In 1977, astronomers received a powerful, peculiar radio signal from the direction of the constellation Sagittarius. Its frequency was the same as neutral hydrogen, and astronomers had speculated that any ETIs attempting to communicate would naturally use this frequency. Now the signal, named the Wow! Signal has become lore in the SETI world.
Most neutron stars spin rapidly, completing a rotation in seconds or even a fraction of a second. But astronomers have found one that takes its time, completing a rotation in 54 minutes. What compels this odd object to spin so slowly?
Fast radio bursts (FRBs) are strange events. They can last only milliseconds, but during that time can outshine a galaxy. Some FRBs are repeaters, meaning that they can occur more than once from the same location, while others seem to occur just once. We still aren’t entirely sure what causes them, or even if the two types have the same cause. But thanks to a collaboration of observations from ground-based radio telescopes and space-based X-ray observatories, we are starting to figure FRBs out.
In a recent study published in Nature Astronomy, an international team of researchers led by NASA and The George Washington University examined data from an October 2020 detection of what’s known as a “large spin-down glitch event”, also known as an “anti-glitch”, from a type of neutron star known as a magnetar called SGR 1935+2154 and located approximately 30,000 light-years from Earth, with SGR standing for soft gamma repeaters. Such events occur when the magnetar experiences a sudden decrease in its rotation rate, which in this case was followed by three types of radio bursts known as extragalactic fast radio bursts (FRBs) and then pulsed radio emissions for one month straight after the initial rotation rate decrease.
The Hubble Space Telescope, to which we owe our current estimates for the age of the universe and the first detection of organic matter on an exoplanet, is very much doing science and still alive. It’s latest masterpiece remixes an old hit – apparently a growing trend in space science as well as space music.
Magnetars are the ultimate aggressive star: intense magnetic fields, massive outbursts, the works. We’ve known that magnetars are capable of producing some of the most powerful blasts in the cosmos, but new observations reveal a different kind of radiation: radio waves. This could potentially solve the long-standing puzzle of the origins of the mysterious Fast Radio Bursts.
Magnetars are some of the most ridiculous objects in the universe. Composed of the densest material possible spinning faster than your kitchen blender, they generate the absolute most powerful magnetic fields the cosmos has ever seen – and astronomers have recently spotted a newborn.
When stars reach the end of their main sequence, they undergo a gravitational collapse, ejecting their outermost layers in a supernova explosion. What remains afterward is a dense, spinning core primarily made up of neutrons (aka. a neutron star), of which only 3000 are known to exist in the Milky Way Galaxy. An even rarer subset of neutron stars are magnetars, only two dozen of which are known in our galaxy.
These stars are especially mysterious, having extremely powerful magnetic fields that are almost powerful enough to rip them apart. And thanks to a new study by a team of international astronomers, it seems the mystery of these stars has only deepened further. Using data from a series of radio and x-ray observatories, the team observed a magnetar last year that had been dormant for about three years, and is now behaving somewhat differently.
Magnetars are so-named because their magnetic fields are up to 1000 times stronger than those of ordinary pulsating neutron stars (aka. pulsars). The energy associated with these these fields is so powerful that it almost breaks the star apart, causing them to be unstable and display great variability in terms of their physical properties and electromagnetic emissions.
Whereas all magnetars are known to emit X-rays, only four have been known to emit radio waves. One of these is PSR J1622-4950 – a magnetar located about 30,000 light years from Earth. As of early 2015, this magnetar had been in a dormant state. But as the team indicated in their study, astronomers using the CSIRO Parkes Radio Telescope in Australia noted that it was becoming active again on April 26th, 2017.
At the time, the magnetar was emitting bright radio pulses every four seconds. A few days later, Parkes was shut down as part of a month-long planned maintenance routine. At about the same time, South Africa’s MeerKAT radio telescope began monitoring the star, despite the fact that it was still under construction and only 16 of its 64 radio dishes were available. Dr Fernando Camilo describes the discovery in a recent SKA South Africa press release:
“[T]he MeerKAT observations proved critical to make sense of the few X-ray photons we captured with NASA’s orbiting telescopes – for the first time X-ray pulses have been detected from this star, every 4 seconds. Put together, the observations reported today help us to develop a better picture of the behaviour of matter in unbelievably extreme physical conditions, completely unlike any that can be experienced on Earth”.
For one, they determined that PSR J1622-4950’s radio flux density, while variable, was approximately 100 times greater than it was during its dormant state. In addition, the x-ray flux was at least 800 times larger one month after reactivation, but began decaying exponentially over the course of a 92 to 130 day period. However, the radio observations noted something in the magnetar’s behavior that was quite unexpected.
While the overall geometry that was inferred from PSR J1622-4950’s radio emissions was consistent with what had been determined several years prior, their observations indicated that the radio emissions were now coming from a different location in the magnetosphere. This above all indicates how radio emissions from magnetars could differ from ordinary pulsars.
This discovery has also validated the MeerKAT Observatory as a world-class research instrument. This observatory is part of the Square Kilometer Array (SKA), the multi-radio telescope project that is building the world’s largest radio telescope in Australia, New Zealand, and South Africa. For its part, MeerKAT uses 64 radio antennas to gather radio images of the Universe to help astronomers understand how galaxies have evolved over time.
Given the sheer volume of data collected by these telescopes, MeerKAT relies on both cutting edge-technology and a highly-qualified team of operators. As Abbott indicated, “we have a team of the brightest engineers and scientists in South Africa and the world working on the project, because the problems that we need to solve are extremely challenging, and attract the best”.
Prof Phil Diamond, the Director-General of the SKA Organization leading the development of the Square Kilometer Array, was also impressed by the contribution of the MeerKAT team. As he stated in an SKA press release:
“Well done to my colleagues in South Africa for this outstanding achievement. Building such telescopes is extremely difficult, and this publication shows that MeerKAT is becoming ready for business. As one of the SKA precursor telescopes, this bodes well for the SKA. MeerKAT will eventually be integrated into Phase 1 of SKA-mid telescope bringing the total dishes at our disposal to 197, creating the most powerful radio telescope on the planet”.
When the SKA goes online, it will be one of the most powerful ground-based telescopes in the world and roughly 50 times more sensitive than any other radio instrument. Along with other next-generation ground-based and space-telescopes, the things it will reveal about our Universe and how it evolved over time are expected to be truly groundbreaking.
You might think you’re reading an educational website, where I explain fascinating concepts in space and astronomy, but that’s not really what’s going on here.
What’s actually happening is that you’re tagging along as I learn more and more about new and cool things happening in the Universe. I dig into them like a badger hiding a cow carcass, and we all get to enjoy the cache of knowledge I uncover.
Okay, that analogy got a little weird. Anyway, my point is. Squirrel!
Fast radio bursts are the new cosmic whatzits confusing and baffling astronomers, and now we get to take a front seat and watch them move through all stages of process of discovery.
Stage 1: A strange new anomaly is discovered that doesn’t fit any current model of the cosmos. For example, strange Boyajian’s Star. You know, that star that probably doesn’t have an alien megastructure orbiting around it, but astronomers can’t rule that out just yet?
Stage 2: Astronomers struggle to find other examples of this thing. They pitch ideas for new missions and scientific instruments. No idea is too crazy, until it’s proven to be too crazy. Examples include dark matter, dark energy, and that idea that we’re living in a
Stage 3: Astronomers develop a model for the thing, find evidence that matches their predictions, and vast majority of the astronomical community comes to a consensus on what this thing is. Like quasars and gamma ray bursts. YouTuber’s make their videos. Textbooks are updated. Balance is restored.
Today we’re going to talk about Fast Radio Bursts. They just moved from Stage 1 to Stage 2. Let’s dig in.
Fast radio bursts, or FRBs, or “Furbys” were first detected in 2007 by the astronomer Duncan Lorimer from West Virginia University.
He was looking through an archive of pulsar observations. Pulsars, of course, are newly formed neutron stars, the remnants left over from supernova explosions. They spin rapidly, blasting out twin beams of radiation. Some can spin hundreds of times a second, so precisely you could set your watch to them.
In this data, Lorimer made a “that’s funny” observation, when he noticed one blast of radio waves that squealed for 5 milliseconds and then it was gone. It didn’t match any other observation or prediction of what should be out there, so astronomers set out to find more of them.
Over the last 10 years, astronomers have found about 25 more examples of Fast Radio Bursts. Each one only lasts a few milliseconds, and then fades away forever. A one time event that can appear anywhere in the sky and only last for a couple milliseconds and never repeats is not an astronomer’s favorite target of study.
Actually, one FRB has been found to repeat, maybe.
The question, of course, is “what are they?”. And the answer, right now is, “astronomers have no idea.”
In fact, until very recently, astronomers weren’t ever certain they were coming from space at all. We’re surrounded by radio signals all the time, so a terrestrial source of fast radio bursts seems totally logical.
About a week ago, astronomers from Australia announced that FRBs are definitely coming from outside the Earth. They used the Molonglo Observatory Synthesis Telescope (or MOST) in Canberra to gather data on a large patch of sky.
Then they sifted through 1,000 terabytes of data and found just 3 fast radio bursts. Three.
Since MOST is farsighted and can’t perceive any radio signals closer than 10,000 km away, the signals had to be coming outside planet Earth. They were “extraterrestrial” in origin.
Right now, fast radio bursts are infuriating to astronomers. They don’t seem to match up with any other events we can see. They’re not the afterglow of a supernova, or tied in some way to gamma ray bursts.
In order to really figure out what’s going on, astronomers need new tools, and there’s a perfect instrument coming. Astronomers are building a new telescope called the Canadian Hydrogen Intensity Mapping Experiment (or CHIME), which is under construction near the town of Penticton in my own British Columbia.
It looks like a bunch of snowboard halfpipes, and its job will be to search for hydrogen emission from distant galaxies. It’ll help us understand how the Universe was expanding between 7 and 11 billion years ago, and create a 3-dimensional map of the early cosmos.
In addition to this, it’s going to be able to detect hundreds of fast radio bursts, maybe even a dozen a day, finally giving astronomers vast pools of signals to study.
What are they? Astronomers have no idea. Seriously, if you’ve got a good suggestion, they’d be glad to hear it.
In these kinds of situations, astronomers generally assume they’re caused by exploding stars in some way. Young stars or old stars, or maybe stars colliding. But so far, none of the theoretical models match the observations.
Another idea is black holes, of course. Specifically, supermassive black holes at the hearts of distant galaxies. From time to time, a random star, planet, or blob of gas falls into the black hole. This matter piles upon the black hole’s event horizon, heats up, screams for a moment, and disappears without a trace. Not a full on quasar that shines for thousands of years, but a quick snack.
The next idea comes with the only repeating fast radio burst that’s ever been found. Astronomers looked through the data archive of the Arecibo Observatory in Puerto Rico and found a signal that had repeated at least 10 times in a year, sometimes less than a minute apart.
Since the quick blast of radiation is repeating, this rules out a one-time collision between exotic objects like neutron stars. Instead, there could be a new class of magnetars (which are already a new class of neutron stars), that can release these occasional shrieks of radio.
Or maybe this repeating object is totally different from the single events that have been discovered so far.
Here’s my favorite idea. And honestly, the one that’s the least realistic. What I’m about to say is almost certainly not what’s going on. And yet, it can’t be ruled out, and that’s good enough for my fertile imagination.
Avi Loeb and Manasvi Lingam at Harvard University said the following about FRBs:
“Fast radio bursts are exceedingly bright given their short duration and origin at distances, and we haven’t identified a possible natural source with any confidence. An artificial origin is worth contemplating and checking.”
Artificial origin. So. Aliens. Nice.
Loeb and Lingam calculated how difficult it would be to send a signal that strong, that far across the Universe. They found that you’d need to build a solar array with twice the surface area of Earth to power the radio wave transmitter.
And what would you do with a transmission of radio or microwaves that strong? You’d use it to power a spacecraft, of course. What we’re seeing here on Earth is just the momentary flash as a propulsion beam sweeps past the Solar System like a lighthouse.
But in reality, this huge solar array would be firing out a constant beam of radiation that would propel a massive starship to tremendous speeds. Like the Breakthrough Starshot spacecraft, but for million tonne spaceships.
In other words, we could be witnessing alien transportation systems, pushing spacecraft with beams of energy to other worlds.
And I know that’s probably not what’s happening. It’s not aliens. It’s never aliens. But in my mind, that’s what I’m imagining.
So, kick back and enjoy the ride. Join us as we watch astronomers struggle to understand what fast radio bursts are. As they invalidate theories, and slowly unlock one of the most thrilling mysteries in modern astronomy. And as soon as they figure it out, I’ll let you know all about it.
What do you think? Which explanation for fast radio bursts seems the most logical to you? I’d love to hear your thoughts and wild speculation in the comments.
In a previous article, we crushed that idea that the Universe is perfect for life. It’s not. Almost the entire Universe is a horrible and hostile place, apart from a fraction of a mostly harmless planet in a backwater corner of the Milky Way.
While living here on Earth takes about 80 years to kill you, there are other places in the Universe at the very other end of the spectrum. Places that would kill you in a fraction of a fraction of a second. And nothing is more lethal than supernovae and remnants they leave behind: neutron stars.
We’ve done a few articles about neutron stars and their different flavours, so there should be some familiar terrain here.
As you know, neutron stars are formed when stars more massive than our Sun explode as supernovae. When these stars die, they no longer have the light pressure pushing outward to counteract the massive gravity pulling inward.
This enormous inward force is so strong that it overcomes the repulsive force that keeps atoms from collapsing. Protons and electrons are forced into the same space, becoming neutrons. The whole thing is just made of neutrons. Did the star have hydrogen, helium, carbon and iron before? That’s too bad, because now it’s all neutrons.
You get pulsars when neutron stars first form. When all that former star is compressed into a teeny tiny package. The conservation of angular motion spins the star up to tremendous velocities, sometimes hundreds of times a second.
But when neutron stars form, about one in ten does something really really strange, becoming one of the most mysterious and terrifying objects in the Universe. They become magnetars. You’ve probably heard the name, but what are they?
As I said, magnetars are neutron stars, formed from supernovae. But something unusual happens as they form, spinning up their magnetic field to an intense level. In fact, astronomers aren’t exactly sure what happens to make them so strong.
One idea is that if you get the spin, temperature and magnetic field of a neutron star into a perfect sweet spot, it sets off a dynamo mechanism that amplifies the magnetic field by a factor of a thousand.
But a more recent discovery gives a tantalizing clue for how they form. Astronomers discovered a rogue magnetar on an escape trajectory out of the Milky Way. We’ve seen stars like this, and they’re ejected when one star in a binary system detonates as a supernova. In other words, this magnetar used to be part of a binary pair.
And while they were partners, the two stars orbited one another closer than the Earth orbits the Sun. This close, they could transfer material back and forth. The larger star began to die first, puffing out and transferring material to the smaller star. This increased mass spun the smaller star up to the point that it grew larger and spewed material back at the first star.
The initially smaller star detonated as a supernova first, ejecting the other star into this escape trajectory, and then the second went off, but instead of forming a regular neutron star, all these binary interactions turned it into a magnetar. There you go, mystery maybe solved?
The strength of the magnetic field around a magnetar completely boggles the imagination. The magnetic field of the Earth’s core is about 25 gauss, and here on the surface, we experience less than half a gauss. A regular bar magnet is about 100 gauss. Just a regular neutron star has a magnetic field of a trillion gauss. Magnetars are 1,000 times more powerful than that, with a magnetic field of a quadrillion gauss.
What if you could get close to a magnetar? Well, within about 1,000 kilometers of a magnetar, the magnetic field is so strong it messes with the electrons in your atoms. You would literally be torn apart at an atomic level. Even the atoms themselves are deformed into rod-like shapes, no longer usable by your precious life’s chemistry.
But you wouldn’t notice because you’d already be dead from the intense radiation streaming from the magnetar, and all the lethal particles orbiting the star and trapped in its magnetic field.
One of the most fascinating aspects of magnetars is how they can have starquakes. You know, earthquakes, but on stars… starquakes. When neutron stars form, they can have a delicious murder crust on the outside, surrounding the degenerate death matter inside. This crust of neutrons can crack, like the tectonic plates on Earth. As this happens, the magnetar releases a blast of radiation that we can see clear across the Milky Way.
In fact, the most powerful starquake ever recorded came from a magnetar called SGR 1806-20, located about 50,000 light years away. In a tenth of a second, one of these starquakes released more energy than the Sun gives off in 100,000 years. And this wasn’t even a supernova, it was merely a crack on the magnetar’s surface.
Magnetars are awesome, and provide the absolute opposite end of the spectrum for a safe and habitable Universe. Fortunately, they’re really far away and you won’t have to worry about them ever getting close.