SpaceX Falcon 9 Recovered 1st Stage Arrives Back in Port After Historic Upright Landing at Sea

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

The SpaceX Falcon 9 that triumphantly accomplished history’s first upright landing of the spent first stage of a rocket on a barge at sea – after launching a critical cargo payload to orbit for NASA – sailed back into port at Cape Canaveral overnight in the wee hours of this morning, April 12, standing tall.

The recovered 15 story tall Falcon 9 booster arrived back into Port Canaveral, Florida at about 130 a.m. early today, towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The ship is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks. The landing platform measures only about 170 ft × 300 ft (52 m × 91 m).

A small crowd of excited onlookers and space photographers savored and cheered the incredible moment that is surely changing the face and future of space exploration and travel.

The two stage SpaceX Falcon 9 rocket boasting over 1.5 million pounds of thrust originally launched on Friday, April 8 at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The primary goal of the Falcon 9 launch was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).

Before the launch, SpaceX managers rated the chances of a successful landing recovery rather high.

Three previous attempts by SpaceX to land on a barge at sea were partially successful, as the stage made a pinpoint flyback to the tiny ship but either hit too hard or tipped over in the final moments when a landing leg failed to fully deploy or lock in place.

“We were very optimistic of the chances of a successful landing on this mission,” Hans Koenigsmann told Universe Today in an exclusive post landing interview at the NorthEast Astronomy and Space Forum (NEAF) held in Suffern, NY.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch from and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

Coincidentally, today marks two major anniversaries in the history of space flight; the 55th anniversary of the launch of Russia’s Yuri Gagarin, the first man in space on Vostok-1 on April 12, 1961; and the 35th anniversary of the launch of shuttle Columbia on America’s first space shuttle mission (STS-1) on April 12, 1981 with John Young and Bob Crippen.

The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.

The stage will now be painstakingly inspected, tested and refurbished.

The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.

At liftoff, Dragon was loaded with over 3.5 tons of research experiments and essential supplies for the six man crew living aboard the orbiting science complex.
Watch this launch video from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

The Dragon CRS-8 cargo ship successfully arrived at the station on Sunday, April 10 and was joined to the million pound station at the Earth-facing port of the Harmony module.

The secondary objective was to try and land the Falcon 9 first stage on the ASDS done ship located some 200 miles off shore in the Atlantic Ocean.

The action-packed and propulsive landing took place some 10 minutes after liftoff.

In the final moments of the descent to the drone ship, one of the first stage Merlin 1D engines was reignited to slow the boosters descent speed as the quartet of side-mounted landing legs at the boosters base were unfurled, deployed and locked into place.

The entire launch and landing sequence was webcast live on NASA TV and by SpaceX.

The recovered booster atop the “Of Course I Still Love You” barge was towed back to port by the Elsbeth III tug.

“Home sweet home”, said my friend and veteran space photographer Julian Leek, who witnessed the boosters arrival back in port overnight.

“It was really a sight to see. Pilots and tugs did a well coordinated job to bring her in.”

After daylight dawned, a crane lifted the recovered booster into a storage cradle where it will remain upright for a few days. Then it will be lowered and placed horizontally for transport a few miles north to a SpaceX processing hanger back at pad 39A at the Kennedy Space Center.

Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral,  Florida on April 12, 2016.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral, Florida on April 12, 2016. Credit: Julian Leek

The booster will be cleaned and defueled, SpaceX spokesman John Taylor told the media.

SpaceX engineers will conduct a series of 12 test firings to ensure all is well operationally and that the booster can be re-launched.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch from and landing on April 8 from Cape Canaveral Air Force Station.  Credit: SpaceX
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

SpaceX Launches to ISS with BEAM Habitat Prototype and Lands First Stage At Sea

SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek
SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station.   Credit: Julian Leek
SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek

All around, today, April 8, was a great day for the future of space exploration. SpaceX successfully restarted their critical cargo flights for NASA to stock the International Space Station (ISS) with essential supplies and groundbreaking science experiments, while the innovative firm also successfully landed the first stage of their Falcon 9 rocket on a barge at sea.

The triumphant ‘Return to Flight’ launch of the upgraded SpaceX Falcon 9 with the Dragon CRS-8 cargo freighter was the primary goal of Friday’s launch and validated the hardware fixes put in place following the catastrophic failure of the previous Dragon CRS-7 cargo ship two minutes after liftoff on June 28, 2015 due to a faulty strut in the boosters second stage.

Landing the booster safely on a drone ship at sea was the secondary goal of the flight but is critical towards achieving the vision of rocket recovery and reusability at the heart of SpaceX Founder Elon Musk’s dream of slashing the cost of access to space and one day establishing a ‘City on Mars.”

