Webb Sees a Galaxy Awash in Star Formation

Starburst galaxy M82 was observed by the Hubble Space Telescope in 2006, which showed the galaxy’s edge-on spiral disk, shredded clouds, and hot hydrogen gas. The James Webb Space Telescope has observed M82’s core, capturing in unprecedented detail the structure of the galactic wind and characterizing individual stars and star clusters. Credit: NASA/ESA/CSA/STScI/Alberto Bolatto (UMD)

Since it began operations in July 2022, the James Webb Space Telescope (JWST) has fulfilled many scientific objectives. In addition to probing the depths of the Universe in search of galaxies that formed shortly after the Big Bang, it has also provided the clearest and most detailed images of nearby galaxies. In the process, Webb has provided new insight into the processes through which galaxies form and evolve over billions of years. This includes galaxies like Messier 82 (M82), a “starburst galaxy” located about 12 million light-years away in the constellation Ursa Major.

Also known as the “Cigar Galaxy” because of its distinctive shape, M82 is a rather compact galaxy with a very high star formation rate. Roughly five times that of the Milky Way, this is why the core region of M82 is over 100 times as bright as the Milky Way’s. Combined with the gas and dust that naturally obscures visible light, this makes examining M82’s core region difficult. Using the extreme sensitivity of Webb‘s Near-Infrared Camera (NIRCam), a team led by the University of Maryland observed the central region of this starburst galaxy to examine the physical conditions that give rise to new stars.

Continue reading “Webb Sees a Galaxy Awash in Star Formation”

A Galaxy is Making New Stars Faster Than its Black Hole Can Starve Them for Fuel

Computer Simulation of a Quasar, a Supermassive Black Hole that is actively feeding and creating tremendous energy - created in "SpaceEngine" pro by author

A monster lurks at the heart of many galaxies – even our own Milky Way. This monster possesses the mass of millions or billions of Suns. Immense gravity shrouds it within a dark cocoon of space and time – a supermassive black hole. But while hidden in darkness and difficult to observe, black holes can also shine brighter than an entire galaxy. When feeding, these sleeping monsters awaken transforming into a quasar – one of the Universe’s most luminous objects. The energy a quasar radiates into space is so powerful, it can interfere with star formation for thousands of light years across their host galaxies. But one galaxy appears to be winning a struggle against its awoken blazing monster and in a recent paper published in the Astrophysical Journal, astronomers are trying to determine how this galaxy survives.

Animation of Interstellar Matter Falling into a Black Hole Creating a Quasar – ESA
Continue reading “A Galaxy is Making New Stars Faster Than its Black Hole Can Starve Them for Fuel”

Feel The Beat: Black Hole’s Pulse Reveals Its Mysterious Size

A view of the core of Messier 82 (M82), also known as the Cigar Galaxy. Credit: ESA/Hubble & NASA

There’s a bit of a mystery buried in the heart of the Cigar Galaxy, known more formally as M82 or Messier 82. Shining brightly in X-rays is a black hole (called M82 X-1) that straddles an unusual line between small and huge black holes, new research has revealed.

The new study reveals for the first time just how big this black hole is — about 400 times the mass of the sun — after about a decade of struggling to figure this out.

“Between the two extremes of stellar and supermassive black holes, it’s a real desert, with only about half a dozen objects whose inferred masses place them in the middle ground,” stated Tod Strohmayer, an astrophysicist at NASA’s Goddard Space Flight Center in Maryland.

Scientists figured this out by looking at changes in brightness in X-rays, which fluctuate according to how gas behaves as it falls towards a black hole. At the event horizon — that spot where you’re doomed, even if you’re light — is where the fluctuation happen most frequently. In general, larger black holes have these fluctuations less frequently, but they weren’t sure if this would apply to something that is of M82 X-1’s size.

But by going through old data from NASA’s Rossi X-ray Timing Explorer (RXTE) satellite — which ceased operations in 2012 — the scientists uncovered a similar pulsing relationship to what you see in larger black holes.

Specifically, they saw X-ray variations repeating 5.1 and 3.3 times a second, which is a similar 3:2 ratio to other black holes studied. This allows them to extend the measurement scale to this black hole, NASA stated.

