New Avalanche in Action on Mars Captured by HiRISE

An avalanche on Mars captured by the HiRISE camera on the Mars Reconnaissance Orbiter on November 27, 2011. Credit: NASA/JPL/University of Arizona.

[/caption]

Its avalanche season on Mars! And once again the HiRISE camera on the Mars Reconnaissance Orbiter has captured an avalanche taking place on a steep cliff or scarp in Mars’ north polar region. Back in 2008, the HiRISE team created quite a sensation when it captured an avalanche in action on Mars. The high resolution camera did it again in 2010 when springtime arrived once more. Now, another Mars year later, the team has been monitoring specific areas, looking for evidence of avalanches and they hit pay dirt – literally. This image of an avalanche taking place is from a large image “strip” from HiRISE taken in the extreme northern latitude of Mars, about 85 degrees north.

Dust, fine-grained ice and possibly large blocks of either regolith or rocks has detached from a steep, towering cliff and cascaded below. The HiRISE team say the occurrence of avalanches is spectacularly revealed by the accompanying clouds of fine material that continue to settle out of the air.

The avalanches are a result of carbon-dioxide frost that clings to the scarp in the darkness of winter, and when sunlight hits them in the spring they loosen up and fall.

These events happen mostly in the middle of spring, roughly equivalent to April to early May on Earth. And it seems this is a regular spring process at Mars’ north pole that may be expected every year.

This image is part of the latest PDS release from HiRISE.

Hat tip: Jason Major and Discovery Space

Latest Mars Avalanche Likely Triggered by Impact Event

Big Impact-Triggered Dust Avalanche seen by the HIRSE camera on the Mars Reconnaissance Orbiter. (ESP_017229_2110) Credit: NASA/JPL/University of Arizona

[/caption]

The HiRISE team from the Mars Reconnaissance Orbiter has captured a few avalanches on Mars, some actually while in progress. But this latest landslide is a little different. Above is a dust avalanche that created a streak on the slopes of Olympus Mons, the solar system’s largest volcano. While scientists believe some of the previous avalanches seen on Mars occur due to the expansion and contraction of ice from seasonal temperature differences, this one was caused by an impact event. This HiRISE image was taken on March 31, 2010 and reveals a small, pristine impact crater (blue arrow). “It shows a fuzzy source area, which resembles the airblast patterns seen at many other recent impact sites,” said Alfred McEwen, Principal Investigator for HiRISE. “The crater is only about 4.5 meters across, meaning the bolide was only about a half a meter wide, so it didn’t take much to trigger this landslide.”

CTX images from Nov. 18, 2007 and Feb. 14, 2010. Credit: NASA/JPL/University of Arizona

MRO’s Context Camera (CTX) took an image of this area on Nov. 18, 2007 (left) and the adjacent image on Feb. 14, 2010, which shows a large new avalanche. HiRISE then took the follow-up image in March. McEwen said slope streaks , or dust avalanches are common on Mars, but this one is unusually wide and began from an unusual extended or “fuzzy” source area. This made HiRISE team conclude that an impact event occurred sometime between the dates of the CTX images and triggered the large dust avalanche.

“Sometimes, these dust avalanches are easily triggered,” McEwen told Universe Today. “We’ve seen them caused just by dust devils. The dark area was created by an atmospheric blast associated with the impact event, with the bolide coming in at about 10 km per second that distributes the dust. You can see that the upper most fresh dust on the surface is bright, so this landslide disturbed either bare substrate or compacted, older dust.

Color image of the impact-triggered dust avalanche. Credit: NASA/JPL/University of Arizona

Planetary scientists say that landslides or avalanches on Mars can also be caused by small Mars-quakes or the sublimation of carbon dioxide frost which dislodges rocks.

Sources: HiRISE, phone conversation with Alfred McEwen.