The weather was fantastic in the sunshine state as the two stage SpaceX Falcon 9 rocket boasting over 1.3 million pounds of thrust launched on time Friday at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

SpaceX Falcon 9 rocket with a Dragon spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station.   Credits: NASA
SpaceX Falcon 9 rocket with a Dragon spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credits: NASA

The Dragon spacecraft is delivering almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory.

Friday’s launch marks the first for a Dragon since the catastrophic failure of the SpaceX Falcon 9 last June.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

Packed aboard the Dragon’s unpressurized trunk section is the experimental Bigelow Expandable Activity Module (BEAM) – an experimental expandable capsule that the crew will attach to the space station. The 3115 pound (1413 kg) BEAM will test the use of an expandable space habitat in microgravity. BEAM will expand to roughly 13-feet-long and 10.5 feet in diameter after it is installed.

Among the new experiments arriving to the station will be Veggie-3 to grow Chinese lettuce in microgravity as a followup to Zinnias recently grown, an investigation to study muscle atrophy and bone loss in space, using microgravity to seek insight into the interactions of particle flows at the nanoscale level and use protein crystal growth in microgravity to help in the design of new drugs to fight disease, as well as reflight of 25 student experiments from Student Spaceflight Experiments Program (SSEP) Odyssey II payload that were lost during the CRS-7 launch failure.

“The cargo will allow investigators to use microgravity conditions to test the viability of expandable space habitats, assess the impact of antibodies on muscle wasting, use protein crystal growth to aid the design of new disease-fighting drugs and investigate how microbes could affect the health of the crew and their equipment over a long duration mission,” said NASA Deputy Administrator Dava Newman.

SpaceX Falcon 9 rocket with a Dragon spacecraft streak to orbit after launch on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Julian Leek
SpaceX Falcon 9 rocket with a Dragon spacecraft streak to orbit after launch on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek

Dragon reached its preliminary orbit about 10 minutes after launch and deployed its solar arrays as targeted and as seen on the live webcast. It now begins a carefully choreographed series of thruster firings to reach the space station.

After a 2 day orbital chase Dragon is set to arrive at the orbiting outpost on Sunday, April 10.

NASA astronaut Jeff Williams and ESA (European Space Agency) astronaut Tim Peake will then reach out with the station’s Canadian-built robotic arm to grapple and capture the Dragon spacecraft.

Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. Live coverage of the rendezvous and capture will begin at 5:30 a.m. on NASA TV, with installation set to begin at 9:30 a.m.

In a historic first, the launch of a SpaceX Dragon cargo spacecraft sets the stage for the first time that two American cargo ships will be simultaneously attached to the ISS. The Orbital ATK Cygnus cargo freighter launched just launched on March 22 and arrived on March 26 at a neighboring docking port on the Unity module.

Dragon will remain at the station until it returns for Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the west coast of Baja California. It will be packed with almost 3,500 pounds off cargo and numerous science samples, including those biological samples collected by 1 year ISS crew member Scott Kelly, for return to investigators, hardware and spacewalking tools, some additional broken hardware for repair and some items of trash for disposal.

SpaceX Falcon 9 rocket with a Dragon spacecraft streaks to orbit after launch on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. As seen from the Quality Inn Kennedy Space Center, Titusville, Fl.  Credit: Ashley Crouch
SpaceX Falcon 9 rocket with a Dragon spacecraft streaks to orbit after launch on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. As seen from the Quality Inn Kennedy Space Center, Titusville, Fl. Credit: Ashley Crouch

SpaceX CRS-8 is the eighth of up to 20 missions to the ISS that SpaceX will fly for NASA under the Commercial Resupply Services (CRS) contract.

SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station.   Credit: Julian Leek
SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

SpaceX Dragon Set for ‘Return to Flight’ Launch to ISS Apr. 8 – Watch Live

A Falcon 9 rocket with a Dragon spacecraft stand at Space Launch Complex 40 at Cape Canaveral Air Force Station before the CRS-8 mission to deliver experiments and supplies to the International Space Station. Credits: SpaceX
A Falcon 9 rocket with a Dragon spacecraft stand at Space Launch Complex 40 at Cape Canaveral Air Force Station before the CRS-8 mission to deliver experiments and supplies to the International Space Station.  Credits: SpaceX
A Falcon 9 rocket with a Dragon spacecraft stand at Space Launch Complex 40 at Cape Canaveral Air Force Station before the CRS-8 mission to deliver experiments and supplies to the International Space Station. Credits: SpaceX

The SpaceX Dragon is set for its ‘Return to Flight’ mission on Friday, April 8, packed with nearly 7000 pounds (3100 kg) of critical cargo and research experiments bound for the six-man crew working aboard the International Space Station.

