First Detailed Image Of Accretion Disk Around A Young Star

An illustration of an accretion disk feeding a central young star, or protostar, and the gaseous jet ejected from the protostar. Credit: Yin-Chih Tsai/ASIAA

According to the Nebula Hypothesis, stars and their systems of planets form from giant clouds of dust and gas. After undergoing gravitational collapse at the center (which creates the star), the remaining matter then forms an accretion disk in orbit around it. Over time, this matter is fed to the star – allowing it to become more massive – and also leads to the creation of a system of planets.

And until this week, the Nebula Hypothesis was just that. Given the distance involved, and the fact that the formation of star systems takes billions of years, being able to witness the process at various stages is quite difficult. But thanks to the efforts of team of researchers from the U.S. and Taiwan, astronomers have now captured the first clear image of a young star surrounded by an accretion disk.

As they explained in their paper – “First Detection of Equatorial Dark Dust Lane in a Protostellar Disk at Submillimeter Wavelength“, which was recently published in the journal Science Advances – these disks are difficult to resolve spatially because of their small sizes. However, by using the Atacama Large Millimeter/submillimeter Array (ALMA) – which offers unprecedented resolution – they were able to resolve a star’s disk and study it in detail.

This artist’s concept shows a young stellar object and the whirling accretion disk surrounding it. NASA/JPL-Caltech

The protostellar system in question is known as HH 212, a young star system (40,000 years old) located in the Orion constellation, roughly 1300 light-years from Earth. This star system is noted for its powerful bipolar jet – i.e. the continuous flows of ionized gas from its poles – which is believed to cause it to accrete matter more efficiently. Due to its age and its position relative to Earth, this protostar system has been a popular target for astronomers in the past.

Basically, the fact that it is still in an early phase of formation (and the fact that it can be viewed edge-on) make the star system ideal for studying the evolution of low-mass stars. However, previous searches had a maximum resolution of 200 AU, which meant astronomers were only able to get a hint of a small dusty disk. This disk appeared as a  flattened envelope, spiraling towards the protostar at the center.

But with ALMA’s resolution (8 AU, or 25 times higher), the research team was not only able to detect the accretion disk, but also able to spatially resolve its dust emissions at submillimeter wavelength. As Chin-Fei Lee – a research fellow at the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taiwan and the lead author on the paper – said in an ALMA press release:

“It is so amazing to see such a detailed structure of a very young accretion disk. For many years, astronomers have been searching for accretion disks in the earliest phase of star formation, to determine their structure, how they are formed, and how the accretion process takes place. Now using the ALMA with its full power of resolution, we not only detect an accretion disk but also resolve it, especially its vertical structure, in detail.”

Jet and disk in the HH 212 protostellar system: (a) A composite image of the jet, produced by combining images from different telescopes. (b) Close-up of the center of the dusty disk at 8 AU resolution. (c) An accretion disk model that can reproduce the observed dust emission in the disk. Credit: ALMA (ESO/NAOJ/NRAO)/Lee et al.

What they observed was a disk that has a radius of roughly 60 astronomical units, which is slightly greater than the distance from the Sun and the outer edge of the Kuiper Belt (50 AU). They also noted that the disk was compromised of silicate minerals, iron and other interstellar matter, and consisted of a prominent equatorial dark layer that was sandwiched between two brighter layers.

This contrast between light and dark sections was due to relatively low temperatures and high optical depth near the central plane of the disk. Meanwhile, the layers above and below the central plane showed greater absorption in both the optical and near-infrared light wavelengths. Because of this layered appearance, the research team described it as looking like “a hamburger”.

These observations are exciting news for the astronomical community, and not just because they are a first. In addition, they also represent a new opportunity to study small disks around the youngest protostars. And with the kinds of high-resolution imaging made possibly by ALMA and other next-generation telescopes, astronomers will be able to place new and stronger constraints on theories pertaining to disk formation.

As Zhi-Yun Li from University of Virginia (the co-author on the study) put it:

“In the earliest phase of star formation, there are theoretical difficulties in producing such a disk, because magnetic fields can slow down the rotation of collapsing material, preventing such a disk from forming around a very young protostar. This new finding implies that the retarding effect of magnetic fields in disk formation may not be as efficient as we thought before.”

A chance to watch stars and planetary systems in their earliest phase of formation and a chance to test our theories about how it’s all done? Definitely not something that happens every day!

And be sure to enjoy this video of the observation, courtesy of ALMA and narrated by Dr. Lee:

Further Reading: Science Advances, ALMA

Is This The Exoplanet Where Life Will First Be Found?

Using data obtained by Kepler and numerous observatories around the world, an international team has found a Super-Earth that orbits its orange dwarf star in just 14 hours. Credit: M. Weiss/CfA

It is good time to be an exoplanet hunter… or just an exoplanet enthusiast for that matter! Every few weeks, it seems, new discoveries are being announced which present more exciting opportunities for scientific research. But even more exciting is the fact that every new find increases the likelihood of locating a potentially habitable planet (and hence, life) outside of our Solar System.

