UPDATE: Shortly after publication of this article, Arianespace announced the launch for JWST has been delayed until December 25:
“Due to adverse weather conditions at Europe’s Spaceport in French Guiana, the flight #VA256 to launch the James Webb Space Telescope –initially scheduled for December 24– is being postponed,” Arianespace said via Twitter. “Tomorrow evening, local time, another weather forecast will be issued in order to confirm the date of December 25. The #Ariane5 launch vehicle and Webb are in stable and safe conditions in the Final Assembly Building.”
Earlier today, NASA and ESA announced that the James Webb Space Telescope has cleared one of the final hurdles before launch. The telescope passed the final launch readiness review, meaning that all the hardware and software for the spacecraft and the Ariane 5 rocket are ready for flight. This officially greenlights the liftoff.
You may have heard this one before, but encouraging news comes from NASA, ESA, and Arianespace today: they are now targeting December 18, 2021 as the new launch date for the oft-delayed James Webb Space Telescope (JWST).
NASA’s Mars 2020 Perseverance rover is now successfully on its journey to Mars, launching from Space Launch Complex 41 at Cape Canaveral Air Force Station at 7:50 am EDT (1150 GMT). Just minutes before the Atlas 5 rocket rumbled off the launchpad, a 2.9 magnitude earthquake rumbled out in California, giving a minor shake to the Jet Propulsion Laboratory in Pasadena, the Control Center for the rover.
We’re inching closer and closer to the James Webb Space Telescope’s (JWST) launch date of March 30th, 2021, (or maybe July 2021.) We never thought we’d get this close, with only a year to go before we send this powerful space telescope on its way. Now the telescope has been put in its launch configuration.
SpaceX was able to celebrate a successful return to flight this week with a picture-perfect launch of the Falcon 9 rocket on January 14, 2017 that successfully delivered a fleet of ten advanced Iridium NEXT mobile voice and data relay satellites to orbit. But the icing on the cake was the dead-center landing and recovery of the Falcon 9 booster on their drone barge (named “Just Read The Instructions”) in the Pacific Ocean, off the west coast of California.
SpaceX released some images from the landing that are absolutely stunning, like this one, below:
The Falcon 9 launched from Space Launch Complex 4E on Vandenberg Air Force Base in California, and the main goal of the mission was to deploy the payload of the first ten Iridium Next communication satellites to low Earth orbit. Iridium plans to eventually have a fleet of 81 such satellites.
It was the first launch for the commercial company since the September 1, 2016 explosion on the launchpad at Cape Canaveral Air Force Station in Florida during a routine launchpad test. The explosion destroyed the Falcon 9 rocket and the payload of the Amos-6 communications satellite, which had an estimated value of $200 million. The explosion was traced back to a failure of a high-pressure helium vessel inside the Falcon 9’s second-stage liquid-oxygen tank.
Enjoy more images and video from the landing below:
Here’s the full webcast of both the launch and landing:
There are a group of unsung heroes at NASA, the people who travel the world to capture key events in our exploration of space. They share their images with all of us, but most of the time, it’s not just the pictures of launches, landings, and crucial mission events that they capture. They also show us behind-the-scenes events that otherwise might go unnoticed, and they also capture the true personalities of the people behind the missions and events.
From exciting beginnings of rocket launches and rocket tests to the sad losses of space exploration icons, these photographers are there take these images that will forever remind us of the glories and perils of spaceflight and the joys and sadness of human life.
NASA photographers Bill Ingalls, Aubrey Gemignani, Joel Kowsky, Connie Moore, and Gwen Pitman chose some of their favorites images from 2016, and below are just a few. As Ingalls told us, “These are the favorite images created by our HQ photo team, not from the entire agency. There are many more talented photographers at the NASA centers producing some amazing work as well.”
Click on each of the images to see larger versions on Flickr. You can see the entire selection of these favorite photos from 2016 on the NASA HQ Flickr page.
China’s newest and biggest heavy-lift rocket was successfully launched today, Nov 3, 2016, testing out China’s latest rocket along with bringing an experimental satellite designed to test electric-propulsion technology.
The Long March 5 rocket blasted off from the Wenchang launch center on Hainan Island, off China’s southern coast, at 8:43 a.m. EDT (12:43:14 UTC; 8:43 p.m. Beijing time).
Although Chinese space officials have not released many details about the mission or the new rocket, reportedly the Long March-5, (or the Chang Zheng-5, CZ-5) gives China a launch vehicle with similar launch capability to the Delta 4 Heavy or ESA’s Ariane 5, which is twice the capability of China’s Long March-3 (CZ-3).
