The latest satellite in the Landsat family of Earth observation spacecraft has collected its “first light” images of our planet. Landsat 9 launched on September 27, 2021 and it continues the nearly 50-year tradition of making critical observations to help with energy and water management, forest monitoring, human and environmental health, urban planning, disaster recovery and agriculture.
Continue reading “Landsat 9’s First Images are Here”Landsat 9 Joins a Fleet of Earth Observation Satellites
Earth has a new eye in orbit to monitor our changing planet.
Landsat 9 launched on September 27, 2021 continuing the Landsat family of satellite’s nearly 50-year tradition of making critical observations to help with energy and water management, forest monitoring, human and environmental health, urban planning, disaster recovery and agriculture.
Continue reading “Landsat 9 Joins a Fleet of Earth Observation Satellites”Here’s Lake Mead’s Record Low Water Levels Seen From Space
How bad is the drought in the western United States? A stunning depiction of the record dry spell comes in images of Lake Mead, the reservoir formed by the Hoover Dam on the Colorado River. NASA satellite images, below, from Landsat 7 and Landsat 8 show the difference in lake levels between August 2000 and August 2021.
Continue reading “Here’s Lake Mead’s Record Low Water Levels Seen From Space”Jupiter or Earth? Which One’s Which, and Why Do They Look so Similar?
Jupiter: a massive, lifeless gas giant out there on the other side of the asteroid belt. It’s a behemoth, containing 2.5 times as much mass as all the other planets combined. To top it off, it’s named after the Roman God of War.
Earth: a tiny rocky world, almost too close to the Sun, where life rises and falls, punctuated repeatedly by extinctions. Compared to Jupiter, it’s a gum-drop world: Jupiter is 317.8 times the mass of Earth. And Earth is named after a goddess in German paganism, or so we think.
Continue reading “Jupiter or Earth? Which One’s Which, and Why Do They Look so Similar?”“Out of all the complexity flows beauty…”
Norman Kuring, NASA’s Goddard Space Flight Center.
Covert NRO Satellite Fades into Capes Cloudy Night Skies Shrouded in Liftoff Secrecy: Gallery – As ULA Atlas Wins Landsat Launch
CAPE CANAVERAL AIR FORCE STATION, FL — As one Atlas rocket carrying a covert spy satellite for the U.S. National Reconnaissance Office (NRO) to monitor Earth for national security purposes faded into cloudy nighttime skies over the Cape in the dead of night shrouded in liftoff secrecy, rocket builder United Launch Alliance (ULA) won another significant Atlas launch contract for NASA’s Landsat 9 satellite to monitor the health of Earth’s environment.
Capping two launches from two different rocket companies in four days by ULA and SpaceX followed by the arrival back in port of SpaceX’s ocean landed recovered booster, last week provided all the proof that’s needed to demonstrate that the revitalization of Florida’s Spaceport is well underway and America’s rocket makers are capturing lucrative launch contracts ensuring an upswing nationwide in rocket and spacecraft manufacturing – for critical military surveillance, government, civilian and science needs.
Check out the exciting gallery of Atlas launch imagery and videos including the thrilling droneship return of SpaceX’s 156 foot tall first stage booster back into Port Canaveral less than 4 hours after ULA delivered the classified NROL-52 surveillance satellite to a secret orbit – from this author and several space media colleagues. And check back here as the gallery grows!
A ULA Atlas V launch carrying the covert NROL-52 mission in support of U.S. national security blasted off overnight Sunday, Oct. 15 at 3:28 a.m. EDT (0728 GMT) from seaside Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.
“Congratulations to the team who helped make #NROL52 a success! United Launch Alliance, 45th Space Wing at Patrick Air Force Base, Fla., Air Force Space Command, and the Space and Missile Systems Center,” the NRO announced post launch on social media.
It was a case of ‘Going, Going, Gone’ as seemingly endless stormy weather plagued the space coast and the Atlas soon disappeared behind clouds from many but not all vantage points, as the two stage rocket was finally cleared to launch on its fifth try. Postponed three times by poor weather and once due to a technical glitch to fix a faulty second stage transmitter.
