It's Time for Sustainable Development Goal for Space

The destruction of a single satellite could be catastrophic for our orbital endeavours. Image Credit: ESA

In 2015, the United Nations adopted the 2030 Agenda for Sustainable Development—the Sustainable Development Goals (SDGs)—a universal call to action to protect the planet for future generations and ensure that all people will enjoy peace and prosperity. These 17 goals included the elimination of poverty, hunger, and inequalities, the promotion of education, and the promotion of sustainable development worldwide. With the rapid development in Low Earth Orbit (LEO), there are growing concerns that an 18th SDG should be adopted for space.

This goal calls for the sustainable use of Earth’s orbit by space agencies and commercial industry and the prevention of the accumulation of space junk. This has become a growing problem in recent years thanks to the deployment of satellite mega-constellations and the “commercialization of LEO.” In a recent study led by the University of Plymouth, a team of experts outlined how the lessons learned from marine debris mitigation could be applied to space so that future generations can live in a world where space truly is “for all humanity.”

Continue reading “It's Time for Sustainable Development Goal for Space”

The Space Station is Getting Gigabit Internet

NASA's ILLUMA-T payload communicating with LCRD over laser signals. Credit: NASA/Dave Ryan

Aboard the International Space Station (ISS), astronauts and cosmonauts from many nations are performing vital research that will allow humans to live and work in space. For more than 20 years, the ISS has been a unique platform for conducting microgravity, biology, agriculture, and communications experiments. This includes the ISS broadband internet service, which transmits information at a rate of 600 megabits per second (Mbps) – ten times the global average for internet speeds!

In 2021, NASA’s Space Communications and Navigation (SCaN) began integrating a technology demonstrator aboard the ISS that will test optical (laser) communications and data transfer. This system currently consists of Laser Communications Relay Demonstration (LCRD) and will soon be upgraded with the addition of the Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T). Once complete, this system will be the first two-way, end-to-end laser relay system, giving the ISS a gigabit internet connection!

Continue reading “The Space Station is Getting Gigabit Internet”

What Would a Sustainable Space Environment Look Like?

A map of space debris orbiting Earth. Credit: European Space Agency

October 4th, 2022, will be an auspicious day as humanity celebrates the 65th anniversary of the beginning of the Space Age. It all began in 1957 with the launch of the Soviet satellite Sputnik-1, the first artificial satellite ever sent to orbit. Since that time, about 8,900 satellites have been launched from more than 40 countries worldwide. This has led to growing concerns about space debris and the hazard it represents to future constellations, spacecraft, and even habitats in Low Earth Orbit (LEO).

This has led to many proposed solutions for cleaning up “space junk,” as well as satellite designs that would allow them to deorbit and burn up. Alas, there are still questions about whether a planet surrounded by mega-constellations is sustainable over the long term. A recent study by James A. Blake, a research fellow with the University of Warwick, examined the evolution of the debris environment in LEO and assessed if future space operations can be conducted sustainably.

Continue reading “What Would a Sustainable Space Environment Look Like?”

The Future Could Bring Pinpoint Deliveries From Orbit

Credit: SpaceWorks

Since the dawn of the Space Age, considerable progress has been made with launch vehicles. From single stage to multistage rockets and spaceplanes to reusable launch vehicles, we have become very good at sending payloads to space. But when it comes to returning payloads to Earth, our methods really haven’t evolved much at all. Some seventy years later, we are still relying on air friction, heatshields, and parachutes and landing at sea more often than not.

Luckily, there are many solutions that NASA and commercial space companies are currently investigating. For example, SpaceWorks Enterprises, Inc (SEI) is currently working on an orbital delivery system known as Reentry Device (RED) capsules. With support provided by NASA, they are gearing up for a test run this October where one of their capsules gets dropped from an altitude of 30 km (19 mi).

Continue reading “The Future Could Bring Pinpoint Deliveries From Orbit”

There’s Now a Gas Station… In Space!

According to the Union of Concerned Scientists (UCS), over 4,000 operational satellites are currently in orbit around Earth. According to some estimates, this number is expected to reach as high as 100,000 by the end of this decade, including telecommunication, internet, research, navigation, and Earth Observation satellites. As part of the “commercialization” of Low Earth Orbit (LEO) anticipated in this century, the presence of so many satellites will create new opportunities (as well as hazards).