Blastoff of the commercial SpaceX Falcon 9 carrying the Dragon CRS-8 resupply ship is slated for 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The weather outlook looks great with a forecast of 90 percent “GO” and extremely favorable conditions at launch time of the upgraded, full thrust version of the SpaceX Falcon 9. The only concern is for winds.

The SpaceX/Dragon CRS-8 launch coverage will be broadcast on NASA TV beginning at 3:30 p.m. EDT with additional commentary on the NASA launch blog.

SpaceX also features a live webcast approximately 20 minutes before launch beginning at 4:23 p.m. EDT.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can watch the launch live at SpaceX Webcast at – spacex.com/webcast

The launch window is instantaneous, meaning that any delays due to weather or technical issues will results in a minimum 1 day postponement.

A backup launch opportunity exists on Saturday, April 9, at 4:20 p.m. with NASA TV coverage starting at 3:15 p.m.

SpaceX most recently launched the upgraded Falcon 9 from the Cape on March 4, 2016 as I reported from onsite here.
Friday’s launch marks the first for a Dragon since the catastrophic failure of a SpaceX Falcon 9 rocket in flight last year on June 28, 2015 on the CRS-7 resupply mission.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

Also packed aboard in the Dragon’s unpressurized trunk section is experimental Bigelow Expandable Activity Module (BEAM) – an experimental expandable capsule that the crew will attach to the space station. The 3115 pound (1413 kg) BEAM will test the use of an expandable space habitat in microgravity. BEAM will expand to roughly 13-feet-long and 10.5 feet in diameter after it is installed.

As a secondary objective, SpaceX will attempt to recover the Falcon 9 first stage by propulsively landing it on an ocean-going droneship barge stationed offshore in the Atlantic Ocean.

The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station.  Credits: Bigelow Aerospace, LLC
The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station. Credits: Bigelow Aerospace, LLC

Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.

Dragon will reach its preliminary orbit about 10 minutes after launch. Then it will deploy its solar arrays and begin a carefully choreographed series of thruster firings to reach the space station.

After a 2 day orbital chase Dragon is set to arrive at the orbiting outpost on Sunday, April 10.

NASA astronaut Jeff Williams and ESA (European Space Agency) astronaut Tim Peake will then reach out with the station’s Canadian-built robotic arm to grapple and capture the Dragon spacecraft.

Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. Live coverage of the rendezvous and capture will begin at 5:30 a.m. on NASA TV, with installation set to begin at 9:30 a.m.

In a historic first, the launch of a SpaceX Dragon cargo spacecraft sets the stage for the first time that two American cargo ships will be simultaneously attached to the ISS. The Orbital ATK Cygnus cargo freighter launched just launched on March 22 and arrived on March 26 at a neighboring docking port on the Unity module.

The Bigelow Expandable Activity Module (BEAM), developed for NASA by Bigelow Aerospace, is lifted into SpaceX's Dragon spacecraft for transport to the International Space Station when the spacecraft launches at 4:43 p.m. Friday, April 8, from Space Launch Complex 40 at Cape Canaveral Air Force Station (CCAFS) in Florida.  Credits: SpaceX
The Bigelow Expandable Activity Module (BEAM), developed for NASA by Bigelow Aerospace, is lifted into SpaceX’s Dragon spacecraft for transport to the International Space Station when the spacecraft launches at 4:43 p.m. Friday, April 8, from Space Launch Complex 40 at Cape Canaveral Air Force Station (CCAFS) in Florida. Credits: SpaceX

Among the new experiments arriving to the station will be Veggie-3 to grow Chinese lettuce in microgravity as a followup to Zinnias recently grown, an investigation to study muscle atrophy and bone loss in space, using microgravity to seek insight into the interactions of particle flows at the nanoscale level and use protein crystal growth in microgravity to help in the design of new drugs to fight disease, as well as reflight of 25 student experiments from Student Spaceflight Experiments Program (SSEP) Odyssey II payload that were lost during the CRS-7 launch failure.

Dragon will remain at the station until it returns to Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the coast of Baja California. It will be packed with numerous science samples, including those collected by 1 year crew member Scott Kelly, for return to investigators, some broken hardware for repair and some items of trash for disposal.