The launches were postponed by the downstream impact of Hurricane Irma which forced the base closings of the Kennedy Space Center and Cape Canaveral Air Force Station and significantly impacted the Florida Space Coast region by causing over $100 million in damage to buildings, homes, businesses, hotels, restaurants, infrastructure and more due to flooding and hurricane force winds.
“We’ve had an incredible month,” said Brig. Gen. Wayne R. Monteith, Commander, 45th Space Wing.
“Not only did we restore our base to full mission capable status just a few hours after Hurricane Irma impacted our coast, but we’ve successfully launched two rockets in less than four days just weeks later.”
“The 45th Space Wing supported ULA’s Atlas V launch of the NROL-52 mission for the National Reconnaissance Office early morning on Oct. 15!”
“The men and women of the 45th Space Wing continue to make the impossible possible.”
More than a quarter of all the world’s rocket launches take place from Florida’s burgeoning spaceports.
“Our team’s resiliency and tireless efforts in launching over 25% of all world-wide launches this year proves why we are the ‘World’s Premier Gateway to Space,’” Montieth gushed in pride.
Meanwhile, NASA selected ULA to provide launch services for the Landsat 9 mission with another Atlas V rocket as soon as late 2020.
“The mission is currently targeted for a contract launch date of June 2021, while protecting for the ability to launch as early as December 2020, on an Atlas V 401 rocket from Space Launch Complex 3E at Vandenberg Air Force Base in California,” said NASA.
The Landsat 9 launch contract is worth $153.8 million.
Landsat 9 is a joint mission between NASA and the U.S. Geological Survey (USGS).
“Landsat 9 will continue the Landsat program’s critical role in monitoring, understanding, and managing the land resources needed to sustain human life.”
“We are honored that NASA has entrusted ULA with launching this critical land imaging satellite,” said Tory Bruno, ULA’s president and chief executive, in a statement.
“ULA’s world-leading performance and reliability, paired with the tremendous heritage of 74 consecutive successful Atlas V launches, provides the optimal value for our customer. We look forward to working together again with our mission partners at NASA’s Launch Services Program, Goddard Space Flight Center and the U.S. Geological Survey in the integration and launch of this significant mission, contributing to the international strategy for examining the health and state of the Earth.”
NROL-52 is the fourth of five launches slated for the NRO in 2017 by both ULA and SpaceX.
“Never before has innovation been more important for keeping us ahead of the game. As the eagle soars, so will the advanced capabilities this payload provides to our national security,” said Colonel Matthew Skeen, USAF, Director, NRO Office of Space Launch, in a statement. “Kudos to the entire team for a job well done.”
Check out this exciting video compilation from remote cameras circling the Atlas pad 41.
Video Caption: Launch of the NROL-52 satellite on an Atlas 5 booster from Pad 41. A United Launch Alliance Atlas 5 421 rocket launches the NROL-52 payload on Oct. 15, 2017 at 328 a.m. EDT on the 5th launch attempt. Previous launch attempts were halted by weather issues 3 times, and a faulty telemetry radio that needed to be replaced after the rocket was rolled back to the Pad 41 Vertical Integration Facility. Credit Jeff Seibert
The venerable two stage Atlas V stands 194 feet tall and sports a 100% success record. The first stage generates approx. 1.6 million pounds of liftoff thrust.
This Atlas Evolved Expendable Launch Vehicle (EELV) mission launched in the 421 configuration vehicle, which includes a 4-meter payload fairing (PLF) encapsulating the payload and two strap on solid rocket first stage boosters.
The Atlas first stage booster for this mission was powered by the Russian-built RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.
The dual chamber, dual-nozzle RD-180 is fueled by a mixture of RP-1 kerosene and LOX (liquid oxygen).
The next NRO launch is scheduled on a ULA Delta IV in December from Vandenberg Air Force Base, California.
Watch for Ken’s continuing onsite NROL-52, SpaceX SES-11 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
You Can’t See the Great Wall of China From Space, But You Can See Their Giant Solar Farm
While the Great Wall of China is not readily visible from space (we debunked that popular myth here) there are several other human-built structures that actually can be seen from space. And that list is growing, thanks to the large solar farms being built around the world.
