India’s First Mars Mission Launches Flawlessly on Historic Journey to the Red Planet

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

WOW MOM !
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]

India flawlessly launched its first ever mission to Mars today (Nov. 5) to begin a history making ten month long interplanetary voyage to the Red Planet that’s aimed at studying the Martian atmosphere and searching for methane after achieving orbit.

The Mars Orbiter Mission (MOM) thundered to space atop the nations four stage Polar Satellite Launch Vehicle (PSLV) precisely on time at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST) from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota, off India’s east coast.

“Our journey to Mars begins now!” announced an elated ISRO Chairman K. Radhakrishnan at the ISRO spaceport during a live broadcast of MOM’s launch from the mission control center. “We achieved orbit and we can all be proud.”

Flawless liftoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Flawless liftoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

This was the 25th launch of India’s highly reliable 44 meter (144 foot) tall PSLV booster.

The 700,000 pound thrust PSLV rocket launched in its most powerful, extended XL version with six strap on solid rocket motors.

Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from Sriharikota, India. Credit: ISRO
Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from Sriharikota, India. Credit: ISRO

“I’m extremely happy to announce that the PSLV-C25 vehicle has placed the Mars orbiter spacecraft very precisely into an elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” Radhakrishnan said, after “much meticulous planning and hard work by everyone.”

ISRO announced that MOM separated from the PSLV 4th stage as planned some 44 minutes after liftoff and that the solar panels successfully deployed.

Confirmation of the 4th stage ignition and spacecraft separation was transmitted by ship-borne terminals aboard a pair of specially dispatched tracking ships – SCI Nalanda and SCI Yamuna – stationed by ISRO in the South Pacific Ocean.

India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013.  Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013. Credit: ISRO

MOM was designed and developed by the Indian Space Research Organization (ISRO) in near record time after receiving approval from the Indian Prime Minister Manmohan Singh in August 2012.

“No mission is beyond our capability”, said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”

A series of six burns over the next month will raise the apogee and put MOM on a trajectory for Mars around December 1.

Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion firing by the main engine on September 24, 2014 will place MOM into an 366 km x 80,000 km elliptical orbit.

If all continues to goes well with MOM, India will join an elite club of four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.

The 1,350 kilogram (2,980 pound) MOM orbiter is also known as ‘Mangalyaan’ – which in Hindi means ‘Mars craft.’

Graphic shows MOM’s initial orbit around Earth after successful Nov. 5 launch. Credit: ISRO
Graphic shows MOM’s initial orbit around Earth after successful Nov. 5 launch. Credit: ISRO

Although the main objective is a demonstration of technological capabilities, the probe is equipped with five indigenous instruments to conduct meaningful science – including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

MOM’s 15 kg (33 lb) science suite comprises:

MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos

LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process

TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy

MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition

MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.

Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMars Trace Gas Orbiter.

MOM and MAVEN will arrive nearly simultaneously in Mars orbit next September – joining Earth’s invasion fleet of five operational orbiters and intrepid surface rovers currently unveiling the mysteries of the Red Planet.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

Although they were developed independently and have different suites of scientific instruments, the MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.

“We have had some discussions with their science team, and there are some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky said.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for about six to ten months and hopefully much longer.

Stay tuned here for continuing MAVEN and MOM news and my MAVEN launch reports from on site at the Kennedy Space Center press center.

Ken Kremer

It’ s a Mind-Blowing Midnight Marvel !  Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff.  Credit: ISRO.  Watch ISRO’s Live  Webcast
It’ s a Mind-Blowing Midnight Marvel ! Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) await Nov. 5 blastoff. Credit: ISRO

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Countdown Commences for India’s Mars Orbiter Mission (MOM)

Unveiling a breathtaking view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO's) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background. Credit: IRSO

The countdown has commenced and the excitement is building for India’s Mars Orbiter Mission (MOM) – which will conduct a detailed study of the Martian atmosphere and is the nation’s first ever mission to the Red Planet.

