“X” marks the spot that’s illustrative of “convective churning” resulting from subsurface planetary heating, as seen in a fascinating new super high resolution image received from NASA’s New Horizons spacecraft on Christmas Eve, Dec. 24, 2015. Its situated at the very center of the left ventricle of Pluto’s huge “heart” – an icy flow plain that’s informally named “Sputnik Planum.”
The “X” feature – see image above – is located in an area of intersecting cells, shaped like polygons, on the plains of “Sputnik Planum” which are mostly comprised of frozen nitrogen ices.
Ice Volcanoes on Pluto?
The informally named feature Wright Mons, located south of Sputnik Planum on Pluto, is an unusual feature that’s about 100 miles (160 kilometers) wide and 13,000 feet (4 kilometers) high. It displays a summit depression (visible in the center of the image) that’s approximately 35 miles (56 kilometers) across, with a distinctive hummocky texture on its sides. The rim of the summit depression also shows concentric fracturing. New Horizons scientists believe that this mountain and another, Piccard Mons, could have been formed by the ‘cryovolcanic’ eruption of ices from beneath Pluto’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute[/caption]
The possible discovery of a pair of recently erupting ice volcanoes on Pluto are among the unexpected “astounding” findings just unveiled by perplexed scientists with NASA’s New Horizons spacecraft, barely four months after the historic first flyby of the last unexplored planet in our solar system.
“Nothing like this has been seen in the deep outer solar system,” said Jeffrey Moore, New Horizons Geology, Geophysics and Imaging team leader from NASA Ames Research Center, Moffett Field, California, as the results so far were announced at the 47th Annual Meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society (AAS) this week in National Harbor, Maryland.
“The Pluto system is baffling us,” said mission Principal Investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, at a news media briefing on Nov. 9.
Two large mountainous features tens of miles across and several miles high, have been potentially identified by the team as volcanoes.
They were found in terrain located south of Sputnik Planum – a vast area of smooth icy plains located within Pluto’s huge heart shaped region informally known as Tombaugh Regio. It may have formed very recently resulting from geologic activity within the past 10 million years.
The possible ice volcanoes, or cryovolcanoes, were found at two of Pluto’s most distinctive mountains and identified from images taken by New Horizons as it became Earth’s first emissary to hurtle past the small planet on July 14, 2015.
“All of our flyby plans succeeded,” Stern stated at the briefing.
“All of the data sets are spectacular.
Scientists created 3-D topographic maps from the probes images and discovered the possible ice volcanoes – informally named Wright Mons and Piccard Mons.
Wright Mons, pictured above, is about 100 miles (160 kilometers) wide and 13,000 feet (4 kilometers) high.
Both mountains appear to show summit depressions “with a large hole” visible in the center, similar to volcanoes on Earth. Scientists speculate “they may have formed by the ‘cryovolcanic’ eruption of ices from beneath Pluto’s surface.”
The erupting Plutonian ices might be composed of a melted slurry of water ice, nitrogen, ammonia and methane.
The depression inside Wright Mons is approximately 35 miles (56 kilometers) across and exhibits a “distinctive hummocky texture on its sides. The rim of the summit depression also shows concentric fracturing.”
“These are big mountains with a large hole in their summit, and on Earth that generally means one thing—a volcano,” said Oliver White, New Horizons postdoctoral researcher with NASA Ames, in a statement.
The team is quick to caution that the “interpretation of these features as volcanoes is tentative” and requires much more analysis.
“If they are volcanic, then the summit depression would likely have formed via collapse as material is erupted from underneath. The strange hummocky texture of the mountain flanks may represent volcanic flows of some sort that have travelled down from the summit region and onto the plains beyond, but why they are hummocky, and what they are made of, we don’t yet know.”
More than 50 papers about the Pluto system are being presented at the AAS meeting this week.
So far New Horizon has transmitted back only about 20 percent of the data gathered, according to mission Principal Investigator Alan Stern.
“It’s hard to imagine how rapidly our view of Pluto and its moons are evolving as new data stream in each week. As the discoveries pour in from those data, Pluto is becoming a star of the solar system,” said Stern.
“Moreover, I’d wager that for most planetary scientists, any one or two of our latest major findings on one world would be considered astounding. To have them all is simply incredible.”
The piano shaped probe gathered about 50 gigabits of data as it hurtled past Pluto, its largest moon Charon and four smaller moons.
Stern says it will take about a year for all the data to get back. Thus bountiful new discoveries are on tap for a long time to come.
With 20 percent of the data now returned and more streaming back every day, the team is excited to debate what is all means.
“This is when the debates begin,” said Curt Niebur, New Horizons program scientist at NASA Headquarters, at the missions Nov 9 media briefing. “This is when the heated discussions begin. This is when the entire science community starts staying up throughout the night.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.