Results of the study were published this week in Nature. The research was led by Dheeraj Pasham, a graduate student at the University of Maryland, College Park.

Source: NASA

Virtual Star Party – February 23, 2014 – Nebulae, Sunspots, and Planet “X”?!?

Hosts: Fraser Cain & Scott Lewis
Astronomers: David Dickinson, Gary Gonella, James McGee, Mike Simmons, Roy Salisbury, Shahrin Ahmad, Tom Nathe

Tonight’s views:
Jupiter with a nice view of the red spot, Venus approaching zenith, Bubble Nebula, the Pleiades, Orion Nebula, Horsehead Nebula, Flame Nebula, Running Man Nebula, the Moon, the Sun, the ISS (photo), the Rosette Nebula, Orion again, M33, Sunspots, Rosette again, California Nebula (multiple views), M81 & M82, Planet “X” (?!?), Andromeda, Flame Nebula again

We hold the Virtual Star Party every Sunday night as a live Google+ Hangout on Air. We begin the show when it gets dark on the West Coast. If you want to get a notification, make sure you circle the Virtual Star Party on Google+. You can watch on our YouTube channel or here on Universe Today.

Weekly Space Hangout – February 7, 2014: New Impact on Mars & A Wobbly Planet

Host: Fraser Cain
Astrojournalists: Scott Lewis, Nicole Gugliucci, Morgan Rehnberg, Brian Koberlein, Elizabeth Howell, Amy Shira Teitel, David Dickinson

This Week’s Stories!

Morgan Rehnberg (cosmicchatter.org / @cosmic_chatter):
New Mars impact crater

Nicole Gugliucci (cosmoquest.org / @noisyastronomer):
Weird Asteroid Itokawa Has a Dual Personality
Shiny new radio image of M82 (but no supernova afterglow)

David Dickinson (@astroguyz):
Venus in 2014
Progress+launches for February
Space History-Curious Artifacts Sent Into Space

Elizabeth Howell (@howellspace):
Astronomy Podcast Enters Sixth Year — And We’d Love For You To Contribute!
Super-Earths Could Be More ‘Superhabitable’ Than Planets Like Ours

Brian Koberlein (@briankoberlein); Scott Lewis (@baldastronomer); & Elizabeth Howell (@howellspace):
‘Wobbly’ Alien Planet Has Weird Seasons And Orbits Two Stars

Amy Shira Teitel (@astVintageSpace):
When galaxies collide!

Scott Lewis (@baldastronomer):
Gaia

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

Supernova’s Galaxy Full Of Starbursts and ‘Superwind’

Starbursts in M82 as seen as radio frequencies from the by the Karl G. Jansky Very Large Array. Credit: Josh Marvil (NM Tech/NRAO), Bill Saxton (NRAO/AUI/NSF), NASA

Radio light, radio bright: when you look at M82 in this frequency range, a whole lot of activity pops out. The “Cigar Galaxy” is just 12 million light-years away from Earth and these days, is best known for hosting a supernova or star explosion so bright that amateurs can spot it in a small telescope.

Take a big radio telescope and peer at the galaxy’s center, and a violent picture emerges. Bright star nurseries and supernova leftovers are visible in this image from the Karl G. Jansky Very Large Array (the scientists can tell those apart using other data from the telescope.)

“The radio emission seen here is produced by ionized gas and by fast-moving electrons interacting with the interstellar magnetic field,” the National Radio Astronomy Observatory stated.

Most intriguing to scientists in this picture are the streamers of material in this area of M82, which is about 5,200 light-years across in the pictured central region. These previously undetected “wispy features” could be related to “superwind” coming from all this stellar activity, but scientists are still examining the link.

By the way, Supernova SN 2014J is not visible in this image because it is not active in radio waves. You can check out optical pictures of it, however, at this past Universe Today story.

Source: National Radio Astronomy Observatory

Cloudy Weather Led To ‘Fluke’ M82 Supernova Discovery

Images of M82 show the supernova after discovery, compared with an earlier image. Credit: UCL/University of London Observatory/Steve Fossey/Ben Cooke/Guy Pollack/Matthew Wilde/Thomas Wright

In a rare example of cloudy weather helping astronomy rather than hurting it, the team that found M82’s new supernova swung a telescope in that direction only because their planned targets for the night were obscured, a release stated.