SpaceX CRS-8 is the eighth of up to 20 missions to the ISS that SpaceX will fly for NASA under the Commercial Resupply Services (CRS) contract.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

Patch for the SpaceX CRS-8 mission to the ISS. Credit: SpaceX
Patch for the SpaceX CRS-8 mission to the ISS. Credit: SpaceX
SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral Air Force Station, Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral Air Force Station, Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40.  Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40. Credit: Ken Kremer/kenkremer.com

NASA’s ‘Hubble Hugger’ and Science Chief John Grunsfeld To Retire

In this March 2002 image, John Grunsfeld, former astronaut and associate administrator of NASA's Science Mission Directorate, is shown in space shuttle Columbia's cargo bay during the STS-109 Hubble servicing mission. Credits: NASA
In this March 2002 image, John Grunsfeld, former astronaut and associate administrator of NASA's Science Mission Directorate, is shown in space shuttle Columbia's cargo bay during the STS-109 Hubble servicing mission.  Credits: NASA
In this March 2002 image, John Grunsfeld, former astronaut and associate administrator of NASA’s Science Mission Directorate, is shown in space shuttle Columbia’s cargo bay during the STS-109 Hubble servicing mission. Credits: NASA

Five time space shuttle astronaut and current NASA science chief John Grunsfeld – best known as the ‘Hubble Hugger’ for three critical and dramatic servicing and upgrade missions to the iconic Hubble Space Telescope – his decided to retire from the space agency he faithfully served since being selected as an astronaut in 1992.

“John Grunsfeld will retire from NASA April 30, capping nearly four decades of science and exploration with the agency. His tenure includes serving as astronaut, chief scientist, and head of NASA’s Earth and space science activities,” NASA announced.

Indeed, Grunsfeld was the last human to touch the telescope during the STS-125 servicing mission in 2009 when he served as lead spacewalker.

The STS-125 mission successfully upgraded the observatory to the apex of its scientific capability during five spacewalks by four astronauts and extended the life of the aging telescope for many years. Hubble remains fully operable to this day!

In April 2015, Hubble celebrated 25 years of operations, vastly outperforming its planned lifetime of 15 years.

“Hubble has given us 25 years of great service. Hopefully we’ll get another 5 to 10 years of unraveling the mysteries of the Universe,” Grunsfeld told me during a recent interview at NASA Goddard.

Astronaut John Grunsfeld performs work on the Hubble Space Telescope on the first of five STS-125 spacewalks. Credit: NASA
Astronaut John Grunsfeld performs work on the Hubble Space Telescope on the first of five STS-125 spacewalks. Credit: NASA

In his most recent assignment, Grunsfeld was NASA’s Science Chief working as the Associate Administrator for the Science Mission Directorate (SMD) at NASA Headquarters in Washington, D.C. since January 2012.

“John leaves an extraordinary legacy of success that will forever remain a part of our nation’s historic science and exploration achievements,” said NASA Administrator Charlie Bolden, in a statement.

“Widely known as the ‘Hubble Repairman,’ it was an honor to serve with him in the astronaut corps and watch him lead NASA’s science portfolio during a time of remarkable discovery. These are discoveries that have rewritten science textbooks and inspired the next generation of space explorers.”

Grunsfeld was inducted into the U.S. Astronaut Hall of Fame in 2015.

He received his PhD in physics in 1988 and conducted extensive research as an astronomer in the fields of x-ray and gamma ray astronomy and high-energy cosmic ray studies.

Crew of STS-125, including John Grunsfeld, center, during walkout to Astrovan ahead of launch on May 11, 2009, from the Kennedy Space Center in Florida on final mission to service NASA’s Hubble Space Telescope. Credit: Ken Kremer – kenkremer.com
Crew of STS-125, including John Grunsfeld, center, during walkout to Astrovan ahead of launch on May 11, 2009, from the Kennedy Space Center in Florida on final mission to service NASA’s Hubble Space Telescope. Credit: Ken Kremer – kenkremer.com

NASA said that Grunsfeld’s deputy Geoff Yoder will serve as SMD acting associate administrator until a successor is named.

“After exploring strange new worlds and seeking out new life in the universe, I can now boldly go where I’ve rarely gone before – home,” said Grunsfeld.

“I’m grateful to have had this extraordinary opportunity to lead NASA science, and know that the agency is well-positioned to make the next giant leaps in exploration and discovery.”

During his tenure as science chief leading NASA’s Science Mission Directorate Grunsfeld was responsible for managing over 100 NASA science missions including the Mars orbital and surface assets like the Curiosity and Opportunity Mars rovers, New Horizons at Pluto, MESSENGER, upcoming Mars 2020 rover and OSIRIS-Rex as well as Earth science missions like the Deep Space Climate Observatory, Orbiting Carbon Observatory-2, and Global Precipitation Measurement spacecraft -which resulted numerous groundbreaking science, findings and discoveries.

NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit:  Ken Kremer/kenkremer.com
NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com

Dr. Grunsfeld is a veteran of five spaceflights: STS-67 (1995), STS-81 (1997), STS-103 (1999) STS-109 (2002) and STS-125 (2009), during which time he logged more than 58 days in space, including 58 hours and 30 minutes of EVA in 8 spacewalks.