The 56 hour 30 min countdown started at 6:06 a.m. IST today (Nov. 3), according to an official statement from the Indian Space Research Organization (ISRO) leading to liftoff on Tuesday, Nov 5, from a seaside launch pad in Sriharikota, India.

MOM is the first of two new Mars orbiter science probes from Earth set to blast off for the Red Planet this November. Half a globe away, NASA’s MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from the Florida Space Coast.

A bird's eye view of the Spaceport of India ! Panaromic view of First Launch Pad with 44 meter tall PSLV-C25 rocket during launch rehearsal - Ready to commence the space voyage of ISRO's Mars Orbiter Mission spacecraft. The Mobile service tower and the Second Launch pad are also seen.Credit: ISRO
A bird’s eye view of the Spaceport of India
Panaromic view of First Launch Pad with 44 meter tall PSLV-C25 rocket during launch rehearsal – Ready to commence the space voyage of ISRO’s Mars Orbiter Mission spacecraft. The Mobile service tower and the Second Launch Pad are also seen.Credit: ISRO

ISRO will broadcast the momentous MOM launch live at – starting at 14:00 hrs IST.

“The Launch Authorisation Board has approved & cleared the PSLV-C25/Mars Orbiter Mission launch on Nov 05, 2013 at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST)” from the state-of-the-art Satish Dhawan Space Centre SHAR, Sriharikota, located on India’s east coast in Andhra Pradesh state.

MOM is on schedule to lift off atop the powerful, extended XL version of India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV-C25).

Fueling of the PSLV-C25/Mars Orbiter Mission rocket stages is now in progress following a completely successful dress rehearsal and launch countdown exercise completed on Oct. 31.

“The filling of propellants into the Roll Control Thrusters as well as the Fourth stage of the PSLV C25 rocket [with mixed nitrogen oxides and monomethylhydrazine] is completed,” ISRO declared a short while ago.

903629_10151441040913224_1192855533_o

During the dress rehearsal the vehicle systems were powered, the health was normal and the spacecraft & launch vehicle integrated level checks were completed.

Two tracking ships have been deployed to the Indian Ocean to relay critical in flight telemetry.

The 44 meter (144 ft) PSLV will launch MOM into an initially elliptical Earth parking orbit of 248 km x 23,500 km. A series of six orbit raising burns will eventually dispatch MOM on a trajectory to Mars around December 1.

Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM).  Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM). Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Sriharikota, India. Credit: ISRO

Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion engine will fire on September 21, 2014 and place MOM into an 366 km x 80,000 km elliptical orbit.

MOM arrives about the same time as NASA’s MAVEN orbiter. They will significantly bolster Earth’s armada of five operational orbiters and surface rovers currently investigating the Red Planet.

MAVEN and MOM will “work together” to help solve the mysteries of Mars atmosphere, the chief MAVEN scientist told Universe Today.

“We plan to collaborate on some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO
India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO

The 1,350 kilogram (2,980 pound) MOM orbiter, also known as ‘Mangalyaan’, is the brainchild of ISRO.

‘Mangalyaan’ is outfitted with an array of five indigenous science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both biological and geological sources.

Stacking of the  PSLV-C25/Mars Orbiter Mission rocket stages at the Satish Dhawan Space Centre, SHAR, India. Credit: IRSO
Stacking of the PSLV-C25/Mars Orbiter Mission rocket stages at the Satish Dhawan Space Centre, SHAR, India. Credit: IRSO

MOM’s 15 kg (33 lb) science suite comprises:

MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos

LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process

TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy

MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition

MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.

Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMarsTrace Gas Orbiter.

Although there are no NASA instruments on board MOM, NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” MAVEN’s PI Jakosky told me.

“We agreed on the value of collaboration and will hold real discussions at a later time,” he noted.

India would become only the 4th nation or entity from Earth to survey Mars up close with spacecraft, following the Soviet Union, the United States and the European Space Agency (ESA)- if all goes well.