The exploding star in the “Cigar Galaxy” was found at 7:20 p.m. UTC (2:20 p.m. EST) during a class taught by Steve Fossey at the University of London Observatory. Students Ben Cooke, Tom Wright, Matthew Wilde and Guy Pollack all participated in the discovery.

“The weather was closing in, with increasing cloud,”  recalled Fossey in a press release, “so instead of the planned practical astronomy class, I gave the students an introductory demonstration of how to use the CCD camera on one of the observatory’s automated 0.35–metre [1.14-foot] telescopes.”

The new supernova in M82 captured by the 32-inch Schulman Telescope (RCOS) at the Mount Lemmon Sky Center in Arizona on January 23, 2014. Credit and copyright: Adam Block/Mount Lemmon SkyCenter/University of Arizona
The new supernova in M82 captured by the 32-inch Schulman Telescope (RCOS) at the Mount Lemmon Sky Center in Arizona on January 23, 2014. Credit and copyright: Adam Block/Mount Lemmon SkyCenter/University of Arizona

The students asked for M82, at which point Fossey saw a star that he couldn’t recall from examining the galaxy previously. A search of other images online revealed that something strange was happening, but clouds were obscuring everything quickly. The team focused on taking one- and two-minute exposures with different filters, and also using a second telescope to make sure there wasn’t something wrong with the first.

The team checked for any reports of a supernova, and finding none, Fossey sent a message to the International Astronomical Union’s Central Bureau for Astronomical Telegrams (which catalogs supernovae) and a United States team that does regular searches for exploding stars. Among his concerns was that it could be an asteroid lying in the way of the galaxy, but further spectroscopic measurements confirmed the “fluke” find, the release added.

The great thing about SN 2014J is it’s visible even in small telescopes. It’s also fairly close, by astronomical standards, at about 12 million light-years away. (The closest found since the invention of the telescope was Supernova 1987A, which exploded in February 1987 and was 168,000 light-years away.) Astrophotographers have already snapped many images of the exploding star.

“One minute we’re eating pizza, then five minutes later we’ve helped to discover a supernova,” stated Wright. “I couldn’t believe it. It reminds me why I got interested in astronomy in the first place.”

Source: University College London

More Great Images of Supernova 2014J Plus View it During Live Webcasts

M82 and Supernova 2014J imaged on January 23, 2014. Credit and copyright: Mick Hyde.

Images keep pouring in of the biggest excitement in astronomy this week, a new Type Ia supernova in the Cigar Galaxy, 82, about 12 million light years away. As has been said, the Cigar got lit!

This is the closest supernova of this type since the 1800’s. Astrophotographers have been out in full force trying to nab this event, we’ve got more great images to share today, and we’ll keep adding them as they come in.

If you haven’t been able to take a look for yourself, you can join a live webcast from the folks at the Virtual Telescope Project on Saturday, January 25, 2014 at 20:30 UTC (3 pm EST, 1 pm PST), which you can watch here.

Plus, Fraser and the Virtual Star Party will surely try to nab M82 during their hangout on Sunday January 26 at 9 pm EST. Click the VSP link to find out when it starts in your time zone.

SN2014J on January 23, 2014, as seen from Rhode Island. Credit and copyright: Lloyd Merrill
SN2014J on January 23, 2014, as seen from Rhode Island. Credit and copyright: Lloyd Merrill

M82 with Supernova 2014J imaged on January 23, 2014. Credit and copyright: Anna Morris.
M82 with Supernova 2014J imaged on January 23, 2014. Credit and copyright: Anna Morris.

M82 and SN2014J as seen through a 6 inch telescope on January 23, 2014. Credit and copyright: Bill Magee.
M82 and SN2014J as seen through a 6 inch telescope on January 23, 2014. Credit and copyright: Bill Magee.

Before and after the supernova in M82. Credit and copyright: Astrokid96 on Flickr.

M82 and M81 imaged on January 23, 2014. Credit and copyright: Gregory Hogan.
M82 and M81 imaged on January 23, 2014. Credit and copyright: Gregory Hogan.

Comparison images of M82 nine months apart: on April 4, 2013 and January 23, 2014. Credit and copyright: Paul Campbell.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.