He briefly retired from NASA in December 2009 to serve as Deputy Director of the Space Telescope Science Institute, in Baltimore, Maryland. He then returned to NASA in January 2012 to serve as SMD head for over four years until now.

NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland.  Credit: Ken Kremer/kenkremer.com
NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland. Credit: Ken Kremer/kenkremer.com

From his NASA bio, here is a summary of John Grunsfeld’s space flight experience during five shuttle flights:

STS-67/Astro-2 Endeavour (March 2 to March 18, 1995) launched from Kennedy Space Center, Florida, and landed at Edwards Air Force Base, California. It was the second flight of the Astro observatory, a unique complement of three ultraviolet telescopes. During this record-setting 16-day mission, the crew conducted observations around the clock to study the far ultraviolet spectra of faint astronomical objects and the polarization of ultraviolet light coming from hot stars and distant galaxies. Mission duration was 399 hours and 9 minutes.

STS-81 Atlantis (January 12 to January 22, 1997) was a 10-day mission, the fifth to dock with Russia’s Space Station Mir and the second to exchange U.S. astronauts. The mission also carried the Spacehab double module, providing additional middeck locker space for secondary experiments. In 5 days of docked operations, more than 3 tons of food, water, experiment equipment and samples were moved back and forth between the two spacecraft. Grunsfeld served as the flight engineer on this flight. Following 160 orbits of the Earth, the STS-81 mission concluded with a landing on Kennedy Space Center’s Runway 33, ending a 3.9-million-mile journey. Mission duration was 244 hours and 56 minutes.

STS-103 Discovery (December 19 to December 27, 1999) was an 8-day mission, during which the crew successfully installed new gyroscopes and scientific instruments and upgraded systems on the Hubble Space Telescope (HST). Enhancing HST scientific capabilities required three spacewalks (EVAs). Grunsfeld performed two spacewalks, totaling 16 hours and 23 minutes. The STS-103 mission was accomplished in 120 Earth orbits, traveling 3.2 million miles in 191 hours and 11 minutes.

STS-109 Columbia (March 1 to March 12, 2002) was the fourth HST servicing mission. The crew of STS-109 successfully upgraded the HST, installing a new digital camera, a cooling system for the infrared camera, new solar arrays and a new power system. HST servicing and upgrades were accomplished by four crewmembers during a total of five EVAs in 5 consecutive days. As Payload Commander on STS-109, Grunsfeld was in charge of the spacewalking activities and the Hubble payload. He also performed three spacewalks totaling 21 hours and 9 minutes, including the installation of the new Power Control Unit. STS-109 orbited the Earth 165 times and covered 3.9 million miles in over 262 hours.

STS-125 Atlantis (May 11 to May 24, 2009) was the fifth and final Hubble servicing mission. After 19 years in orbit, the telescope received a major renovation that included the installation of a new wide-field camera, a new ultraviolet telescope, new batteries, a guidance sensor, gyroscopes and other repairs. Grunsfeld served as the lead spacewalker in charge of the spacewalking and Hubble activities. He performed three of the five spacewalks on this flight, totaling 20 hours and 58 minutes. For the first time while in orbit, two scientific instruments were surgically repaired in the telescope. The STS-125 mission was accomplished in 12 days, 21 hours, 37 minutes and 09 seconds, traveling 5,276,000 miles in 197 Earth orbits.

Launch of Space Shuttle Atlantis on STS-125 and the final servicing mission to the Hubble Space Telescope on May 11, 2009 from Launch Complex-39A at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com
Launch of Space Shuttle Atlantis on STS-125 and the final servicing mission to the Hubble Space Telescope on May 11, 2009 from Launch Complex-39A at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Hubble, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discuss NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discuss NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Kennedy’s Modernized Spaceport Passes Key Review Supporting SLS/Orion Launches

This artist concept depicts the Space Launch System rocket rolling out of the Vehicle Assembly Building at NASA's Kennedy Space Center. SLS will be the most powerful rocket ever built and will launch the agency’s Orion spacecraft into a new era of exploration to destinations beyond low-Earth orbit. Credits: NASA/Marshall Space Flight Center
This artist concept depicts the Space Launch System rocket rolling out of the Vehicle Assembly Building at NASA's Kennedy Space Center. SLS will be the most powerful rocket ever built and will launch the agency’s Orion spacecraft into a new era of exploration to destinations beyond low-Earth orbit.  Credits: NASA/Marshall Space Flight Center
This artist concept depicts the Space Launch System rocket rolling out of the Vehicle Assembly Building at NASA’s Kennedy Space Center. SLS will be the most powerful rocket ever built and will launch the agency’s Orion spacecraft into a new era of exploration to destinations beyond low-Earth orbit. Credits: NASA/Marshall Space Flight Center

KENNEDY SPACE CENTER, FL – Modernization of NASA’s launch infrastructure facilities at the Kennedy Space Center supporting the new SLS/Orion architecture required to send astronauts on a Journey to Mars in the 2030s, has passed a comprehensive series of key hardware reviews, NASA announced, paving the path towards full scale development and the inaugural liftoff by late 2018.

