A Black Hole has been Found Lurking Just Outside the Milky Way

This artist’s impression shows a compact black hole 11 times as massive as the Sun and the five-solar-mass star orbiting it. The two objects are located in NGC 1850, a cluster of thousands of stars roughly 160 000 light-years away in the Large Magellanic Cloud, a Milky Way neighbour. The distortion of the star’s shape is due to the strong gravitational force exerted by the black hole.  Not only does the black hole’s gravitational force distort the shape of the star, but it also influences its orbit. By looking at these subtle orbital effects, a team of astronomers were able to infer the presence of the black hole, making it the first small black hole outside of our galaxy to be found this way. For this discovery, the team used the Multi Unit Spectroscopic Explorer (MUSE) instrument at ESO’s Very Large Telescope in Chile. Credit: ESO/M. Kornmesser

Astronomers have found a smaller, stellar-mass black hole lurking in a nearby satellite galaxy of our own Milky Way.  The black hole has been hiding in a star cluster named NGC 1850, which is one of the brightest star clusters in the Large Magellanic Cloud. The black hole is 160,000 light-years away from Earth, and is estimated to be about 11 times the mass of our Sun.

Continue reading “A Black Hole has been Found Lurking Just Outside the Milky Way”

The Large Magellanic Cloud Stole one of its Globular Clusters

The Milky Way with the Small and Large Magellanic Clouds on the left. Image Credit: ESO/Y. Beletsky. CC 4.0

Astronomers have known for years that galaxies are cannibalistic. Massive galaxies like our own Milky Way have gained mass by absorbing smaller neighbours.

Now it looks like smaller galaxies like the Large Magellanic Cloud have also feasted on smaller neighbours.

Continue reading “The Large Magellanic Cloud Stole one of its Globular Clusters”

New All-Sky Map of the Milky Way’s Galactic Halo

The outer reaches of the Milky Way galaxy are a different place.  Stars are much harder to come by, with most of this “galactic halo” being made up of empty space.  But scientists theorize that there is an abundance of one particular thing in this desolate area – dark matter.  Now, a team from Harvard and the University of Arizona (UA) spent some time studying and modeling one of the galaxy’s nearest neighbors to try to tease out more information about that dark matter, and as a result came up with an all new way to look at the halo itself.

Continue reading “New All-Sky Map of the Milky Way’s Galactic Halo”

It Took 50 Nights of Observations to Capture New Data on the Magellanic Clouds

Part of the SMASH dataset showing an unprecedented wide-angle view of the Large Magellanic Cloud. Image Credit: CTIO/NOIRLab/NSF/AURA/SMASH/D. Nidever (Montana State University) Acknowledgment: Image processing: Travis Rector (University of Alaska Anchorage), Mahdi Zamani & Davide de Martin

The Magellanic Clouds are two of our closest neighbours, in galactic terms. The pair of irregular dwarf galaxies were drawn into the Milky Way’s orbit in the distant past, and we’ve been looking up at them since the dawn of humanity. Some of our ancestors even gathered pigments and created images of them in petroglyphs and cave paintings.

Following in the footsteps of those ancient artists, astronomers recently used the Dark Energy Camera (DECam) to capture an in-depth portrait of the pair of galaxies.

Continue reading “It Took 50 Nights of Observations to Capture New Data on the Magellanic Clouds”

A History of the Magellanic Clouds and How They Got Their Names

Image of the night sky taken at the European Southern Observatory’s Very Large Telescope in Chile. The Large and Small Magellanic Clouds are visible in the night sky. Credit: ESO, Y. Beletsky

The Magellanic Clouds are a pair of dwarf galaxies that are bound to the Milky Way. The Milky Way is slowly consuming them in Borg-like fashion, starting with the gas halo that surrounds both Clouds. They’re visible in the southern sky, and for centuries people have gazed up at them. They’re named after the Portuguese explorer Ferdinand Magellan, in our current times.

But they weren’t always called that.

Continue reading “A History of the Magellanic Clouds and How They Got Their Names”

The Milky Way is Already Starting to Digest the Magellanic Clouds, Starting With Their Protective Halos of Hot Gas

A view of the gas in the Magellanic System as it would appear in the night sky. The Magellanic Corona covers the entire sky while the Magellanic Stream is seen as gas flowing away from the two dwarf galaxies, the Large and the Small Magellanic Clouds. This image, taken directly from the numerical simulations, has been modified slightly for aesthetics. Image Credit: COLIN LEGG / SCOTT LUCCHINI

Massive galaxies like our Milky Way gain mass by absorbing smaller galaxies. The Large Magellanic Cloud and the Small Magellanic Cloud are irregular dwarf galaxies that are gravitationally bound to the Milky Way. Both the clouds are distorted by the Milky Way’s gravity, and astronomers think that the Milky Way is in the process of digesting both galaxies.

A new study says that process is already happening, and that the Milky Way is enjoying the Magellanic Clouds’ halos of gas as an appetizer, creating a feature called the Magellanic Stream as it eats. It also explains a 50 year old mystery: Why is the Magellanic Stream so massive?

Continue reading “The Milky Way is Already Starting to Digest the Magellanic Clouds, Starting With Their Protective Halos of Hot Gas”

An Upcoming Impact With the Magellanic Clouds is Already Causing Star Formation in the Milky Way

A newfound cluster of young stars (blue star) sits on the periphery of the Milky Way. These stars probably formed from material originating from neighboring dwarf galaxies called the Magellanic Clouds. Credit: NASA/D. Nidever

For some time, astronomers have known that collisions or mergers between galaxies are an integral part of cosmic evolution. In addition to causing galaxies to grow, these mergers also trigger new rounds of star formation as fresh gas and dust are injected into the galaxy. In the future, astronomers estimate that the Milky Way Galaxy will merge with the Andromeda Galaxy, as well as the Small and Large Magellanic Clouds in the meantime.