And with the discovery of LHS 1140b – a super-Earth located approximately 39 light years from Earth – exoplanet hunters think they have found the most likely candidate for habitability to date. Not only does this terrestrial (i.e. rocky) planet orbit within its sun’s habitable zone, but examinations of the planet (using the transit method) have revealed that it appears to have a viable atmosphere.

Credit for the discovery goes to a team of international scientists who used the MEarth-South telescope array – a robotic observatory located on Cerro Tololo in Chile – to spot the planet. This project monitors the brightness of thousands of red dwarf stars with the goal of detecting transiting planets. After consulting data obtained by the array, the team noted characteristic dips in the star’s brightness that indicated that a planet was passing in front of it.

The MEarth-South telescope array, located on Cerro Tololo in Chile, searches for planets by monitoring the brightness of nearby, small stars. Credit: Jonathan Irwin

These findings were then followed up using the High Accuracy Radial velocity Planet Searcher (HARPS) instrument at the ESO’s La Silla Observatory, located on the outskirts of Chile’s Atacama Desert. According to the their study – which appeared in the April 20th, 2017, issue of the journal Nature – the team was able to make estimates of the planet’s age, size, mass, distance from its star, and orbital period.

They estimate that the planet is at least five billion years old – about 500 million years older than Earth. It is also slightly larger than Earth – 1.4 times Earth’s diameter – and is considerably more massive, weighing in at a hefty 6.6 Earth masses. Since they were able to view the planet almost edge-on, the team was also able to determine that it orbits its sun at a distance of about 0.1 AU (one-tenth the distance between Earth and the Sun) with a period of 25 days.

However, since its star is a red dwarf, this proximity places it in the middle of the system’s habitable zone. But what was most exciting was the fact that the team was able to look for evidence of an atmosphere since the planet was passing in front of its star – something that has not been possible with many exoplanets. Because of this, they were able to conduct transmission spectroscopy measurements that revealed the presence of an atmosphere.

As Jason Dittmann – of the Harvard-Smithsonian Center for Astrophysics (CfA) and the lead author of the study – said in a CfA press release:

“This is the most exciting exoplanet I’ve seen in the past decade. We could hardly hope for a better target to perform one of the biggest quests in science — searching for evidence of life beyond Earth.”

This artist’s impression shows the exoplanet LHS 1140b, which orbits a red dwarf star 40 light-years from Earth. Credit: ESO/spaceengine.org

Granted, this exoplanet is not as close as Proxima b, which orbits Proxima Centauri – just 4.243 light years away. And it certainly isn’t as robust a find as the TRAPPIST-1 system, with its seven rocky planets, three of which are located within its habitable zone. But compared to these candidates, the researchers were able to place solid constraints on the planet’s mass and density, not to mention the fact that they were able to observe an atmosphere.

The discovery of an exoplanet that orbits a red dwarf star and has an atmosphere is also encouraging in a wider context. Low-mass red dwarf stars are the most common star in the galaxy, accounting for 75% of stars in our cosmic neighborhood alone. They are also long-lived (up to 10 trillion years), and recent research indicates that they are capable of hosting large numbers of planets.

But given their variability and unstable nature,  astronomers have expressed doubts as to whether or not planet orbiting them could retain their atmospheres for very long. Knowing that a terrestrial planet that orbits a red dwarf, is five billion years old, and still has an atmosphere is therefore a very good sign. But of course, simply knowing there is an atmosphere doesn’t mean that it is conducive to life as we know it.

“Right now we’re just making educated guesses about the content of this planet’s atmosphere,” said Dittman. “Future observations might enable us to detect the atmosphere of a potentially habitable planet for the first time. We plan to search for water, and ultimately molecular oxygen.”

This chart shows the location of the faint red star LHS 1140 in the faint constellation of Cetus (The Sea Monster). This star is orbited by a super-Earth exoplanet called LHS 1140b, which may be best place to look for signs of life beyond the Solar System. The star is too faint to be seen in a small telescope.

Hence, additional studies will be needed before this planet can claim the title of “best place to look for signs of life beyond the Solar System”. To that end, future space-based missions like the James Webb Space Telescope (which will launch in 2018), and ground-based instruments like the Giant Magellan Telescope and the ESO’s Extremely Large Telescope,  will be especially well-suited!

In the meantime, the NASA/ESA Hubble Space Telescope will be conducting observations of the star system in the near future. These observations, it is hoped, will indicate exactly how much high-energy radiation LHS 1140b receives from its sun. This too will go a long way towards determining just how habitable the Super-Earth is.

And be sure to enjoy this video of the LHS 1140 star system, courtesy of the European Southern Observatory and spaceengine.org:

Further Reading: ESO, CfA