Past attempts to reach the Red Planet from both China and Japan have unfortunately failed.

Some observers speculate that India’s MOM mission will ignite a new Asian Space Race.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and hopefully much longer.

Long live MOM !

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

MAVEN and MOM Missions from NASA and India Plan Martian Science Collaboration in Orbit

MAVEN is NASA’s next Mars orbiter and is due to blastoff on Nov. 18 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars. Credit: Ken Kremer/kenkremer.com

After years of hard work by dedicated science and engineering teams, a new pair of Mars orbiter science missions from Earth are in the final stages of prelaunch processing and are nearly set to blast off for the Red Planet in November.

If all goes well, NASA’s MAVEN orbiter and India’s MOM (Mars Orbiter Mission) will “work together” to help solve the mysteries of Mars atmosphere, the chief MAVEN scientist told Universe Today at a NASA briefing today (Oct. 28).

“We plan to collaborate on some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

MAVEN and MOM will join Earth’s armada of five operational orbiters and surface rovers currently exploring the Red Planet.

India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO
India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO

MOM is India’s first mission to Mars. Its also first in line to this year’s Martian on ramp and is slated to lift off in barely one week on Nov. 5 atop the most powerful version of the Polar Satellite Launch Vehicle (PSLV) rocket from a seaside launch pad in Srihanikota, India.

The 1,350 kilogram (2,980 pound) MOM orbiter, also known as ‘Mangalyaan’, is the brainchild of ISRO, the Indian Space Research Organization.

NASA’s Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft launches in three weeks on Nov. 18 atop a United Launch Alliance Atlas V 401 rocket from a seaside pad on Cape Canaveral Air Force Station, Florida.

Both MAVEN and MOM will study the Red Planets atmosphere. Although they are independent and carrying different science payloads the two missions do have some common goals.

“There are some overlapping objectives between MAVEN and MOM,” Jakosky said.

“We have had some discussions with the MOM science team.”

Magnetometer science instrument boom juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Magnetometer science instrument boom juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Both orbiters are due to arrive at Mars in September 2014 after 10 month interplanetary cruises and will enter different elliptical orbits after main engine braking burns.

MAVEN is the first spacecraft from Earth devoted to investigating and understanding the upper atmosphere of Mars.

The purpose is to study specific processes and determine how and why Mars lost virtually all of its atmosphere billions of years ago and what effect that had on the history of climate change and habitability.

“The major questions about the history of Mars center on the history of its climate and atmosphere and how that’s influenced the surface, geology and the possibility for life,” said Jakosky.

“MAVEN will focus on understanding the history of the atmosphere, how the climate has changed through time, and how that influenced the evolution of the surface and the potential for habitability by microbes on Mars.”

“We don’t know the driver of the change.”

“Where did the water go and where did the carbon dioxide go from the early atmosphere? What were the mechanisms?”

“That’s what driving our exploration of Mars with MAVEN,” said Jakosky.

One of the significant differences between MOM and MAVEN regards methane detection – which is a potential marker for Martian life. Some 90% of Earth’s atmospheric methane derives from living organisms.

MOM has a methane sensor but not MAVEN.

“We just had to leave that one off to stay focused and to stay within the available resources ,” Jakosky told me.

MAVEN carries nine sensors in three instrument suites.

The Particles and Fields Package, provided by the University of California at Berkeley with support from CU/LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments to characterize the solar wind and the ionosphere of Mars. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, built by Goddard, will measure the composition of Mars’ upper atmosphere.

MOM’s science complement comprises the tri color Mars Color Camera to image the planet and its two moons, Phobos and Deimos; the Lyman Alpha Photometer to measure the abundance of hydrogen and deuterium and understand the planets water loss process; a Thermal Imaging Spectrometer to map surface composition and mineralogy, the MENCA mass spectrometer to analyze atmospheric composition, and the Methane Sensor for Mars to measure traces of potential atmospheric methane down to the ppm level.

Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM).  Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM). Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky told me.

“We agreed on the value of collaboration and will hold real discussions at a later time,” he noted.

NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

Over the course of its one-Earth-year primary mission, MAVEN will observe all of Mars’ latitudes at altitudes ranging from 93 miles to more than 3,800 miles.

MAVEN will execute five deep dip maneuvers during the first year, descending to an altitude of 78 miles. This marks the lower boundary of the planet’s upper atmosphere.

MAVEN has sufficient fuel reserves on board to continue observations for more than a decade.

The spacecraft will function as an indispensible orbital relay by transmitting surface science data through the “Electra” from NASA’s ongoing Curiosity and Opportunity rovers as well as the planned 2020 rover.

Stay tuned here for continuing MAVEN and MOM news and my launch reports from on site at the Kennedy Space Center press center.

Ken Kremer

…………….

Learn more about MAVEN, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 15-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com

India’s First Mars Mission Set to Blast off Seeking Methane Signature

Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM). It could liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

India is gearing up for its first ever space undertaking to the Red Planet – dubbed the Mars Orbiter Mission, or MOM – which is the brainchild of the Indian Space Research Organization, or ISRO.

Among other objectives, MOM will conduct a highly valuable search for potential signatures of Martian methane – which could stem from either living or non living sources. The historic Mars bound probe also serves as a forerunner to bolder robotic exploration goals.

If all goes well India would become only the 4th nation or entity from Earth to survey Mars up close with spacecraft, following the Soviet Union, the United States and the European Space Agency (ESA).

The 1,350 kilogram (2,980 pound) orbiter, also known as ‘Mangalyaan’, is slated to blast off as early as Oct. 28 atop India’s highly reliable Polar Satellite Launch Vehicle (PSLV) from a seaside launch pad in Srihanikota, India.

India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM), is due to liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM), is due to liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

MOM is outfitted with an array of five science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both biological and geological sources.

ISRO officials are also paying close attention to the local weather to ascertain if remnants from Tropical Cyclone Phaillin or another developing weather system in the South Pacific could impact liftoff plans.

The launch target date will be set following a readiness review on Friday, said ISRO Chairman K. Radhakrishnan according to Indian press reports.

India’s Mars Orbiter Mission (MOM) spacecraft being prepared for a prelaunch test at Satish Dhawan Space Centre SHAR, Srihairkota. Credit: ISRO
India’s Mars Orbiter Mission (MOM) spacecraft being prepared for a prelaunch test at Satish Dhawan Space Centre SHAR, Srihairkota. Credit: ISRO

‘Mangalyaan’ is undergoing final prelaunch test and integration at ISRO’s Satish Dhawan Space Centre SHAR, Srihairkota on the east coast of Andhra Pradesh state following shipment from ISRO’s Bangalore assembly facility on Oct. 3.

ISRO has already assembled the more powerful XL extended version of the four stage PSLV launcher at Srihairkota.

MOM’s launch window extends about three weeks until Nov. 19 – which roughly coincides with the opening of the launch window for NASA’s next mission to Mars, the MAVEN orbiter.

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1.  Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN  was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space.  Credit: Ken Kremer/kenkremer.com
The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1. Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space. Credit: Ken Kremer/kenkremer.com

MAVEN’s on time blastoff from Florida on Nov. 18, had been threatened by the chaos caused by the partial US government shutdown that finally ended this morning (Oct. 17), until the mission was granted an ‘emergency exemption’ due to the critical role it will play in relaying data from NASA’s ongoing pair of surface rovers – Curiosity and Opportunity.

NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

As India’s initial mission to Mars, ISRO says that the mission’s objectives are both technological and scientific to demonstrate the nation’s capability to design an interplanetary mission and carry out fundamental Red Planet research with a suite of indigenously built instruments.