According to new results obtained by researchers at the Flatiron Institute’s Center for Computational Astrophysics (CCA) in New York city, the results of our eventual merger with the Magellanic Clouds is already being felt. According to results presented at the 235th meeting of the American Astronomical Society this week, stars forming in the outskirts of our galaxy could be the result of these dwarf galaxies merging with our own.

Continue reading “An Upcoming Impact With the Magellanic Clouds is Already Causing Star Formation in the Milky Way”

Astronomers Finally Find the Neutron Star Leftover from Supernova 1987A

A composite image of SN 1987A from Hubble, Chandra, and ALMA. Image Credit: By ALMA (ESO/NAOJ/NRAO)/A. Angelich. Visible light image: the NASA/ESA Hubble Space Telescope. X-Ray image: The NASA Chandra X-Ray Observatory - http://www.eso.org/public/images/eso1401a/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=30512379

Astronomers at Cardiff University have done something nobody else has been able to do. A team, led by Dr. Phil Cigan from Cardiff University’s School of Physics and Astronomy, has found the neutron star remnant from the famous supernova SN 1987A. Their evidence ends a 30 year search for the object.

Continue reading “Astronomers Finally Find the Neutron Star Leftover from Supernova 1987A”

Astronomers are Continuing to Watch the Shockwaves Expand from Supernova SN1987A, as they Crash Into the Surrounding Interstellar Medium

Composite image showing the effects of a powerful shock wave moving away from the explosion. Credit: X-ray: NASA/CXC/PSU/S.Park & D.Burrows.; Optical: NASA/STScI/CfA/P.Challis)

When stars reach the end of their life cycle, many will blow off their outer layers in an explosive process known as a supernova. While astronomers have learned much about this phenomena, thanks to sophisticated instruments that are able to study them in multiple wavelengths, there is still a great deal that we don’t know about supernovae and their remnants.

For example, there are still unresolved questions about the mechanisms that power the resulting shock waves from a supernova. However, an international team of researchers recently used data obtained by the Chandra X-Ray Observatory of a nearby supernova (SN1987A) and new simulations to measure the temperature of the atoms in the resulting shock wave.

Continue reading “Astronomers are Continuing to Watch the Shockwaves Expand from Supernova SN1987A, as they Crash Into the Surrounding Interstellar Medium”

One Bonus From the Gaia Data Release: the Rotation of the Large Magellanic Cloud

Rotation of the Large Magellanic Cloud, as revealed by the ESA's Gaia spacecraft. Copyright: ESA/Gaia/DPAC

On December 19th, 2013, the European Space Agency’s (ESA) Gaia spacecraft took to space with for a very ambitious mission. Over the course of its planned 5-year mission (which was recently extended), this space observatory would map over a billion stars, planets, comets, asteroids and quasars in order to create the largest and most precise 3D catalog of the Milky Way ever created.

Since that time, the ESA has made two data releases that cover the first three years of the Gaia mission. The second data release, which took on April 25th, 2018, has already proven to be a treasure trove for astronomers. In addition to the positions, distance indicators and motions of over a billion stars and celestial objects in the Milky Way Galaxy, it also contained a hidden gem – the proper motions of stars within the Large Magellanic Cloud (LMC).

Located about 200,000 light-years from Earth, the LMC has dense clouds of dust that results in it experiencing high rates of star formation. In addition, it’s central bar is warped (where the east and west ends are nearer to the Milky Way), suggesting that it was once a barred dwarf spiral galaxy who’s spiral arms were disrupted by interaction with the Small Magellanic Cloud (SMC) and the Milky Way.

The proper motions of the stars in the LMC, as captured by the Gaia spacecraft (without color). Copyright: ESA/Gaia/DPAC

For these reasons, astronomers have been hoping to derive the orbits of dwarf galaxies (and globular clusters) that revolve around the Milky Way. In so doing, they hope to learn more about how our galaxy evolved due to mergers with clusters and other galaxies. By determining the proper motions of the LMC’s stars, the Gaia mission has provided clues as to how the Milky Way and its largest satellite galaxy have interacted over time.

As you can see from the image (at top), the bar of the LMC is outlined in great detail, along with individual star-forming regions like the Tarantula Nebula (aka. 30 Doradus, which is visible just above the center of the galaxy). The image combines the total amount of radiation detected by the observatory in each pixel. The radiation measurements were then taken through different filters on the spacecraft to generate color information.

This allowed Gaia to obtain information about the total density of stars within the LMC as well as their proper motions. As you can see, the image is dominated by the brightest, most massive stars, which greatly outshine their fainter, lower-mass counterparts. The proper motions of the stars observed is represented as the texture of the image – which looks a lot like a fingerprint.

The Large Magellanic Cloud (LMC), one of the nearest galaxies to our Milky Way, as viewed by ESA’s Gaia satellite using information from the mission’s second data release. Copyright ESA/Gaia/DPAC

From this, scientists were able to see an imprint of the stars rotating clockwise around the center of the galaxy. Using this information, astronomers will be able to create new models on how the LMC, SMC, and Milky Way evolved together over time. This, in turn, could shed light on how galaxies like our own, formed and evolved over the course of billions of years.

As with other information contained in the first and second data releases, this latest discovery demonstrates that the Gaia mission is fulfilling its intended purpose. The third release of Gaia data is scheduled to take place in late 2020, with the final catalog being published in the 2020s. Meanwhile, an extension has already been approved for the Gaia mission, which will now remain in operation until the end of 2020 (to be confirmed at the end of this year).

And be sure to enjoy this animated view of the LMC’s rotation, courtesy of the ESA:

Further Reading: ESA