The presence of these satellites will require a great deal of mitigation (to prevent collisions), servicing, and maintenance. For example, the San Francisco-based startup Orbit Fab is working to create all the necessary technology for orbital refueling services for satellites. To help realize this goal, industry giant Lockheed Martin recently announced that they are investing in Orbit Fab’s “Gas Stations in Space™” refueling technology.

Continue reading “There’s Now a Gas Station… In Space!”

A Solution to Space Junk: Satellites Made of Mushrooms?

Credit: Christian Scheckhuber/Wikipeia Commons (left); UC3M (right)

According to the latest numbers from the ESA’s Space Debris Office (SDO), there are roughly 6,900 artificial satellites in orbit. The situation is going to become exponentially crowded in the coming years, thanks to the many telecommunications, internet, and small satellites that are expected to be launched. This creates all kinds of worries for collision risks and space debris, not to mention environmental concerns.

For this reason, engineers, designers, and satellite manufacturers are looking for ways to redesign their satellites. Enter Max Justice, a cybersecurity expert, former Marine, and “Cyber Farmer” who spent many years working in the space industry. Currently, he is working towards a new type of satellite that is made out of mycelium fibers. This tough, heat-resistant, and environmentally friendly material could trigger a revolution in the booming satellite industry.

Continue reading “A Solution to Space Junk: Satellites Made of Mushrooms?”

A new Method to Capture High-Resolution Images of Space Debris

“You can’t hit what you can’t see” is a common phrase in sports and was originally derived to describe baseball pitcher Walter Johnson’s fastball.  But the same goes for things with a more serious spin, such as some of the millions of pieces of debris floating in Low Earth Orbit (LEO).  Now, a team of researchers have come up with a new imaging system that will allow agencies and governments to closely track some of the debris that is cluttering LEO and potentially endangering humanity’s future expansion to the stars.

Continue reading “A new Method to Capture High-Resolution Images of Space Debris”

A Television Satellite Might be About to Explode

Artist's impression of a satellite exploding. Credit: ESA

On Friday (Jan. 19th), authorities at the Federal Communications Commission (FCC) announced that they had granted permission to cable tv provider DirecTV to begin the process of deorbiting their Spaceway-1 (F1) satellite. This was necessary ever since DirecTV detected a “major anomaly” with the satellite’s batteries which increased the risk of an explosion if its orbit remained unchanged.

Continue reading “A Television Satellite Might be About to Explode”

An Upcoming ESA Mission is Going to Remove one Piece of Space Junk From Orbit

Credit: ESA

While working at the NASA Johnson Space Center during the 1970s, astrophysicist Donald Kessler predicted that collisions between space debris would become increasingly common as the density of space debris increases in orbit around the Earth – creating a cascading effect. Since 2005, the amount of debris in orbit has followed an exponential growth curve, confirming Kessler’s prediction.

Given that the problem is only going to get worse in the coming years, there is a growing demand for technologies that can remove space debris. Following a competitive process, the ESA recently contracted the Swiss startup ClearSpace Today to create the world’s first debris-removing space mission. This mission, known as ClearSpace-1, is expected to launch by 2025 and will help pave the way for more debris removal missions.

Continue reading “An Upcoming ESA Mission is Going to Remove one Piece of Space Junk From Orbit”

Using Balloons to Launch Rockets

Credit: LEO Aerospace

Since the turn of the century, space exploration has changed dramatically thanks to the unprecedented rise of commercial aerospace (aka. NewSpace). With the goal of leveraging new technologies and lowering the costs of launching payloads into space, some truly innovative and novel ideas are being put forth. This includes the idea of using balloons to carry rockets to very high-altitudes, then firing the payloads to their desired orbits.

Also known as “Rockoons”, this concept has informed Leo Aerospace‘s fully-autonomous and fully-reusable launch system – which consists of a high-altitude aerostat (balloon) and a rocket launch platform. With the first commercial launches slated for next year, the company plans to use this system to provide regular launch services to the microsatellite (aka. CubeSat) market in the coming years.

Continue reading “Using Balloons to Launch Rockets”