MOM’s science complement comprises includes the tri color Mars Color Camera to image the planet and its two moon, Phobos and Diemos; the Lyman Alpha Photometer to measure the abundance of hydrogen and deuterium and understand the planets water loss process; a Thermal Imaging Spectrometer to map surface composition and mineralogy, the MENCA mass spectrometer to analyze atmospheric composition, and the Methane Sensor for Mars to measure traces of potential atmospheric methane down to the ppm level.

It will be of extremely great interest to compare any methane detection measurements from MOM to those ongoing from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s planned 2016 ExoMars Trace Gas Orbiter.

MOM’s design builds on spacecraft heritage from India’s Chandrayaan 1 lunar mission that investigated the Moon from 2008 to 2009.

The 44 meter (144 ft) PSLV will launch MOM into an initially elliptical Earth parking orbit of 248 km x 23,000 km. A series of six orbit raising burns will eventually dispatch MOM on a trajectory to Mars by late November, assuming an Oct. 28 liftoff.

Following a 300 day interplanetary cruise phase, the do or die orbital insertion engine will fire on September 14, 2014 and place MOM into an 377 km x 80,000 km elliptical orbit.

NASA’s MAVEN is also due to arrive in Mars orbit during September 2014.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and perhaps ten months or longer.

Ken Kremer

How to See Mars in September 2013: The Red Planet Pierces the Beehive & More

Mars on September 8th. (Created by the author using Stellarium).

Launch season for Mars missions is almost upon us once again.

This is a time when spacecraft can achieve an optimal trajectory to reach the Red Planet, expending a minimal amount of fuel and taking the shortest period of time. This window of opportunity, which opens once every two years, always opens up about six months prior to Martian opposition.

For you stargazers, this is also the best time to observe the Red Planet as it makes its closest approach to Earth. And no, it won’t appear as large as a Full Moon, but it will make for a fine telescopic target.

During the last launch window in 2011-12, Mars Curiosity made the journey, and Russia’s Phobos-Grunt tried. Hey, it’s a tough business, this spaceflight thing. This time around, The Indian Space Research Organization (ISRO) hopes to launch its first ever interplanetary spacecraft, with its Mars Orbiter Mission departing on October 18th. NASA is also sending its Mars Atmosphere Volatile EvolutioN mission known as MAVEN to study the atmosphere of the Red Planet.

Opposition next occurs on April 8th, 2014, but the start of launch season always finds Mars emerging high to the east at dawn. Starting next week, Mars has some interesting encounters that are worth checking out as a prelude to the upcoming opposition season.

The planet Mars shines at +1.6 magnitude and is about 4” in size in September. This is a far cry from its maximum size of 15.1” that it will achieve next spring, and its grandest maximum size of 25.1” that it reached in 2003. All oppositions of Mars are not created equal, because of the planet’s 9.3% eccentric orbit.

But the good news is, we’re trending towards a better series of oppositions, which follow a roughly 15 year cycle. In 2018, we’ll see an opposition nearly as good as the 2003 one, with Mars appearing 24.1” in size. This is also the time frame that Dennis Tito wants to launch his crewed Mars 2018 flyby.

But back to the present. The action starts on September 2nd when the waning crescent Moon passes 6.1 degrees SSW of Mars.

Mars is currently in the constellation Cancer, and will actually transit (pass in front of) the open star cluster known as the Beehive or Messier 44, standing only 0.23 degrees from its center on September 8th. M44 is 1.5 degrees in size, and this presents an outstanding photo-op.

The path of Mars through the beehive cluster from September 3rd through September 12th. (Creat
The path of Mars through the beehive cluster from September 3rd through September 12th. (Created in Starry Night; Image courtesy of Starry Night Education).

At high power, you might just be able to catch the real time motion of Mars against the background stars of M44. Mars currently rises three hours before the Sun, giving you a slim window to accomplish this feat.

