What Is Water Made Of

Water
Water

[/caption]

The answer to ‘what is water made of’ is as easy as you want it to be. Do you want to just do some superficial research or do you want to look a little deeper? Superficially, pure, distilled water is composed of 2 hydrogen atoms and 1 oxygen atom. If the sample of water is not ‘pure’, the composition of the sample can be different.

Salt water obviously contains salt, but it can contain many other trace elements. Fresh water from different sources will contain different elements and minerals. These come from the rocks the water washes over and the pollutants from farms and industry. The water that you drink will contain several additives used for purification plus the fluoride that is added for our health. Rain water will have any number of pollutants that have accumulated in the atmosphere.

At high temperatures and pressures, like those in the interior of giant planets, scientists think that water exists as ionic water in which the molecules break down into a soup of hydrogen and oxygen ions, and at even higher pressures as superionic water in which the oxygen crystallizes but the hydrogen ions float around freely within the oxygen lattice.

There are many interesting facts about water. Water is a tasteless, odorless liquid. The natural color of water and ice is slightly blue, although water appears colorless in small quantities. Ice also appears colorless, and water vapor is essentially invisible as a gas. Since the water molecule is not linear and the oxygen atom has a higher electronegativity than hydrogen atoms, water carries a slight negative charge. As a result, water has a electrical dipole moment. Water can form a large number of intermolecular hydrogen bonds(four). These factors lead to to water’s high surface tension and capillary forces. Water is often referred to as the universal solvent. All major cellular components are dissolved in water. Water is at its maximum density at 3.98°C. Oddly, it becomes less dense when it is cooled down to its solid form, ice. It expands to occupy 9% greater volume in this solid state, which accounts for the fact of ice floating on liquid water.

Water covers the majority of our planet and can be found in one form or another throughout the known universe. No matter where you are on Earth, water affects you in some way each day.

We have written many articles about water for Universe Today. Here’s an article about the density of water, and here’s an article about the water on Earth.

If you’d like more info on Water, check out NASA’s Water, Water, Everywhere!. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Source: Wikipedia

States of Matter

The cross section of a neutron star

Solid, liquid, gas … those are the states of matter we’re thoroughly familiar with, but what makes for a state of matter? And are there other states of matter?

Since people first made distinctions between them, the states of matter were defined by how the matter behaved, in bulk; so a solid had a fixed shape (and volume), a liquid a fixed volume (but changed shape to fit the container it was in), and a gas expanded to fill its container. Once we realized that matter is made up of atoms (and molecules), the states of matter were distinguished by how the molecules (or atoms, in an element) behaved: in solids they are both close by and in a fixed arrangement (e.g. in crystals), in liquids close by but the arrangement is not fixed, and in gases not close by (so no particular arrangement).

But what about plasma? Sorta like a gas – so as it fills any container it’s in, it’s a gas – but not (the ions and electrons interact in completely different ways, in a plasma, than molecules (or atoms) do in a solid, liquid, or gas). Hence, plasma is the fourth state of matter.

Things got a bit more complicated as scientists studied matter more carefully.

For example, if you heat water in a strong, but transparent, container, above a certain temperature (and pressure) – called the critical temperature (critical pressure) – the liquid and gas states become one … the water is now a supercritical fluid (you may have seen this demonstrated, in a chemistry class perhaps, though likely not with water!).

Then there’s the distinction between crystals (crystalline state) and glasses (glassy state); both seem very solid, but the arrangement of molecules in a glass is more like that of molecules in a liquid than those in a crystal … and glasses can flow, just like liquids, if left for a long enough time.

Is there a ‘fifth state of matter’? Yes! A Bose-Einstein condensate (BEC) … which is like a gas, except that the constituent atoms are all (or mostly) in the lowest possible quantum state … so a BEC has bulk properties quite unlike those of any other state of matter (quantum behavior become macroscopic).

In astrophysics, there are quite a few exotic states of matter; for example, in white dwarf stars matter is prevented from further (gravitational) collapse by electron degeneracy pressure; the same sort of thing happens in neutron stars, except that its neutron degeneracy pressure (there may also be an even more extreme state of matter, held up by quark degeneracy pressure!). There’s also a counterpart to ordinary plasmas: quark-gluon plasma (in an ordinary plasma made of hydrogen the atoms are broken into electrons and protons; in a quark-gluon plasma protons and neutrons ‘melt’ into their constituent quarks and gluons).

Are there related Universe Today stories? Sure! For example: Forget Neutron Stars, Quark Stars May Be the Densest Bodies in the Universe, Schwarzschild Radius, and Next Generation Magnetoplasma Rocket Could be Tested on Space Station.

States of matter, including some exotic ones, is something you’ll find discussed in Astronomy Cast; for example this Questions Show.

Sources:
Wikipedia
Purdue University
New York University
Wikipedia: Bose-Einstein Condensate