The facilities and ground support systems that will process NASA’s mammoth Space Launch System (SLS) rocket and next generation Orion manned deep space capsule at NASA’s Kennedy Space Center in Florida successfully completed a painstaking review of the plans by top agency managers and an independent team of aerospace experts.

SLS will be the most powerful rocket the world has ever seen. It will propel astronauts in the Orion capsule on deep space missions, first back to the Moon by around 2021, then to an asteroid around 2025 and then beyond to the Red Planet in the 2030s – NASA’s overriding and agency wide goal.

The Ground Systems Development and Operations Program (GSDO) group within NASA is responsible for processing SLS and Orion.

“Over the course of a few months, engineers and experts across the agency reviewed hundreds of documents as part of a comprehensive assessment” said NASA.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

Among the GSDO ground support facilities evaluated in the launch infrastructure review are the Vehicle Assembly Building (VAB) where the rocket components are stacked, the mobile launcher used to roll out SLS/Orion to Launch Pad 39B atop a modified crawler transporter and the Multi-Payload Processing Facility that will fuel the Orion spacecraft with propellants prior to stacking atop the rocket.

In December, GSDO completed a critical design review (CDR) of the facilities and ground support systems plans.

Then in January, a Standing Review Board comprising a team of aerospace experts completed an independent assessment of program readiness.

The Standing Review Board “confirmed the program is on track to complete the engineering design and development process on budget and on schedule.”

“NASA is developing and modernizing the ground systems at Kennedy to safely integrate Orion with SLS, move the vehicle to the pad, and successfully launch it into space,” said Bill Hill, deputy associate administrator of NASA’s Exploration Systems Development Division at the agency’s Headquarters in Washington, in a statement.

“Modernizing the ground systems for our journey to Mars also ensures long-term sustainability and affordability to meet future needs of the multi-use spaceport.”

Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft  for launches from Space Launch Complex 39B the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft for launches from Space Launch Complex 39B the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Fabrication, installation and testing of Kennedy’s ground systems can now proceed.

“The team is working hard and we are making remarkable progress transforming our facilities,” said Mike Bolger, GSDO Program Manager. “As we are preparing for NASA’s journey to Mars, the outstanding team at the Kennedy Space Center is ensuring that we will be ready to receive SLS and Orion flight hardware and process the vehicle for the first flight in 2018.”

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Meanwhile the welded skeletal backbone for the Orion EM-1 mission recently arrived at the Kennedy Space Center on Feb. 1 for outfitting with all the systems and subsystems necessary for flight.

Furthermore, earlier this month on March 10, NASA engineers conducted a successful test firing of the first of the RS-25 rocket engines destined to power the core stage of the SLS stage rocket. The 500 second long hot fire test of engine No. 2059 was carried out on the A-1 Test Stand at NASA’s Stennis Space Center in Bay St. Louis, Mississippi.

SLS-1 will boost the unmanned Orion EM-1 capsule from KSC launch pad 39B on an approximately three week long test flight beyond the Moon and back.

View of NASA’s future SLS/Orion launch pad at Space Launch Complex 39B from atop  Mobile Launcher at the Kennedy Space Center in Florida.  Former Space Shuttle launch pad 39B is now undergoing renovations and upgrades to prepare for SLS/Orion flights starting in 2018. Credit: Ken Kremer/kenkremer.com
View of NASA’s future SLS/Orion launch pad at Space Launch Complex 39B from atop Mobile Launcher at the Kennedy Space Center in Florida. Former Space Shuttle launch pad 39B is now undergoing renovations and upgrades to prepare for SLS/Orion flights starting in 2018. Credit: Ken Kremer/kenkremer.com

NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA's Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Next Cygnus Cargo Freighter Named in Honor of Columbia’s Last Commander Rick Husband

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The next Cygnus cargo resupply ship targeted to blastoff for the International Space Station (ISS) on March 22, has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

The ‘S.S. Rick Husband’ was announced as the Cygnus delivery vessels name by former astronaut Dan Tani, now senior director of Missions and Cargo Operations for Orbital ATK in Dulles, Virginia, during a media briefing in the clean room processing facility at the Kennedy Space Center in Florida.