Mars is also in the midst of a series of transits of the Beehive Cluster, with one occurring every other year. Mars last crossed M44 on October 1st, 2011.  The next time you’ll be able to spy this same alignment won’t be until August 20th, 2015.

But another cosmic interloper may photo-bomb Mars in September.

We’re talking about none other than Comet C/2012 S1 ISON, the big wildcard event of the season. Comet ISON is just peeking out from behind the Sun now, and dedicated amateurs have already managed to recover it. “IF” it follows projected light curve predictions, ISON may reach binocular visibility of greater than +10th magnitude by October 1st and may breech naked eye visibility by early November.

ISON approaches within two degrees of Mars on September 27th. Its closest apparent approach is will be on Oct 18th at a minimum separation of 0.89 degrees, just over the size of a Full Moon. How bright ISON will actually be at that point is the question of the season. To quote veteran comet hunter David Levy, “Comets are like cats. They have tails, and they do whatever they want.” The closest physical approach of Mars and Comet ISON is on October 1st at 0.07 astronomical units, or 10.4 million kilometres apart. Both will be crossing over from the astronomical constellations of Cancer into Leo in late September.

Comet ISON and Mars looking east on the morning of September 27th.
Comet ISON and Mars looking east on the morning of September 27th. (Created in Starry Night; Image courtesy of Starry Night Education).

Mars gets another close shave from a comet next year, when Comet C/2013 A1 Siding Spring passes 123,000 kilometres from Mars on October 19th, 2014. Interestingly, MAVEN will be arriving just a month prior to this if it departs Earth at the start of its 21 day window. Engineers have noted that an increase in cometary dust may be a concern for the newly arrived spacecraft during insertion into Martian orbit.

MAVEN Principal Investigator Bruce Jakosky notes that the first concern is the safety of the spacecraft, the second is studies of Mars, and the third is, just perhaps, to carry out observations of the comet.

Look for more information on Universe Today about the Martian cometary flybys as each event gets closer.

September is a great time to begin observations of the Red Planet. Usually, 8” seconds in diameter is the threshold that is frequently quoted for the first surface features (usually to polar ice caps) to become apparent, but we’re already seeing astro-imagers getting detailed images of Mars, right now.

Be sure to follow Mars on its trek across the September dawn skies as robotic explorers prepare to embark on their epic journeys!

Are We Martians? Chemist’s New Claim Sparks Debate

Are Earthlings really Martians ? Did life arise on Mars first and then journey on meteors to our planet and populate Earth billions of years ago? Earth and Mars are compared in size as they look today.

Are Earthlings really Martians ?
Did life arise on Mars first and then journey on rocks to our planet and populate Earth billions of years ago? Earth and Mars are compared in size as they look today. NASA’s upcoming MAVEN Mars orbiter is aimed at answering key questions related to the habitability of Mars, its ancient atmosphere and where did all the water go.
Story updated[/caption]

Are Earthlings really Martians?

That’s the controversial theory proposed today (Aug. 29) by respected American chemist Professor Steven Benner during a presentation at the annual Goldschmidt Conference of geochemists being held in Florence, Italy. It’s based on new evidence uncovered by his research team and is sure to spark heated debate on the origin of life question.

Benner said the new scientific evidence “supports the long-debated theory that life on Earth may have started on Mars,” in a statement. Universe Today contacted Benner for further details and enlightenment.

“We have chemistry that (at least at the level of hypothesis) makes RNA prebiotically,” Benner told Universe Today. “AND IF you think that life began with RNA, THEN you place life’s origins on Mars.” Benner said he has experimental data as well.

First- How did ancient Mars life, if it ever even existed, reach Earth?

On rocks violently flung up from the Red Planet’s surface during mammoth collisions with asteroids or comets that then traveled millions of miles (kilometers) across interplanetary space to Earth – melting, heating and exploding violently before the remnants crashed into the solid or liquid surface.

