You can enter NASA’s ‘Take the Plunge’ contest and guess LADEE’s impending lunar impact date, expected on or before April 21, 2014. Credit: NASA Contest entry details below – deadline soon[/caption]
When will LADEE hit the Moon for its looming end of mission finale?
NASA’s resoundingly successful LADEE lunar dust exploring mission is nearly out of gas – and needs your help, now!
With its inevitable doom approaching, NASA needs you to summon your thoughts and is challenging you to participate in a ‘Take the Plunge’ contest – figuratively not literally – and guess LADEE’s impending impact date.
LADEE, which stand for Lunar Atmosphere and Dust Environment Explorer, will smack violently into the Moon and scatter into zillions of bits and pieces sometime in the next two and a half weeks, on or before about April 21.
But exactly when will it impact the lunar surface? NASA wants to hear your best guess!
The ‘Take the Plunge’ contest was announced by NASA today, April 4, at a media briefing.
Between now and its inevitable doom, mission controllers will command LADEE to continue gathering groundbreaking science.
And it will do so at an even lower attitude that it orbits today by firing its orbit maneuvering thrusters tonight and this weekend.
The couch sized probe seeks to eek out every last smidgeon of data about the Moons ultra tenuous dust and atmospheric environment from an ultra low altitude just a few miles (km) above the pockmarked lunar surface.
But because the moon’s gravity field is so uneven, the probes thrusters must be frequently fired to keep it on course and prevent premature crashes.
“The moon’s gravity field is so lumpy, and the terrain is so highly variable with crater ridges and valleys that frequent maneuvers are required or the LADEE spacecraft will impact the moon’s surface,” said Butler Hine, LADEE project manager at Ames.
“Even if we perform all maneuvers perfectly, there’s still a chance LADEE could impact the moon sometime before April 21, which is when we expect LADEE’s orbit to naturally decay after using all the fuel onboard.”
LADEE will fly as low as fly approximately 1 to 2 miles (2 to 3 kilometers) above the surface.
Everyone of all ages is eligible to enter NASA’s “Take the Plunge: LADEE Impact Challenge.”
The submissions deadline is 3 p.m. PDT Friday, April 11.
NASA says that winners post impact. They will receive a commemorative, personalized certificate from the LADEE program via email.
Watch for my upcoming story on LADEE’s science accomplishments and what’s planned for her final days.
LADEE was launched on Sept. 6, 2013 from NASA Wallops in Virginia on a science mission to investigate the composition and properties of the Moon’s pristine and extremely tenuous atmosphere, or exosphere, and untangle the mysteries of its lofted lunar dust dating back to the Apollo Moon landing era.
The science mission duration had initially been planned to last approximately 100 days and finish with a final impact on the Moon on about March 24th.
NASA granted LADEE a month long extension since the residual rocket fuel is more than anticipated due to the expertise of LADEE’s navigation engineers and the precision of the launch atop the Orbital Sciences Minotaur V rocket and orbital insertion.
Stay tuned here for Ken’s continuing LADEE, Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Mars rover and more planetary and human spaceflight news.
Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13 and at Washington Crossing State Park, NJ on April 6.
While NASA’s newest lunar probe was tracking the stars, it also captured the moon! This series of star tracker images shows Earth’s closest large neighbour from a close-up orbit. And as NASA explains, the primary purpose of these star-tracking images from the Lunar Atmosphere and Dust Environment Explorer (LADEE) was not the lunar pictures themselves.
Depiction of NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) observatory as it approaches lunar orbit.Credit: NASA Ames/Dana Berry
LADEE will now orbit far lower than ever before – details below![/caption]
LADEE, NASA’s latest lunar orbiter, is getting a new lease on life and will live a little longer to study the mysteries of the body’s tenuous atmosphere, or exosphere, and make surprising new discoveries while hugging Earth’s nearest neighbor even tighter than ever before, the team told Universe Today.
NASA has announced that the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission will be granted a month long extension since the residual rocket fuel is more than anticipated due to the expertise of LADEE’s navigation engineers.
