the sky that can rival the light of a whole galaxy. In the last 20 years the galaxy NGC 5468, visible in this image, has hosted a number of observed supernovae of both the aforementioned types: SN 1999cp, SN 2002cr, SN2002ed, SN2005P, and SN2018dfg. Despite being just over 130 million light-years away, the orientation of the galaxy with respect to us makes it easier to spot these new ‘stars’ as they appear; we see NGC 5468 face on, meaning we can see the galaxy’s loose, open spiral pattern in beautiful detail in images such as this one from the NASA/ESA Hubble Space Telescope.

When stars die, they don’t die quietly but prefer to go out with a bang! This is known as a supernova, which occurs when a star has expended all of its fuel and undergoes gravitational collapse. In the process, the outer layers of the star will be blown off in a massive explosion visible from billions of light-years away. For decades, NASA has been monitoring galaxies beyond the Milky Way and detected numerous supernova taking place.

For instance, over the past 20 years, the Hubble Space Telescope has been monitoring the galaxy NGC 5468 – an intermediate spiral galaxy located roughly 130 million light-years from Earth in the constellation Virgo. In that time, this galaxy has experienced 5 supernovae and, thanks to its orientation (perpendicular to our own), astronomers have been able to study this galaxy and its supernovae in glorious detail.

Continue reading “This Galaxy Has Been Home to 5 Supernovae in the Last 20 Years”

The Unusually Colossal Kepler Supernova

A composite image of Chandra X-ray data shows a rainbow of reds, yellows, green, blue and purple, from lower to higher energies. Optical data from the Digitized Sky Survey, shown in pale yellow and blue, offer a starry background for the image. Optical: DSS

An arc of hot gas that spewed from the Kepler Supernova offers tantalizing clues that the cataclysmic stellar explosion of 1604 was not only more powerful than previously thought but also farther away according to a recent study using Chandra X-ray Observatory data published in the September 1, 2012 edition of The Astrophysical Journal.

A new star appeared in the autumn skies of 1604. Although it was described by other astronomers, it was famous astronomer Johannes Kepler who thoroughly detailed the the second supernova sighting in a generation. The star shined more brilliant than Jupiter and remained visible – even during the day – over several weeks.

Look for Kepler’s Supernova at the foot of the constellation Ophiuchus, the Serpent Bearer, in visible light and you won’t see much. But the hot gas and dust glow brightly in the X-ray images from Chandra. Astronomers have long puzzled over Kepler’s Supernova. Astronomers now know the explosion that created the remnant was a Type Ia supernova. Supernovae of this class occur when a white dwarf, the white-hot dead core of a once Sun-like star, gains mass by either merging with another white dwarf or drawing gas onto its surface from a larger companion star until temperatures soar and thermonuclear processes spiral out of control resulting in a detonation that destroys the star.

Kepler’s Supernova is a bit different because the expanding debris cloud is shaped by gas and dust clouds throughout the area. Most Type Ia supernovae are symmetrical; nearly perfect expanding bubbles of material. A quick look at the Chandra image of the supernova and one notices the bright arc of material across the top edge of shockwave. In one model, a pre-supernova white dwarf and its companion were moving through a nebulous area creating a bow shock, like a boat plowing through water, in front. Another model suggests that the glowing arc is the edge of the supernova shockwave as it passes through an area of increasingly dense gas and dust. Both models push the distance of the supernova from the previously believed 13,000 light-years to more than 20,000 light-years from Earth, scientists say in the paper.

Scientists also found large amounts of iron by looking at the X-ray light from Chandra meaning that the explosion was far more powerful than an average Type Ia supernova. Astronomers have observed a similar Type Ia supernova using Chandra and an optical telescope in the Large Magellanic Cloud.

Kepler’s Supernova is the last Milky Way supernova visible to the naked eye. It was the second supernova to be observed in that generation after SN 1572 in Cassiopeia studied by the famous astronomer Tycho Brahe.

Source: http://chandra.harvard.edu

About the author: John Williams is owner of TerraZoom, a Colorado-based web development shop specializing in web mapping and online image zooms. He also writes the award-winning blog, StarryCritters, an interactive site devoted to looking at images from NASA’s Great Observatories and other sources in a different way. A former contributing editor for Final Frontier, his work has appeared in the Planetary Society Blog, Air & Space Smithsonian, Astronomy, Earth, MX Developer’s Journal, The Kansas City Star and many other newspapers and magazines. Follow John on Twitter @terrazoom.