The 187-foot-tall (57-meter) Long March-5 is powered by 10 liquid-fueled engines, which reportedly generate about 2.4 million pounds of thrust.
The increase in capability is seen as essential for China’s long-range space goals for a bigger and permanently-staffed space station, missions to the Moon, a robotic mission to Mars and the launch of commercial satellites.
The @ChinaSpaceflight Twitter account tweeted this image the launch control center when the YZ-2 upper stage fired:
The Long March-5 is a large, two-stage rocket with a payload capacity of 25 tons to low-Earth orbit. According to the China Aerospace Science and Technology Corporation (CASC), the developer of the Long March-5, the rocket uses kerosene, liquid oxygen and liquid hydrogen, moving away from more toxic propellants like hydrazine and nitrogen tetroxide. This makes the new rocket not only less expensive to launch but more environmental friendly.
Today’s launch is the second from the new Wenchang launch complex. This past summer, on June 25, China’s new medium-sized Long March-7 made its initial launch from the site.
Israel launched a Shavit2 rocket from its facility at Palmachim airbase on Sept. 13. The launch was the 10th one for the Shavit rocket system, which had its initial launch in 1988. The launch and delivery were successful, but Israeli media is reporting that the payload, the Ofek-11 satellite, is malfunctioning.
The Ofek-11 satellite in Tuesday’s launch is an optical imaging satellite, basically a spy satellite, operated by the Isreali Ministry of Defence. It operates at an altitude of 600 km. It’s orbital path is designed to pass over Israel’s region 6 times per day, allowing the Ministry of Defence to focus on targets of interest in their nation’s region.
Officials involved with the launch have successfully contacted the satellite. Amnon Harari, head of the Defence Ministry’s Space Department, told the Times of Israel that it was “not clear that everything was in order,” hours after the launch.
Doron Ofer is CEO of the Israel Aerospace Industries’ Space Division, the company that makes the Shavit rocket. He told the Times of Israel that due to the satellite’s path, and the rotation of the Earth, the satellite can only be contacted a few times per day. This complicates efforts to correct the satellite.
“We have downloaded some figures, and we are now checking them. It’s not functioning exactly the way we expected, and we don’t know what it’s status is,” Ofer said. “We are now working to stabilize it, but it will take some time because of the small amount of communication we have with it when it comes in our area.”
The Ofek-11 will be the 11th satellite that provides intelligence to the Israeli forces, but not much is known about its exact capabilities. For obvious reasons, the Israeli Defence Ministry is keeping things secret.
It is widely believed that this newest satellite is among the world’s most advanced satellite recon systems. It’s enhanced imaging system purportedly collects images at a ground resolution of 0.5 meters from its 600-Kilometer orbit.
The Ofek-11 surpasses its predecessor, Ofek-9, launched in 2010, which had only a 0.7 meter resolution. The Ofek-10 was a radar imaging satellite launched in 2014 to capture all-weather, day and night images at a resolution less than 1 meter. The overlapping nature of Israel’s satellite system eliminates any gaps in their ability to monitor their region.
Two weeks ago, Israel had another failure in its satellite efforts, though that one was much more catastrophic. The Amos-6 civilian communications satellite was going to be Israel’s largest satellite to date. However, the SpaceX rocket tasked with taking Amos-6 into orbit exploded on its Cape Canaveral launch pad.
Israel is the 8th country in the world to develop their own orbital launch capabilities. They launched their first satellite, the Ofek-1, aboard the maiden flight of their Shavit-1 rocket in 1988. Including that first launch, Israel has attempted 10 launches, and has been successful 8 times. All of those have been Ofek satellites, operated by the military.
All but one of Israel’s Ofek satellites have been launched by Israel’s Shavit-1 and Shavit-2 rockets. The lone exception is Ofek-8, also known as TecSar, launched aboard the Indian Polar Satellite Launch Vehicle (PSLV).
The European Space Agency successfully launched the LISA Pathfinder, a spacecraft designed to demonstrate technology for observing gravitational waves in space. The launch took place at Europe’s spaceport in Kourou, French Guiana on a Vega rocket, at 4:04 GMT on December 3, (10:04 pm EST Dec 2), 2015.
Gravitational waves are ripples in the fabric of spacetime, which were predicted by Albert Einstein in his General Theory of Relativity. So far, because they are extremely tiny and incredibly faint, gravitational waves have proved to be elusive. The technology needed to detect them is highly sensitive and therefore has been difficult to conceive, plan and build. Continue reading “Spacecraft Launches to Test the Hunt for Ripples in the Fabric of Spacetime”