Ocean Salinity Affects Earth’s Climate. How About on Exoplanets?

Image of Earth from 2020, over the South Pacific Ocean from the EPIC camera on the DSCOVR satellite. Many things affect Earth's albedo, including clouds, snow cover, and vegetation. How does exoplanet vegetation affect albedo and climate? Credit: NASA/NOAA

There’s a link between Earth’s ocean salinity and its climate. Salinity can have a dramatic effect on the climate of any Earth-like planet orbiting a Sun-like star. But what about exoplanets around M-dwarfs?

Continue reading “Ocean Salinity Affects Earth’s Climate. How About on Exoplanets?”

Do We Now Have an Accurate Map of Nearby Stars?

This image shows the bright stars within 15 parsecs of the Sun. If red dwarfs and brown dwarfs were included, there would be far more stars. But those stars are difficult to spot. Have we found all of them yet? Image Credit: By Andrew Z. Colvin - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=14359465

If the Sun has a stellar neighbourhood, it can be usefully defined as a 20 parsec (65 light-years) sphere centred on our star. Astronomers have been actively cataloguing the stellar population in the neighbourhood for decades, but it hasn’t been easy since many stars are small and dim.

Even with all of the challenges inherent in the effort, astronomers have made steady progress. Do we now have a complete catalogue?

Continue reading “Do We Now Have an Accurate Map of Nearby Stars?”

An Earth-sized Exoplanet Found Orbiting a Jupiter-Sized Star

This artist's illustration shows the exoplanet SPECULOOS-3 b orbiting its red dwarf star. The planet is as big around as Earth, while its star is slightly bigger than Jupiter – but much more massive. The planet is a prime candidate for follow-up studies with the JWST. Credit: NASA/JPL-Caltech

Red dwarf stars, also known as M-dwarfs, dominate the Milky Way’s stellar population. They can last for 100 billion years or longer. Since these long-lived stars make up the bulk of the stars in our galaxy, it stands to reason that they host the most planets.

Astronomers examined one red dwarf star named SPECULOOS-3, a Jupiter-sized star about 55 light-years away, and found an Earth-sized exoplanet orbiting it. It’s an excellent candidate for further study with the James Webb Space Telescope.

Continue reading “An Earth-sized Exoplanet Found Orbiting a Jupiter-Sized Star”

TRAPPIST-1 Outer Planets Likely Have Water

Three of the TRAPPIST-1 planets – TRAPPIST-1e, f and g – dwell in their star’s so-called “habitable zone. CreditL NASA/JPL

The TRAPPIST-1 solar system generated a swell of interest when it was observed several years ago. In 2016, astronomers using the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) at La Silla Observatory in Chile detected two rocky planets orbiting the red dwarf star, which took the name TRAPPIST-1. Then, in 2017, a deeper analysis found another five rocky planets.

It was a remarkable discovery, especially because up to four of them could be the right distance from the star to have liquid water.

Continue reading “TRAPPIST-1 Outer Planets Likely Have Water”

This Planet is Way Too Big for its Star

This artist's illustration shows what the star LHS 3145 might look like from the surface of its planet, LHS 314b. Image Credit: Penn State / Penn State. Creative Commons

Scientists love outliers. Outliers are nature’s way of telling us what its boundaries are and where its limits lie. Rather than being upset when an outlier disrupts their understanding, scientists feed on the curiosity that outliers inspire.

It’s true in the case of a new discovery of a massive planet orbiting a small star. That goes against our understanding of how planets form, meaning our planet-formation model needs an update.

Continue reading “This Planet is Way Too Big for its Star”

Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?

This artist's concept illustrates a red dwarf star surrounded by exoplanets. Credit: NASA/JPL-Caltech

Earth is our only example of a habitable planet, so it makes sense to search for Earth-size worlds when we’re hunting for potentially-habitable exoplanets. When astronomers found seven of them orbiting a red dwarf star in the TRAPPIST-1 system, people wondered if Earth-size planets are more common around red dwarfs than Sun-like stars.

But are they? Maybe not.

Continue reading “Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?”

A Third of Planets Orbiting Red Dwarf Stars Could be in the Habitable Zone

Credit: Pixabay/CC0 Public Domain

A recent study published in the Proceedings of the National Academy of Sciences, a pair of researchers from the University of Florida (UF) examine orbital eccentricities for exoplanets orbiting red dwarf (M dwarf) stars and determined that one-third of them—which encompass hundreds of millions throughout the Milky Way—could exist within their star’s habitable zone (HZ), which is that approximate distance from their star where liquid water can exist on the surface. The researchers determined the remaining two-thirds of exoplanets orbiting red dwarfs are too hot for liquid water to exist on their surfaces due to tidal extremes, resulting in a sterilization of the planetary surface.

Continue reading “A Third of Planets Orbiting Red Dwarf Stars Could be in the Habitable Zone”

Maybe We Don’t See Aliens Because Nobody Wants to Come Here

Artist impression of an alien civilization. Image credit: CfA

The Fermi Paradox won’t go away. It’s one of our most compelling thought experiments, and generations of scientists keep wrestling with it. The paradox pits high estimates for the number of civilizations in the galaxy against the fact that we don’t see any of those civs. It says that if rapidly expanding civilizations exist in the Milky Way, one should have arrived here in our Solar System. The fact that none have implies that none exist.

Many thinkers and scientists have addressed the Fermi Paradox and tried to come up with a reason why we don’t see any evidence of an expanding technological civilization. Life may be extraordinarily rare, and the obstacles to interstellar travel may be too challenging. It could be that simple.

But a new paper has a new answer: maybe our Solar System doesn’t offer what long-lived, rapidly expanding civilizations desire: the correct type of star.

Continue reading “Maybe We Don’t See Aliens Because Nobody Wants to Come Here”

It Turns out, We Have a Very Well-Behaved Star

Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.
Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.

Should we thank our well-behaved Sun for our comfy home on Earth?

Some stars behave poorly. They’re unruly and emit powerful stellar flares that can devastate life on any planets within range of those flares. New research into stellar flares on other stars makes our Sun seem downright quiescent.

Continue reading “It Turns out, We Have a Very Well-Behaved Star”

The Perfect Stars to Search for Life On Their Planets

This infographic compares the characteristics of three classes of stars in our galaxy: Sunlike stars are classified as G stars; stars less massive and cooler than our Sun are K dwarfs; and even fainter and cooler stars are the reddish M dwarfs. The graphic compares the stars in terms of several important variables. The habitable zones, potentially capable of hosting life-bearing planets, are wider for hotter stars. The longevity for red dwarf M stars can exceed 100 billion years. K dwarf ages can range from 15 to 45 billion years. And, our Sun only lasts for 10 billion years. The relative amount of harmful radiation (to life as we know it) that stars emit can be 80 to 500 times more intense for M dwarfs relative to our Sun, but only 5 to 25 times more intense for the orange K dwarfs. Red dwarfs make up the bulk of the Milky Way's population, about 73%. Sunlike stars are merely 6% of the population, and K dwarfs are at 13%. When these four variables are balanced, the most suitable stars for potentially hosting advanced life forms are K dwarfs. Credits: NASA, ESA and Z. Levy (STScI)

We tend to think of our Earthly circumstances as normal. A watery, temperate world orbiting a stable yellow star. A place where life has persisted for nearly 4 billion years. It’s almost inevitable that when we think of other places where life could thrive, we use our own experience as a benchmark.

But should we?

Continue reading “The Perfect Stars to Search for Life On Their Planets”