An asteroid impacts ancient Mars and send rocks hurtling to space - some reach Earth
An asteroid impacts ancient Mars and send rocks hurtling to space – some reach Earth. Did they transport Mars life to Earth? Or minerals that could catalyze the origin of life on Earth?

“The evidence seems to be building that we are actually all Martians; that life started on Mars and came to Earth on a rock,” says Benner, of The Westheimer Institute of Science and Technology in Florida. That theory is generally known as panspermia.

To date, about 120 Martian meteorites have been discovered on Earth.

And Benner explained that one needs to distinguish between habitability and the origin of life.

“The distinction is being made between habitability (where can life live) and origins (where might life have originated).”

NASA’s new Curiosity Mars rover was expressly dispatched to search for environmental conditions favorable to life and has already discovered a habitable zone on the Red Planet’s surface rocks barely half a year after touchdown inside Gale Crater.

Furthermore, NASA’s next Mars orbiter- named MAVEN – launches later this year and seeks to determine when Mars lost its atmosphere and water- key questions in the Origin of Life debate.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo

Of course the proposed chemistry leading to life is exceedingly complex and life has never been created from non-life in the lab.

The key new points here are that Benner believes the origin of life involves “deserts” and oxidized forms of the elements Boron (B) and Molybdenum (Mo), namely “borate and molybdate,” Benner told me.

“Life originated some 4 billion years ago ± 0.5 billon,” Benner stated.

He says that there are two paradoxes which make it difficult for scientists to understand how life could have started on Earth – involving organic tars and water.

Life as we know it is based on organic molecules, the chemistry of carbon and its compounds.

But just discovering the presence of organic compounds is not the equivalent of finding life. Nor is it sufficient for the creation of life.

And simply mixing organic compounds aimlessly in the lab and heating them leads to globs of useless tars, as every organic chemist and lab student knows.

Benner dubs that the ‘tar paradox’.

Although Curiosity has not yet discovered organic molecules on Mars, she is now speeding towards a towering 3 mile (5 km) high Martian mountain known as Mount Sharp.

Curiosity Spies Mount Sharp - her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability of the Red Planet over billions of years.  This mosaic was assembled from over 3 dozen Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer
Curiosity Spies Mount Sharp – her primary destination
Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability of the Red Planet over billions of years. This mosaic was assembled from over 3 dozen Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer-kenkremer.com

Upon arrival sometime next spring or summer, scientists will target the state of the art robot to investigate the lower sedimentary layers of Mount Sharp in search of clues to habitability and preserved organics that could shed light on the origin of life question and the presence of borates and molybdates.

It’s clear that many different catalysts were required for the origin of life. How much and their identity is a big part of Benner’s research focus.

“Certain elements seem able to control the propensity of organic materials to turn into tar, particularly boron and molybdenum, so we believe that minerals containing both were fundamental to life first starting,” says Benner in a statement. “Analysis of a Martian meteorite recently showed that there was boron on Mars; we now believe that the oxidized form of molybdenum was there too.”

The second paradox relates to water. He says that there was too much water covering the early Earth’s surface, thereby causing a struggle for life to survive. Not exactly the conventional wisdom.

“Not only would this have prevented sufficient concentrations of boron forming – it’s currently only found in very dry places like Death Valley – but water is corrosive to RNA, which scientists believe was the first genetic molecule to appear. Although there was water on Mars, it covered much smaller areas than on early Earth.”

Parts of ancient Mars were covered by oceans, lakes and streams of liquid water in this artists concept, unlike the arid and bone dry Martian surface of today. Subsurface water ice is what remains of Martian water.
Parts of ancient Mars were covered by oceans, lakes and streams of liquid water in this artists concept, unlike the arid and bone dry Martian surface of today. Subsurface water ice is what remains of Martian water.

I asked Benner to add some context on the beneficial effects of deserts and oxidized boron and molybdenum.

“We have chemistry that (at least at the level of hypothesis) makes RNA prebiotically,” Benner explained to Universe Today.