The solar farm with the current distinction of being the largest in the world — as of February 2017 – is the Longyangxia Dam Solar Park in China. These new images from NASA’s Landsat 8 satellite show the farm’s blue solar panels prominently standing out on the brown landscape of the western province of Qinghai, China. Reportedly, the solar farm covers 27 square kilometers (10.42 square miles), and consists of nearly 4 million solar panels.
You can see in the image below from 2013 that the farm has been growing over the years. The project has cost the amount of 6 billion yuan ($889.5 million).
China wants to shed its title of the biggest polluter in the world and is now investing in clean, renewable energy. It has a goal of producing 110 GW of solar power and 210 GW of wind power by the year 2020. That sounds like a lot, but in a country of 1.4 billion people that relies heavily on coal, it amounts to less than 1 percent of the country’s more than 1,500 gigawatts of total power generation capacity, says Inside Climate News.
According to NASA, China is now the world’s largest producer of solar power, however Germany, Japan, and the United States produce more solar power per person.
China has another solar farm in the works that will have a capacity of 2,000 MW when it is finished.
Here’s another wider-angle view from Landsat 8 of the Longyangxia Dam and lake near the solar farm.
Source: Landsat
Am I Being Watched From Space?
Look up, way up. It’s entirely possible that you’re looking right at a satellite, which is watching you right back. What kind of Earth Observation technology is possible?
Feel like somebody’s watching you? Well buckle up Rockwell, because somebody totally is. From space, definitely. And by the spiders. Oh, how the spiders love to watch. Right now, there are hundreds of satellites directing their creepy magic eyes and space nostrils towards the Earth.
Watching every… move… you make? Well, not your every move. Probably not any of your moves. At least not enough to warrant bringing in Thriller Pepsi-hair-on-fire Michael Jackson for backing vocals.
There’s a flock of Earth Observation satellites orbiting the planet right now. NASA alone has more than a dozen satellites in its imaginatively titled Earth Observing System program. Some image the land while others measure the atmosphere, oceans, ice, even the planet’s gravity and magnetosphere.
There’s also Landsat satellites. The first launched in 1972 to begin photographing Earth for SCIENCE. Many of the most famous images of Earth were taken by this program, and the missions are still going.
Landsat 8 launched in 2013, and preliminary plans are being made for Landsat 9. Landsat 8 images the entire planet every 16 days. They can’t see what you put in your coffee, at a 15-meter resolution.
NASA isn’t watching you right now, but they are pouring over photos from the last 16 days. Really, they’re dwelling on you from the past. They keep meaning to send you flowers and tell you you’re really pretty, but first they’ve got to get up the courage to dig through your garbage and spend a whole day waiting in their car outside your favorite restaurant.
Want to see what they’re tracking exactly and what secrets they’ve uncovered? Go to this url here – and you can browse the image archives in almost real time from the Landsat satellites. You can see all kinds of government and personal secrets like the seasons changes from Spring to Summer, or possibly a time that lake froze over.
You’re probably wondering about the higher resolution images, like the ones you’ve been looking at on Google Maps. Most likely you’ve been duped. The crazy high resolution images you see of cities are actually photographs taken from airplanes flying a few hundred meters up.
If you can see an airplane or black helicopters flying around you suspiciously, you might be under surveillance. Otherwise, you’re probably safe.
Ah, who am I kidding. We’ve all watched John Oliver. The least of our concerns is cameras. Nobody should be even thinking about a tiny little fly robot that attaches itself to your nosehairs.
What we were talking about? Oh right! How about images from space? The best commercially available satellite images have a resolution of 41 cm. That’s about… this big.
Your tinfoil hat, seen from above only takes up a single pixel. Rest comfortably, as this isn’t a technological problem, it’s actually a legal issue. That’s the highest resolution satellites were allowed to provide.
That’s right, I said “were”. A revision to the law allows the next generation of satellites, such as the recently launched Worldview-3 satellite, to get down to 31 cm – as small as 25 will be permitted.
As the press officer of Digital Globe noted, they’ll be able to tell if your vehicle is a car, truck or SUV. That’s all fine and dandy, but will they call me when I can’t remember where I parked?