“Rick was a very accomplished astronaut, and a devoted husband and father,” said Tani.

The commercial Cygnus cargo freighter was built by Orbital ATK, based in Dulles, Virginia.

Christened the S.S. Rick Husband, the spacecraft is a tribute to NASA astronaut Col. Rick Husband, of U.S. Air Force, who served as commander of Columbia’s STS-107 mission. The mission and all aboard were lost as Columbia disintegrated due to the effects of reentry heating into the Earth’s atmosphere high over Texas.

NASA astronaut Col. Rick Husband, of U.S. Air Force, who served as commander of Columbia’s STS-107 mission.  The Cygnus OA-6 cargo spacecraft is named the SS Rick Husband  in tribute to Rick Husband.  Credit: NASA
NASA astronaut Col. Rick Husband, of U.S. Air Force, who served as commander of Columbia’s STS-107 mission. The Cygnus OA-6 cargo spacecraft is named the SS Rick Husband in tribute to Rick Husband. Credit: NASA

“We are proud to unveil the name of our #OA6 #Cygnus spacecraft—the S.S. Rick Husband, in honor of the late astronaut,” added Orbital ATK in a statement.

This flight is known as OA-6 and is being launched as under terms of the firm’s Commercial Resupply Services (CRS) contract with NASA. It also counts as the Orbital ATK’s fifth cargo delivery mission to the space station.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Final processing of the cargo ship was completed as bunny suited media including myself observed technicians putting the finishing touches on the vehicle inside Kennedy’s Payload Hazardous Servicing Facility (PHSF). Technicians had already finished fueling the vehicle with hydrazine and nitrogen tetroxide.

Liftoff of the commercial resupply services mission to the orbiting outpost is now targeted for Tuesday, March 22, during a 30-minute launch window that opens at 11:05 p.m. EDT.

The Orbital ATK Cygnus spacecraft, also known as Commercial Resupply Services-6 (CRS-6), will launch atop a United Launch Alliance (ULA) Atlas V rocket from the seaside Space Launch Complex 41 at Cape Canaveral Air Force Station (CCAFS) in Florida.

OA-6 is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

When the ISS Expedition 47 crew members open the hatch, they will be greeted with a sign noting the spacecraft was named ‘SS Rick Husband’ in honor of the STS-107 mission commander.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Overall, Orbital will deliver approximately 28,700 kilograms of cargo to the ISS under the life of the CRS contract, which extends to 2018.

STS-107 was Husband’s second flight to space.

OA-6 is the first Cygnus to named after an astronaut who actually participated in building the ISS – during his first flight as shuttle pilot on the STS-96 mission in 1999.

The prior Cygnus cargo spacecraft was named the S.S. Deke Slayton during the OA-4 mission. OA-4 successfully launched to the ISS in December 2015 – read my on site articles here.

Orbital ATK has named each Cygnus after a deceased NASA astronaut, several of whom later worked for the company.

OA-6 is only the second Cygnus to be launch atop a ULA Atlas V rocket, following the OA-4 mission last December.

The CRS-6/OA-6 flight is also the second flight of the enhanced Cygnus variant, that is over 1 meter longer and sports 50% more volume capability.

Thus it is capable of carrying a much heavier payload of some 3500 kg (7700 lbs) vs. a maximum of 2300 kg (5070 lbs) for the standard version.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 21/22: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evening Mar 21 /late afternoon Mar 22

Orbital ATK’s Cygnus Spacecraft carrying vital cargo to resupply the International Space Station lifts-off aboard a United Launch Alliance Atlas V rocket on Dec. 6, 2015.  Credit: Ken Kremer/kenkremer.com
Orbital ATK’s Cygnus Spacecraft carrying vital cargo to resupply the International Space Station lifts-off aboard a United Launch Alliance Atlas V rocket on Dec. 6, 2015. Credit: Ken Kremer/kenkremer.com

NASA Test Fires SLS Flight Engine Destined to Launch Astronauts Back to the Moon

NASA engineers conduct a successful test firing of RS-25 rocket engine No. 2059 on the A-1 Test Stand at NASA’s Stennis Space Center in Bay St. Louis, Mississippi. The hot fire marks the first test of an RS-25 flight engine for NASA’s new Space Launch System vehicle. Credits: NASA/SSC
NASA engineers conduct a successfully test firing of RS-25 rocket engine No. 2059 on the A-1 Test Stand at NASA’s Stennis Space Center in Bay St. Louis, Mississippi. The hot fire marks the first test of an RS-25 flight engine for NASA’s new Space Launch System vehicle.  Credits: NASA/SSC
NASA engineers conduct a successful test firing of RS-25 rocket engine No. 2059 on the A-1 Test Stand at NASA’s Stennis Space Center in Bay St. Louis, Mississippi. The hot fire marks the first test of an RS-25 flight engine for NASA’s new Space Launch System vehicle. Credits: NASA/SSC

NASA engineers have successfully test fired the first flight engine destined to power the agency’s mammoth new SLS rocket that will launch American astronauts back to the Moon and deep space for the first time in nearly five decades.

