There’s a link between Earth’s ocean salinity and its climate. Salinity can have a dramatic effect on the climate of any Earth-like planet orbiting a Sun-like star. But what about exoplanets around M-dwarfs?
Continue reading “Ocean Salinity Affects Earth’s Climate. How About on Exoplanets?”Do We Now Have an Accurate Map of Nearby Stars?
If the Sun has a stellar neighbourhood, it can be usefully defined as a 20 parsec (65 light-years) sphere centred on our star. Astronomers have been actively cataloguing the stellar population in the neighbourhood for decades, but it hasn’t been easy since many stars are small and dim.
Even with all of the challenges inherent in the effort, astronomers have made steady progress. Do we now have a complete catalogue?
Continue reading “Do We Now Have an Accurate Map of Nearby Stars?”An Earth-sized Exoplanet Found Orbiting a Jupiter-Sized Star
Red dwarf stars, also known as M-dwarfs, dominate the Milky Way’s stellar population. They can last for 100 billion years or longer. Since these long-lived stars make up the bulk of the stars in our galaxy, it stands to reason that they host the most planets.
Astronomers examined one red dwarf star named SPECULOOS-3, a Jupiter-sized star about 55 light-years away, and found an Earth-sized exoplanet orbiting it. It’s an excellent candidate for further study with the James Webb Space Telescope.
Continue reading “An Earth-sized Exoplanet Found Orbiting a Jupiter-Sized Star”TRAPPIST-1 Outer Planets Likely Have Water
The TRAPPIST-1 solar system generated a swell of interest when it was observed several years ago. In 2016, astronomers using the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) at La Silla Observatory in Chile detected two rocky planets orbiting the red dwarf star, which took the name TRAPPIST-1. Then, in 2017, a deeper analysis found another five rocky planets.
It was a remarkable discovery, especially because up to four of them could be the right distance from the star to have liquid water.
Continue reading “TRAPPIST-1 Outer Planets Likely Have Water”This Planet is Way Too Big for its Star
Scientists love outliers. Outliers are nature’s way of telling us what its boundaries are and where its limits lie. Rather than being upset when an outlier disrupts their understanding, scientists feed on the curiosity that outliers inspire.
It’s true in the case of a new discovery of a massive planet orbiting a small star. That goes against our understanding of how planets form, meaning our planet-formation model needs an update.
Continue reading “This Planet is Way Too Big for its Star”Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?
Earth is our only example of a habitable planet, so it makes sense to search for Earth-size worlds when we’re hunting for potentially-habitable exoplanets. When astronomers found seven of them orbiting a red dwarf star in the TRAPPIST-1 system, people wondered if Earth-size planets are more common around red dwarfs than Sun-like stars.
But are they? Maybe not.
Continue reading “Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?”A Third of Planets Orbiting Red Dwarf Stars Could be in the Habitable Zone
A recent study published in the Proceedings of the National Academy of Sciences, a pair of researchers from the University of Florida (UF) examine orbital eccentricities for exoplanets orbiting red dwarf (M dwarf) stars and determined that one-third of them—which encompass hundreds of millions throughout the Milky Way—could exist within their star’s habitable zone (HZ), which is that approximate distance from their star where liquid water can exist on the surface. The researchers determined the remaining two-thirds of exoplanets orbiting red dwarfs are too hot for liquid water to exist on their surfaces due to tidal extremes, resulting in a sterilization of the planetary surface.
Continue reading “A Third of Planets Orbiting Red Dwarf Stars Could be in the Habitable Zone”Maybe We Don’t See Aliens Because Nobody Wants to Come Here
The Fermi Paradox won’t go away. It’s one of our most compelling thought experiments, and generations of scientists keep wrestling with it. The paradox pits high estimates for the number of civilizations in the galaxy against the fact that we don’t see any of those civs. It says that if rapidly expanding civilizations exist in the Milky Way, one should have arrived here in our Solar System. The fact that none have implies that none exist.
Many thinkers and scientists have addressed the Fermi Paradox and tried to come up with a reason why we don’t see any evidence of an expanding technological civilization. Life may be extraordinarily rare, and the obstacles to interstellar travel may be too challenging. It could be that simple.
But a new paper has a new answer: maybe our Solar System doesn’t offer what long-lived, rapidly expanding civilizations desire: the correct type of star.
Continue reading “Maybe We Don’t See Aliens Because Nobody Wants to Come Here”It Turns out, We Have a Very Well-Behaved Star
Should we thank our well-behaved Sun for our comfy home on Earth?
Some stars behave poorly. They’re unruly and emit powerful stellar flares that can devastate life on any planets within range of those flares. New research into stellar flares on other stars makes our Sun seem downright quiescent.
Continue reading “It Turns out, We Have a Very Well-Behaved Star”The Perfect Stars to Search for Life On Their Planets
We tend to think of our Earthly circumstances as normal. A watery, temperate world orbiting a stable yellow star. A place where life has persisted for nearly 4 billion years. It’s almost inevitable that when we think of other places where life could thrive, we use our own experience as a benchmark.
But should we?
Continue reading “The Perfect Stars to Search for Life On Their Planets”