Of course, we have no idea what resolution the most powerful satellites are, because they’re super double secret unimaginably classified. We don’t know how many there are, and what they’re capable of, but they’re launched aboard some of the most powerful rockets available in the US, like the Atlas 4.
What do they look like? Let’s go with the Hubble Space Telescope, pointing down. What kind of resolution do they have? Nobody knows. You can google “Hubble pointed at earth” and read up on all the messy complications with resolution and speed.
The rumor mill seems to think that it’s around 15 cm, significantly better than the commercially available options. Not enough count sugar spoonfuls, but it could target you in your tinfoil hat with ordinance.
Are you being watched from space? Probably. There are several satellites overhead right now, and other satellites capturing low resolution images of your region every few days.
The most powerful satellites are classified military reconnaissance spacecraft, and we have no idea what they’re capable of.
Holy Snowden, that does sound creepy in realm of “stop reading snapchats over my shoulder, heavy breather.”
What configuration of tinfoil hat do you like best to protect your thoughts from orbital mind control lasers?
And the Coldest Place on Earth Is …
What is the coldest place on Earth? Scientists say it’s a place so cold that ordinary mercury or alcohol thermometers won’t work there. If you were there, every breath would be painful, your clothing would crackle every time you moved, and if you threw hot water into the air, it would fall to the ground as tiny shards of ice. At this place, the new record of minus 136 F (minus 93.2 C) was set on Aug. 10, 2010. Researchers analyzed data from several satellite instruments and found the coldest place on Earth in the past 32 years is … a high ridge in Antarctica between Dome Argus and Dome Fuji, two summits on the ice sheet known as the East Antarctic Plateau. Temperatures in several hollows were found to dip to the new record.
“We had a suspicion this Antarctic ridge was likely to be extremely cold,” said Ted Scambos, from the National Snow and Ice Data Center in Boulder, Colorado. “With the launch of Landsat 8, we finally had a sensor capable of really investigating this area in more detail.”
This beats out the previous low of minus 128.6 F (minus 89.2 C), set in 1983 at the Russian Vostok Research Station in East Antarctica. The coldest permanently inhabited place on Earth is northeastern Siberia, where temperatures in the towns of Verkhoyansk and Oimekon dropped to a bone-chilling 90 degrees below zero Fahrenheit (minus 67.8 C) in 1892 and 1933, respectively.
Scambos and his team made the discovery while analyzing the most detailed global surface temperature maps to date, developed with data from remote sensing satellites. The new findings were reported at the American Geophysical Union meeting in San Francisco.
The pursuit to find the coldest place on Earth started when the researchers were studying large snow dunes, sculpted and polished by the wind, on the East Antarctic Plateau. When the scientists looked closer, they noticed cracks in the snow surface between the dunes, possibly created when wintertime temperatures got so low the top snow layer shrunk. This led scientists to wonder what the temperature range was, and prompted them to hunt for the coldest places using data from two types of satellite sensors.
They used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on NASA’s Terra and Aqua satellites and the Advanced Very High Resolution Radiometer (AVHRR) on several National Oceanic and Atmospheric Administration satellites. These sensitive instruments can pick up thermal radiation emitted from Earth’s surface, even in areas lacking much heat.
Using these sensors to scan the East Antarctic Plateau, Scambos detected extremely cold temperatures on a 620-mile stretch of the ridge at high elevations between Argus and Fuji, and even colder temperatures lower elevations in pockets off the ridge. Then, with the higher resolution of the Thermal Infrared Sensor (TIRS) aboard Landsat 8, the research team pinpointed the record-setting pockets.
The team compared the sites to topographic maps to explore how it gets so cold. Already cold temperatures fall rapidly when the sky clears. If clear skies persist for a few days, the ground chills as it radiates its remaining heat into space. This creates a layer of super-chilled air above the surface of the snow and ice. This layer of air is denser than the relatively warmer air above it, which causes it to slide down the shallow slope of domes on the Antarctic plateau. As it flows into the pockets, it can be trapped, and the cooling continues.
