Microwaves are useful for more than just heating up leftovers. They can also make landing pads on other worlds – at least according to research released by a consortium of scientists at the University of Central Florida, Arizona State University, and Cislune, a private company. Their research shows how a combination of sorting the lunar soil and then blasting it with microwaves can create a landing pad for future rockets on the Moon – and save any surrounding buildings from being blasted by 10,000 kph dust particles.
Continue reading “Want to Build Structures on the Moon? Just Blast the Regolith With Microwaves”The Solar Wind is Creating Water on the Surface of the Moon
Water on the Moon has been a hot topic in the research world lately. Since its first unambiguous discovery back in 2008. Since then, findings of it have ramped up, with relatively high concentration levels being discovered, especially near the polar regions, particularly in areas constantly shrouded in shadow. Chang’e 5, China’s recent sample return mission, didn’t land in one of those permanently shadowed areas. Still, it did return soil samples that were at a much higher latitude than any that had been previously collected. Now, a new study shows that those soil samples contain water and that the Sun’s solar wind directly impacted that water.
Continue reading “The Solar Wind is Creating Water on the Surface of the Moon”Plants can grow in lunar regolith, but they’re not happy about it
NASA is sending astronauts back to the Moon by the end of this decade, and hope to send humans to Mars sometime in the 2030s. Growing food in space using in-situ resources is vital if astronauts are to survive on both the Moon and Mars for the long-term. Growing plants in space using Earth soil is nothing new, as this research is currently ongoing onboard the International Space Station (ISS). But recent research carried out on Earth has taken crucial steps in being able to grow food in space using extraterrestrial material that we took from the Moon over 50 years ago.
Continue reading “Plants can grow in lunar regolith, but they’re not happy about it”The Surface of the Moon is Electrically Charged, Which Could Allow a Hovering Robot to Explore it
Let’s not sugarcoat it. Exploring the Moon is not for the faint of heart! It’s an airless body, which means there is no atmosphere, the surface temperatures are extreme, and there’s lots of radiation. The low gravity also means you can never really walk on the surface and have to bounce around in a bulky spacesuit until you fall over. And you can bet your bottom dollar people will make a supercut of the footage someday (see below). Then there’s that awful moondust (aka. lunar regolith), which is electrostatically charged and sticks to EVERYTHING!
Looking to take advantage of this, researchers from the Massachusetts Institute of Technology (MIT) began testing a new concept for a hovering rover that harnesses the Moon’s natural charge to levitate across the surface. On the Moon, this surface charge is strong enough to levitate moon dust more than 1 meter (3.3 ft) above the surface. With support from NASA, this research could lead to a new type of robotic exploration vehicle that will help astronauts explore the Moon in the coming years.
Continue reading “The Surface of the Moon is Electrically Charged, Which Could Allow a Hovering Robot to Explore it”There’s Enough Oxygen in the Lunar Regolith to Support Billions of People on the Moon
When it comes to the future of space exploration, a handful of practices are essential for mission planners. Foremost among them is the concept of In-Situ Resource Utilization (ISRU), providing food, water, construction materials, and other vital elements using local resources. And when it comes to missions destined for the Moon and Mars in the coming years, the ability to harvest ice, regolith, and other elements are crucial to mission success.
In preparation for the Artemis missions, NASA planners are focused on finding the optimal way to produce oxygen gas (O2) from all of the elemental oxygen locked up in the Moon’s surface dust (aka. lunar regolith). In fact, current estimates indicate that there is enough elemental oxygen contained in the top ten meters (33 feet) of lunar regolith to create enough O2 for every person on Earth for the next 100,000 years – more than enough for a lunar settlement!
Continue reading “There’s Enough Oxygen in the Lunar Regolith to Support Billions of People on the Moon”Did the Moon Ever Have a Magnetosphere?
In a few years, NASA will be sending astronauts to the Moon for the first time since the Apollo Era (1969-1972). As part of the Artemis Program, the long-term goal is to create the necessary infrastructure for a “sustained program of lunar exploration.” The opportunities this will present for lunar research are profound and will likely result in new discoveries about the formation and evolution of the Moon.
In particular, scientists are hoping to investigate the long-standing mystery of whether or not the Moon had a magnetosphere. In anticipation of what scientists might find, an international team of geophysicists led by the University of Rochester examined samples of lunar material brought back by the Apollo astronauts. Based on the composition of these samples, the team determined that the Moon’s dynamo was short-lived.
Continue reading “Did the Moon Ever Have a Magnetosphere?”Astronauts Could Dust off Themselves and Equipment on the Moon With an Electron Beam
In the coming years, NASA will be sending astronauts to the Moon for the first time since the Apollo Era. This time, and as part of the Artemis Program, NASA also plans to build the necessary infrastructure to establish a sustained human presence on the Moon and eventually missions to Mars – including the Artemis Base Camp and the orbiting Lunar Gateway.
They’ll be getting some new equipment, such as the exploration Extravehicular Mobility Unity (xEMU) spacesuit and a fancy new lunar lander. Of course, as the Artemis astronauts will also have to deal with the same hazards as their predecessors – not the least of which is lunar dust (or regolith). Luckily, NASA is investigating a possible solution in the form of a handheld electron/ultraviolet (UV) device that could mitigate this hazard.
Continue reading “Astronauts Could Dust off Themselves and Equipment on the Moon With an Electron Beam”Lunar Dust is Still One of The Biggest Challenges Facing Moon Exploration
In the coming years, astronauts will be returning to the Moon for the first time since the closing of the Apollo Era. Beyond that, NASA and other space agencies plan to establish the necessary infrastructure to maintain a human presence there. This will include the Artemis Gateway in orbit (formerly the Lunar Gateway) and bases on the surface, like NASA’s Artemis Base Camp and the ESA’s International Moon Village.
This presents a number of challenges. The Moon is an airless body, it experiences extreme variations in temperature, and its surface is exposed to far more radiation than we experience here on Earth. On top of that, there’s the lunar dust (aka. regolith), a fine powder that sticks to everything. To address this particular problem, a team of ESA-led researchers is developing materials that will provide better protection for lunar explorers.
Continue reading “Lunar Dust is Still One of The Biggest Challenges Facing Moon Exploration”NASA Will Pay You to Retrieve Regolith and Rocks from the Moon
As part of Project Artemis, NASA intends to send the first woman and the next man to the Moon by 2024, in what will be the first crewed mission to the lunar since the Apollo Era. By the end of the decade, NASA also hopes to have all the infrastructure in place to create a program for “sustainable lunar exploration,” which will include the Lunar Gateway (a habitat in orbit) and the Artemis Base Camp (a habitat on the surface).
Part of this commitment entails the recovery and use of resources that are harvested locally, including regolith to create building materials and ice to create everything from drinking water to rocket fuel. To this end, NASA has asked its commercial partners to collect samples of lunar soil or rocks as part of a proof-of-concept demonstration of how they will scout and harvest natural resources and conduct commercial operations on the Moon.
Continue reading “NASA Will Pay You to Retrieve Regolith and Rocks from the Moon”Radishes Can Likely Grow in Lunar Regolith
For many of us, gardening has been a therapeutic distraction during this time of pandemic quarantine. But some researchers from the Jet Propulsion Lab have been gardening at home with a specific goal in mind: growing food on the Moon.
Continue reading “Radishes Can Likely Grow in Lunar Regolith”