This is great news because it means LADEE’s three research instruments will collect a big bonus of science measurements about the pristine lunar atmosphere and dust during an additional 28 days in an ultra tight low orbit skimming around the Moon.
And the extension news follows closely on the heels of LADEE being photographed in lunar orbit for the first time by a powerful camera aboard NASA’s five year old Lunar Reconnaissance Orbiter (LRO), her orbital NASA sister – detailed here.
LADEE is currently flying around the moon’s equator at altitudes ranging barely eight to 37 miles (12-60 kilometers) above the surface which crosses over from lunar day to lunar night approximately every two hours.
During the extended mission lasting an additional full lunar cycle, LADEE will fly even lower to within a few miles (km) thereby allowing scientists an exceptional vantage point to unravel the mysteries of the moon’s atmosphere.
Just how low will LADEE fly?
I asked Rick Elphic, LADEE project scientist at NASA Ames Research Center, Moffett Field, Calif.
“We will be taking LADEE from its nominal 20 to 50 kilometer periapsis right down to the treetops — we want to get data from 5 kilometers or even less!” Elphic told me.
“So far we’ve been keeping a healthy margin for spacecraft safety, but after the nominal mission is completed, we will relax those requirements in the interest of new science.”
With the measurements collected so far the science team has already established a baseline of data for the tenuous lunar atmosphere, or exosphere, and dust impacts, says NASA.
Therefore the LADEE team is free to fly the spacecraft much lower than ever before.
And why even go to lower altitudes? I asked Elphic.
Basically because the team hopes to see changes in the particle density and composition.
“The density depends on the species. For instance, argon-40 is heavier than neon-20, and has a lower scale height. That means we should see a big increase in argon compared to neon.”
“And we may see the heavier species for the first time at these really low altitudes.”
“It’s remotely possible we’ll see krypton, for instance.”
“But the real boon will be in the dust measurements.”
“LDEX (The Lunar Dust Experiment) will be measuring dust densities very close to the surface, and we will see if something new shows up. Each time we’ve dropped our orbit down to lower altitudes, we’ve been surprised by new things,” Elphic told Universe Today.
The Neutral Mass Spectrometer (NMS) instrument will measure the identity and abundances of the exospheres constituents, such as argon, neon and krypton.
With the extension, LADEE is expected to continue capturing data in orbit until about April 21, 2014, depending on the usage of the declining on board fuel to feed its maneuvering thrusters.
“LADEE is investigating the moons tenuous exosphere, trace outgases like the sodium halo and lofted dust at the terminator,” Jim Green, Planetary Science Division Director at NASA HQ, told me earlier in an exclusive interview.
“The spacecraft has a mass spectrometer to identify the gases, a physical dust detector and an imager to look at scattered light from the dust. These processes also occur at asteroids.”
The Lunar Dust Experiment (LDEX) recorded dust impacts as soon as its cover opened, says NASA and is also seeing occasional bursts of dust impacts caused by meteoroid showers, such as the Geminids.
By studying the raised lunar dust, scientists also hope to solve a 40 year old mystery – Why did the Apollo astronauts and early unmanned landers see a glow of rays and streamers at the moon’s horizon stretching high into the lunar sky.
The science mission duration had initially been planned to last approximately 100 days and finish with a final impact on the Moon on about March 24th.
And the team had told me before launch that an extension was rather unlikely since the spacecraft would be flying in such a very low science orbit of about 50 kilometers altitude above the moon that it will require considerable fuel to maintain.
“LADEE is limited by the amount of onboard fuel required to maintain orbit,” Doug Voss, launch manager, Wallops, told me.
So what accounts for the extension?
Basically it’s because of the expert navigation by NASA’s engineers and the Orbital Sciences Minotaur V rocket and upper stages following the spectacular night time LADEE blastoff from NASA Wallops, VA, on Sept. 6, 2013 and subsequent insertion into lunar orbit.
“The launch vehicle performance and orbit capture burns using LADEE’s onboard engines were extremely accurate, so the spacecraft had significant propellant remaining to enable extra science,” said Butler Hine, LADEE project manager at NASA’s Ames where the mission was designed, built, tested, in a NASA statement.
“This extension represents a tremendous increase in the amount of science data returned from the mission.”
“LADEE launched with 134.5 kilograms of fuel. After the third lunar orbit insertion burn (LOI-3), 80% of our fuel had been consumed,” said Dawn McIntosh, LADEE deputy project manager at NASA Ames Research Center, in an exclusive interview with Universe Today.
“Additional orbit-lowering maneuvers with the orbital control system (OCS) and reaction control system (RCS) of approximately 40 seconds were used to get LADEE into the science orbit.
And LADEE’s orbit capture was accomplished amidst the ridiculous US government shutdown with a skeleton crew.
The spacecraft finally entered its planned two hour science orbit around the moon’s equator on Nov. 20.
So LADEE’s orbital lifetime depends entirely on the remaining quantity of rocket fuel.
“LADEE has about 20 kg of propellant remaining today,” Butler Hine told Universe Today.
The 844 pound (383 kg) robot explorer is the size of a couch and was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.
The $280 million probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.
“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Center Director Pete Worden told me in an interview. “It will study the pristine moon to study significant questions.”
“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”
To date LADEE has traveled over 1 million miles and in excess of 1200 equatorial orbits around the Moon.
LADEE is also searching for any changes caused to the exosphere and dust by the landing of China’s maiden Chang’e-3 lander and Yutu moon rover in December 2013.
Stay tuned here for Ken’s continuing LADEE, Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Mars rover and more news.
Dust on the moon accumulates at a rate 10 times faster than previously believed, which could make it difficult for future human explorers to use solar power cells on the lunar surface, a new study says.
“You wouldn’t see it; it’s very thin indeed,” stated Brian O’Brien, a University of Western Australia professor who co-authored the research. “But, as the Apollo astronauts learned, you can have a devil of a time overcoming even a small amount of dust.”
O’Brien also developed the Lunar Dust Detector, an experiment that flew aboard three Apollo moon missions in the 1960s and 1970s. The experiment, which was about the size of a matchbox, had three tiny solar cells on board. Voltage from the experiment fell as dust accumulated.
His experiment was deployed on Apollo 12 (in 1969) and Apollos 14 and 15 (in 1971), then shut off in 1977 due to budget cutbacks.
In these years of data, electrical measurements showed that 100 microgams of lunar dust fell per year per square centimeter. “At that rate, a basketball court on the Moon would collect roughly 450 grams (1 pound) of lunar dust annually,” stated a press release from the American Geophysical Union.
Past models assumed that the dust built up because of meteor impacts and cosmic dust, but O’Brien’s data was far in excess of that. He suggested it could be because the moon has a “dust atmosphere” built up as individual particles jump between different locations.
“During each lunar day, solar radiation is strong enough to knock a few electrons out of atoms in dust particles, building up a slight positive charge,” the AGU stated.
“On the nighttime side of the Moon, electrons from the flow of energetic particles, called the solar wind, which comes off the sun strike dust particles and give them a small negative charge. Where the illuminated and dark regions of the moon meet, electric forces could levitate this charged dust, potentially lofting grains high into the lunar sky.”
This data especially has resonance for NASA now that its Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is orbiting about 155 miles (250 kilometers) above the moon. The agency is trying to learn more about how the dust environment on the moon works, particularly at the “terminator” — the point between light and darkness — where dust may levitate due to electrostatic charging.
“Something similar was reported by Apollo astronauts orbiting the Moon who looked out and saw dust glowing on the horizon,” stated Monique Hollick, who led the work and is also a researcher at the University of Western Australia.
NASA believed O’Brien’s data was lost for decades as the agency did not preserve the archival tapes, but in 2006 O’Brien — when he heard of NASA’s issue — informed them he still had the data.
“It’s been a long haul,” stated O’Brien. “I invented [the detector] in 1966, long before Monique was even born. At the age of 79, I’m working with a 23-year old working on 46-year-old data and we discovered something exciting—it’s delightful.”
The work was published this week in Space Weather and is available here.
NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory has arrived at the launch site on the Eastern Shore of Virginia at NASA’s Wallops Flight Facility on Wallops Island and is now in the midst of weeks of performance testing to ensure it is ready for liftoff in early September.
The LADEE lunar orbiting probe will be the first planetary science mission ever launched from NASAWallops and the Mid-Atlantic Regional Spaceport (MARS). It will soar to space atop a solid fueled Minotaur V rocket on its maiden flight.
LADEE will blaze a brilliant trail to the Moon during a spectacular nighttime blastoff slated for Sept. 6, 2013 at 11:27 PM from Launch Pad 0B.
LADEE is equipped with three science instruments to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust.
“LADEE will investigate the moons tenuous exosphere, trace outgases like the sodium halo and lofted dust at the terminator,” said Jim Green, Planetary Science Division Director at NASA HQ, in an exclusive interview with Universe Today.
“The spacecraft has a mass spectrometer to identify the gases, a physical dust detector and an imager to look at scattered light from the dust. These processes also occur at asteroids.”
“And it will also test a laser communications system that is a technology demonstrator for future planetary science missions. It communicates at 650 megabits per second,” Green explained to me.
The couch sized 844 pound (383 kg) robotic explorer was assembled at NASA’s Ames Research Center, Moffett Field Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.
The spacecraft was then shipped cross country by a dedicated truck inside a specially-designed shipping container – blanketed with protective nitrogen – which insulated the spacecraft from temperature, moisture, bumps in the road and more than a few crazy drivers.
The first leg of LADEE’s trip to the Moon took 5 days. The trans lunar leg will take 30 days.
It’s standard practice that whenever space probes are moved by ground transportation that they are accompanied by a caravan that includes a lead scout vehicle to ensure safe road conditions and followed by engineers monitoring the health and environmental storage conditions.
Technicians are now engaged in a lengthy series of performance tests to confirm that LADEE was not damaged during the road trip and that all spacecraft systems are functioning properly.
“One important preparation about to begin is spin-balancing LADEE,” says Butler Hine, LADEE Project Manager. “During this procedure, the spacecraft is mounted to a spin table and rotated at a high-speed to make sure it is perfectly balanced for launch.”
After all spacecraft systems pass the performance tests, LADEE will be fueled, encapsulated and moved to the Wallops Island launch pad later this summer for mating with the five stage Minotaur V booster stack.
“I’m excited about the night launch because people up and down the Atlantic seacoast will be able to see it,” Green told me.
That video above is perhaps the ultimate off-roading adventure: taking a rover out for a spin on the moon. Look past the cool factor for a minute, though, and observe the dust falling down around that astronaut.
The crew aboard Apollo 16 (as well as other Apollo missions) had a lot of problems with regolith. It got into everything. It was so abrasive that it wore away some equipment in days. It smelled funny and probably wasn’t all that good to breathe in, either. Many have said that when we return to the moon, dust must be dealt with for long-term survival.
Things could get worse at sunrise and sunset. One new study (not peer-reviewed yet) finds a “serious risk” that rovers “could be engulfed in dust.” That’s because lunar dust appears to have electrostatic properties that, somehow, is triggered by changes in sunlight. (NASA is already doing some serious investigation into this matter using its orbiting missions.)
What the researchers did, in conjunction with ONERA (The French Center of Aerospace Research) was conduct simulations for two types of lunar regions — the terminator (the day/night boundary) and an area experiencing full sunlight.
“Dust particles were introduced into the simulation over a period of time, when both the surface and the rover were in electrical equilibrium,” the Royal Astronomical Society stated.
“In both the test cases, dust particles travel upwards above the height of the rover, but results suggest that they move in different directions. On the day side, the particles are pushed outwards and on the terminator the dust travels upwards and inwards above the rover, regrouping in the vacuum above it. The terminator simulation began with a region void of dust which was later filled by lunar dust particles.”
The bottom line? A lunar rover could accumulate a significant amount of dust on the moon, especially if it’s sitting at or near the terminator. This could be addressed by using dome-shaped rovers that would see the dust fall off, added lead author Farideh Honary, a physicist at the University of Lancaster, in a statement.
The work was presented at the RAS National Astronomy Meeting today (July 3). A paper has been submitted to the Journal for Geophysical Research, so more details should be forthcoming if and when it is published.
As our closest neighbor in space, a time-capsule of planetary evolution and the only world outside of Earth that humans have stepped foot on, the Moon is an obvious and ever-present location for future exploration by humans. The research that can be done on the Moon — as well as from it — will be invaluable to science. But the only times humans have visited the Moon were during quick, dusty jaunts on its surface, lasting only 2-3 days each before departing. Long-term human exposure to the lunar environment has never been studied in depth, and it’s quite possible that — in addition to the many inherent dangers of living and working in space — the Moon itself may be toxic to humans.
An international team of researchers has attempted to quantify the health dangers of the Moon — or at least its dust-filled regolith. In a paper titled “Toxicity of Lunar Dust” (D. Linnarsson et al.) the health hazards of the Moon’s fine, powdery dust — which plagued Apollo astronauts both in and out of their suits — are investigated in detail (or as best as they can be without actually being on the Moon with the ability to collect pristine samples.)
Within their research the team, which included physiologists, pharmacologists, radiologists and toxicologists from 5 countries, investigated some of the following potential health hazards of lunar dust:
Inhalation. By far the most harmful effects of lunar dust would come from inhalation of the particulates. Even though lunar explorers would be wearing protective gear, suit-bound dust can easily make its way back into living and working areas — as Apollo astronauts quickly discovered. Once inside the lungs the super-fine, sharp-edged lunar dust could cause a slew of health issues, affecting the respiratory and cardiovascular system and causing anything from airway inflammation to increased risks of various cancers. Like pollutants encountered on Earth, such as asbestos and volcanic ash, lunar dust particles are small enough to penetrate deep within lung tissues, and may be made even more dangerous by their long-term exposure to proton and UV radiation. In addition, the research suggests a microgravity environment may only serve to ease the transportation of dust particles throughout the lungs.
Skin Damage. Lunar regolith has been found to be very sharp-edged, mainly because it hasn’t undergone the same kind of erosive processes that soil on Earth has. Lunar soil particles are sometimes even coated in a glassy shell, the result of rock vaporization by meteorite impacts. Even the finer particles of dust — which constitute about 20% of returned lunar soil samples — are rather sharp, and as such pose a risk of skin irritation in instances of exposure. Of particular note by the research team is abrasive damage to the outer layer of skin at sites of “anatomical prominence”, i.e., fingers, knuckles, elbows, knees, etc.
“The dust was so abrasive that it actually wore through three layers of Kevlar-like material on Jack [Schmitt’s] boot.”
– Professor Larry Taylor, Director of the Planetary Geosciences Institute, University of Tennessee (2008)
Eye Damage. Needless to say, if particles can pose abrasive damage to human skin, similar danger to the eyes is also a concern. Whether lunar dust makes its way into the eye via airborne movement (again, much more of a concern in microgravity) or through direct contact from fingers or another dust-coated object, the result is the same: danger of abrasion. Having a scratched cornea is no fun, but if you’re busy working on the Moon at the time it could turn into a real emergency.
While the research behind the paper used data about airborne pollutants known to exist on Earth and simulated lunar dust particles, actual lunar dust is harder to test. The samples returned by the Apollo missions have not been kept in a true lunar-like environment — being removed from exposure to radiation and not stored in a vacuum, for instance — and as such may not accurately exhibit the properties of actual dust as it would be encountered on the Moon. The researchers conclude that only studies conducted on-site will fill the gaps in our knowledge of lunar dust toxicity. Still, the research is a step in the right direction as it looks to ensure a safe environment for future explorers on the Moon, our familiar — yet still alien — satellite world.
“The Apollo astronauts reported undesirable effects affecting the skin, eyes and airways that could be related to exposure to the dust that had adhered to their space suits during their extravehicular activities and was subsequently brought into their spacecraft.”
– Dag Linnarsson, lead author, Toxicity of Lunar Dust
Top image: Apollo 16 astronaut Charlie Duke with a dust-coated LRV. Side image: a dusty Gene Cernan in the LM at the end of an Apollo 17 EVA. (NASA/JSC)