“By causing the air to be stationary for extended periods, while continuing to radiate more heat away into space, you get the absolute lowest temperatures we’re able to find,” Scambos said. “We suspected that we would be looking for one magical site that got extremely cold, but what we found was a large strip of Antarctica at high altitude that regularly reached these record low temperatures.”
Source: NASA
30 Years of City Growth Seen From Space
Since the launch of its first satellite in 1972, the eight NASA/USGS Landsat satellites have made the longest continuous observations of Earth’s surface, providing invaluable data for research in agriculture, geology, forestry, regional planning, education, mapping, global change research, as well as important emergency response and disaster relief information. In addition, having such a long span of data allows us to easily see the expansion of human development in many areas — unprecedented before-and-after views of city growth seen from space.
These images, taken over the course of the Landsat program, illustrate the visible impact of over three decades of human development:
See more of these images on NASA Goddard Space Flight Center’s Flickr album here.
The Landsat Program is a series of Earth-observing satellite missions jointly managed by NASA and the U.S. Geological Survey. In 1972, the launch of ERTS-1 (Earth Resources Technology Satellite, later renamed Landsat 1) started the era of a series of satellites that have since continuously acquired space-based land remote sensing data.
The latest satellite in the Landsat series, the Landsat Data Continuity Mission (LDCM) — now named Landsat 8 — was launched on February 11, 2013. Landsat 8 data is now available free to the public online here.
Read more on the USGS Landsat mission page here.
Image credits: USGS/NASA
Continuing the Landsat Mission: New Satellite Launches to Space
NASA launched a successor to the long-time Landsat satellite Earth-observing program today, sending the Landsat Data Continuity Mission satellite to orbit via an Atlas V rocket from Vandenberg Air Force Base at 1:02 EST (10:02 PST, 18:02 UTC). The new LDCM carries two new instruments, the Operational Land Imager and the Thermal Infrared Sensor, which will collect data that are compatible with data from previous Landsat mission, 5 and 7, and improve upon it with advanced instrument designs that are more sensitive to changes to the land surface, NASA said. This is the eighth Landsat satellite, and after extensive on-orbit testing and certified for its mission, it will be renamed Landsat 8.
See the launch video, below:
LDCM will continue the Landsat program’s 40-year data record of monitoring Earth from space, making critical observations to help with energy and water management, forest monitoring, human and environmental health, urban planning, disaster recovery and agriculture.
The new satellite is about the size of a large SUV, weighing 2,780 kg (6,133-pounds). The two instruments will monitor Earth’s surface in visible and multiple infrared wavelengths, resolving large-scale surface features and collecting some 400 images per day. The satellite is equipped with a 3.14-terabyte solid-state recorder to store data between downlink sessions.
“This will be the best Landsat satellite launched to date,” said Jim Irons, LDCM project scientist at Goddard Spaceflight Center, “the best Landsat satellite ever in terms of the quality and quantity of the data collected by the LDCM sensors.”
Irons said the Landsat program is a critical and extremely valuable national asset.
“Since the launch of Landsat 1, we have seen — and we have caused — dramatic changes to the global land surface that continue today at rates unprecedented in human history,” he said. “These changes are due to an increasing population, advancing technologies and climate change. LDCM will extend and improve upon the Landsat record of landscape change. The resulting observations and information will be critical to managing increasing demands on land resources and preparing for inevitable changes to the global land surface.”
Recently, Landsat 5 successfully set the new Guinness World Records title for ‘Longest-operating Earth observation satellite.’ It was launched on March 1, 1984, and outlived its three-year design life. It delivered high-quality, global data of Earth’s land surface for 28 years and 10 months, completing over 150,000 orbits and sending back more than 2.5 million images of Earth’s surface. On Dec. 21, 2012 the USGS announced Landsat 5 would be decommissioned in the coming months after the failure of a redundant gyroscope. The satellite carries three gyroscopes for attitude control and needs two to maintain control.
The Landsat Program is managed by the U.S. Geological Survey (USGS).
Read more about the Landsat Program here.
This timeline shows the continuing Landsat Program:
This video shows the separation of the spacecraft as it prepares to go into orbit: