A team of astronomers has found that giant, organized magnetic fields can help drive some of the most powerful explosions in the universe. But when all is said and done, the shock wave from that blast scrambles any magnetic fields in a matter of minutes.
Continue reading “Exploding Material From a Gamma-ray Burst Scrambled Nearby Magnetic Fields”There Could be Magnetic Monopoles Trapped in the Earth's Magnetosphere
Electricity and magnetism have a lot in common. They are connected by the unified theory of electromagnetism, and are in many ways two sides of the same coin. Both can exert forces on charges and magnetic fields. A changing electric field creates a magnetic field and vice versa. Elementary particles can possess electric and magnetic properties. But there is one fundamental difference.
Continue reading “There Could be Magnetic Monopoles Trapped in the Earth's Magnetosphere”Space Missions are Building Up a Detailed Map of the Sun’s Magnetic Field
Solar physicists have been having a field day of late. A variety of missions have been staring at the sun more intently ever before (please don’t try it at home). From the Parker Solar Probe to the Solar Orbiter, we are constantly collecting more and more data about our stellar neighbor. But it’s not just the big name missions that can collect useful data – sometimes information from missions as simple as a sounding rocket make all the difference.
That was the case for a group of scientists focused on the Sun’s chromosphere, the part of the suns’ atmosphere between the photosphere and the corona that is one of the least understood parts of the star. Now, with data collected from three different missions simultaneously, humanity has its first layered view of how the sun’s magnetic field works in this underexplored zone.
Continue reading “Space Missions are Building Up a Detailed Map of the Sun’s Magnetic Field”The Magnetic Fields Swirling Within the Whirlpool Galaxy
Messier objects are some of the most imaged objects in the universe. In part that’s because many of them are so visibly appealing. A good example of that is the Whirlpool galaxy, M51, which recently received an even more dramatic visual representation with a new photo released by NASA. In it, the magnetic fields that are holding the galaxy together and tearing it apart at the same time are clearly visible. And it is even more stunning to look at.
Continue reading “The Magnetic Fields Swirling Within the Whirlpool Galaxy”There are powerful magnetic fields at the core of the Milky Way, driven by the supermassive black hole
The center of the Milky Way is home to a giant black hole, but new research suggests that it isn’t the only big player in the downtown core of our galaxy – massive magnetic fields also shape and drive the flows of gas there.
Continue reading “There are powerful magnetic fields at the core of the Milky Way, driven by the supermassive black hole”How Spiral Galaxies Get Their Shape
Spiral galaxies are an iconic form. They’re used in product logos and all sorts of other places. We even live in one. And though it may seem kind of obvious how they get their shape, by rotating, that’s not the case.
Continue reading “How Spiral Galaxies Get Their Shape”How The Sun’s Scorching Corona Stays So Hot
We’ve got a mystery on our hands. The surface of the sun has a temperature of about 6,000 Kelvin – hot enough to make it glow bright, hot white. But the surface of the sun is not its last later, just like the surface of the Earth is not its outermost layer. The sun has a thin but extended atmosphere called the corona. And that corona has a temperature of a few million Kelvin.
How does the corona have such a higher temperature than the surface?
Like I said, a mystery.
Continue reading “How The Sun’s Scorching Corona Stays So Hot”Weekly Space Hangout – Oct 2, 2015: Water on Mars, Blood Moon Eclipses, and More Pluto!
Host: Fraser Cain (@fcain)
Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Pamela Gay (cosmoquest.org / @cosmoquestx / @starstryder)
Kimberly Cartier (@AstroKimCartier )
Brian Koberlein (@briankoberlein / briankoberlein.com)
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – Oct 2, 2015: Water on Mars, Blood Moon Eclipses, and More Pluto!”
Could We Terraform a Black Hole?
Is there any possible way to take a black hole and terraform it to be a place we could actually live?
In the challenge of terraforming the Sun, we all learned that outside of buying a Dyson Spaceshell 2000 made out of a solar system’s worth of planetbutter, it’s a terrible idea.
Making a star into a habitable world, means first destroying the stellar furnace. Which isn’t good for anyone, “Hey, free energy! vs. Let’s wreck this thing and build houses!”
Doubling down on this idea, a group of brilliant Guidensians wanted to crank the absurdity knob all the way up. You wanted to know if it would be possible to terraform a black hole.
In order to terraform something, we convert it from being Britney Spears’ level of toxic into something that humans can comfortably live on. We want reasonable temperatures, breathable atmosphere, low levels of radiation, and Earthish gravity.
With temperatures inversely proportional to their mass, a solar mass black hole is about 60 billionths of a Kelvin. This is just a smidge over absolute zero. Otherwise known as “pretty damn” cold. Actively feeding black holes can be surrounded by an accretion disk of material that’s more than 10 million degrees Kelvin, which would also kill you. Make a note, fix the temperature.
There’s no atmosphere, and it’s either the empty vacuum of space, or the superheated plasma surrounding an actively feeding black hole. Can you breathe plasma? If the answer is yes, this could work for you. If not, we’ll need to fix that.
You’d be hard pressed to find a more lethal radiation source in the entire Universe.
Black holes can spin at close to the speed of light, generating massive magnetic fields. These magnetic fields whip high energy particles around them, creating lethal doses of radiation. There are high energy particle jets pouring out of some supermassive black holes, moving at nearly the speed of light. You don’t want any part of that. We’ll add that to the list.
Black holes are known for being an excellent source of vitamin gravity. Out in orbit, it’s not so bad. Replace our Sun with a black hole of the same mass, and you wouldn’t be able to tell the difference.
So, problem solved? Not quite. If you tried to walk on the surface, you’d get shredded into a one-atom juicy stream of extruded tubemanity before you got anywhere near the time traveling alien library at the caramel center.
Reduce the gravity. Got it.
As we learned in a previous episode on how to kill black holes, there’s nothing you can do to affect them. You couldn’t smash comets into it to give it an atmosphere, it would just turn them into more black hole. You couldn’t fire a laser to extract material and reduce the mass, it would just turn your puny laser into more black hole.
Antimatter, explosives, stars, rocks, paper, scissors…black hole beats them all.
Repeat after me. “Om, nom, nom”.
All we can do is wait for it to evaporate over incomprehensible lengths of time. There are a few snags with this strategy, such as it will remain as a black hole until the last two particles evaporate away. There’s no point where it would magically become a regular planetoid.
That’s a full list of renovations for the cast and crew of “Pimp my Black Hole”.
Let’s look at our options. You can move it, just like we can move the Earth. Throw stuff really close to a black hole, and you get it moving with gravity. You could make it spin faster by dropping stuff into it, right up until it’s rotating at the edge of the speed of light, and you can make it more massive.
With that as our set of tools, there’s no way we’re ever going to live on a black hole.
It could be possible to surround a black hole with a Dyson Sphere, like a star.
It turns out there’s a way to have a pet black hole pay dividends aside from eating all your table scraps, shameful magazines and radioactive waste. By dropping matter into a black hole that’s spinning at close to the speed of light, you can actually extract energy from it.
Imagine you had an asteroid that was formed by two large rocks. As they get closer and closer to the black hole, tidal forces tear them apart. One chunk falls into the black hole, the smaller remaining rock has less collective mass, which allows it to escape. This remaining rock steals rotational energy from the black hole, which then slows down the rotation just a little bit.
This is the Penrose Process, named after the physicist who developed the idea. Astronomers calculated you can extract 20% of pure energy from matter that you drop in.
There’s isn’t much out there that would give you better return on your investment.
Also, it’s got to have a similar satisfying feeling as dropping pebbles off a bridge and watching them disappear from existence.
Terraforming a black hole is a terrible idea that will totally get us all killed. Don’t do it.
If you have to get close to that freakish hellscape I do recommend surrounding your pet with a Dyson Sphere and then feeding it matter and enjoying the energy you get in return.
A futuristic energy hungry civilization bent on evil couldn’t hope for a better place to live.
Have you got any more questions about black holes? Give us your suggestions in the comments below.
Astronomy Cast Ep. 374: Stern-Gerlach Experiment
In the world of quantum mechanics, particles behave in discreet ways. One breakthrough experiment was the Stern-Gerlach Experiment, performed in 1922. They passed silver atoms through a magnetic field and watched how the spin of the atoms caused the particles to deflect in a very specific way.
Continue reading “Astronomy Cast Ep. 374: Stern-Gerlach Experiment”