The flight proven RS-25 powerplant engine previously flew as one of three main engines that successfully rocketed NASA’s space shuttle orbiters to space during the three decade long Space Shuttle era that ended in 2011. Continue reading “NASA Test Fires SLS Flight Engine Destined to Launch Astronauts Back to the Moon”

NASA Unveils Orion Pressure Vessel at KSC Launching on EM-1 Moon Mission in 2018

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – NASA officials proudly unveiled the pressure vessel for the agency’s new Orion capsule destined to launch on the EM-1 mission to the Moon in 2018, after the vehicle arrived at the Kennedy Space Center (KSC) in Florida last week aboard NASA’s unique Super Guppy aircraft.

This ‘new and improved’ Orion was unloaded from the Super Guppy and moved to a test stand called the ‘birdcage’ in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC where it was showcased to the media including Universe Today. Continue reading “NASA Unveils Orion Pressure Vessel at KSC Launching on EM-1 Moon Mission in 2018”

NASA’s Orion Crew Module Backbone Arrives at KSC Aboard Super Guppy for Exploration Mission-1

NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo. Credit: Ken Kremer/kenkremer.com
NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo.  Credit: Ken Kremer/kenkremer.com
NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER – Looking amazingly like a fish flying across the skies high above the Florida space coast, NASA’s unique Super Guppy aircraft loaded with the structural backbone for NASA’s next Orion crew module, swooped in for a landing at the Kennedy Space Center on Monday afternoon, Feb. 1.

The Super Guppy, with the recently completed pressure vessel for the Orion crew module tucked safely inside, touched down gently at about 3:45 p.m. Monday on the same runway at the Shuttle Landing Facility (SLF) where NASA’s now retired orbiters formerly returned from space voyages. The landing strip is now operated by Space Florida. Continue reading “NASA’s Orion Crew Module Backbone Arrives at KSC Aboard Super Guppy for Exploration Mission-1”

Opportunity Robustly in Action on 12th Anniversary of Red Planet Touchdown

Composite hazcam camera image (left) shows the robotic arm in motion as NASA’s Mars Exploration Rover Opportunity places the tool turret on the target named “Private John Potts” on Sol 4234 to brush away obscuring dust. Rover is actively working on the southern side of “Marathon Valley” which slices through western rim of Endeavour Crater. On Sol 4259 (Jan. 16, 2016), Opportunity completed grinds with the Rock Abrasion Tool (RAT) to exposure rock interior for elemental analysis, as seen in mosaic (right) of four up close images taken by Microscopic Imager (MI). Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Composite hazcam camera image (left) shows the robotic arm in motion as NASA’s Mars Exploration Rover Opportunity places the tool turret on the target named "Private John Potts" on Sol 4234 to brush away obscuring dust.  Rover is actively working on the southern side of "Marathon Valley" which slices through western rim of Endeavour Crater.  On Sol 4259 (Jan. 16,  2016), Opportunity completed grinds with the Rock Abrasion Tool (RAT) to exposure rock interior for elemental analysis, as seen in mosaic (right) of four up close images taken by  Microscopic Imager (MI).  Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Composite hazcam camera image (left) shows the robotic arm in motion as NASA’s Mars Exploration Rover Opportunity places the tool turret on the target named “Private John Potts” on Sol 4234 to brush away obscuring dust. Rover is actively working on the southern side of “Marathon Valley” which slices through western rim of Endeavour Crater. On Sol 4259 (Jan. 16, 2016), Opportunity completed grinds with the Rock Abrasion Tool (RAT) to exposure rock interior for elemental analysis, as seen in mosaic (right) of four up close images taken by Microscopic Imager (MI). Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

NASA’s world famous Mars Exploration Rover Opportunity continues blazing a daily trail of unprecedented science first’s, still swinging her robotic arm robustly into action at a Martian “Mining Zone” on the 12th anniversary of her hair-raising Red Planet touchdown this week, a top rover scientist told Universe Today.

“Looks like a mining zone!” Opportunity Deputy Principal Investigator Ray Arvidson, of Washington University in St. Louis, explained to Universe Today. On Jan. 24 the rover marked 4267 Sols and a dozen years and counting exploring Mars. Continue reading “Opportunity Robustly in Action on 12th Anniversary of Red Planet Touchdown”