“We require mineral species like borate (to capture organic species before they devolve to tar), molybdate (to arrange that material to give ribose), and deserts (to dry things out, to avoid the water problem).”

“Various geologists will not let us have these [borates and molybdates] on early Earth, but they will let us have them on Mars.”

“So IF you believe what the geologists are telling you about the structure of early Earth, AND you think that you need our chemistry to get RNA, AND IF you think that life began with RNA, THEN you place life’s origins on Mars,” Benner elaborated.

“The assembly of RNA building blocks is thermodynamically disfavored in water. We want a desert to get rid of the water intermittently.”

I asked Benner whether his lab has run experiments in support of his hypothesis and how much borate and molybdate are required.

“Yes, we have run many lab experiments. The borate is stoichiometric [meaning roughly equivalent to organics on a molar basis]; The molybdate is catalytic,” Benner responded.

“And borate has now been found in meteorites from Mars, that was reported about three months ago.

At his talk, Benner outlined some of the chemical reactions involved.

Although some scientists have invoked water, minerals and organics brought to ancient Earth by comets as a potential pathway to the origin of life, Benner thinks differently about the role of comets.

“Not comets, because comets do not have deserts, borate and molybdate,” Benner told Universe Today.

The solar panels on the MAVEN spacecraft are deployed as part of environmental testing procedures at Lockheed Martin Space Systems in Littleton, Colorado, before shipment to Florida 0on Aug. 2 and blastoff for Mars on Nov. 18, 213. Credit: Lockheed Martin
MAVEN is NASA’s next Mars orbiter and seeks to determine when Mars lost its atmosphere and water- key questions in the Origin of Life debate. MAVEN is slated to blastoff for Mars on Nov. 18, 2013. It is shown here with solar panels deployed as part of environmental testing procedures at Lockheed Martin Space Systems in Waterton, Colorado, before shipment to Florida in early August. Credit: Lockheed Martin

Benner has developed a logic tree outlining his proposal that life on Earth may have started on Mars.

“It explains how you get to the conclusion that life originated on Mars. As you can see from the tree, you can escape that conclusion by diverging from the logic path.”

Finally, Benner is not one who blindly accepts controversial proposals himself.

He was an early skeptic of the claims concerning arsenic based life announced a few years back at a NASA sponsored press conference, and also of the claims of Mars life discovered in the famous Mars meteorite known as ALH 84001.

“I am afraid that what we thought were fossils in ALH 84001 are not.”

The debate on whether Earthlings are really Martians will continue as science research progresses and until definitive proof is discovered and accepted by a consensus of the science community of Earthlings – whatever our origin.

On Nov. 18, NASA will launch its next mission to Mars – the MAVEN orbiter. Its aimed at studying the upper Martian atmosphere for the first time.

“MAVENS’s goal is determining the composition of the ancient Martian atmosphere and when it was lost, where did all the water go and how and when was it lost,” said Bruce Jakosky to Universe Today at a MAVEN conference at the University of Colorado- Boulder. Jakosky, of CU-Boulder, is the MAVEN Principal Investigator.

MAVEN will shed light on the habitability of Mars billions of years ago and provide insight on the origin of life questions and chemistry raised by Benner and others.

Ken Kremer

…………….
Learn more about Mars, the Origin of Life, LADEE, Cygnus, Antares, MAVEN, Orion, Mars rovers and more at Ken’s upcoming presentations

Sep 5/6/16/17: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 9: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

The Cyber-Myth That Just Won’t Die: See Mars as Large as a Full Moon!!!

We've been here before... (All article images and bad photoshopping courtesy of the author).

It’s hard to believe that it’s been with us for a decade now.

Ten years ago this week, the planet Mars reached made an exceptionally close pass of the planet Earth. This occurred on August 27th, 2003, when Mars was only 56 million kilometres from our fair planet and shined at magnitude -2.9.

Such an event is known as opposition.  This occurs when a planet with an orbit exterior to our own reaches a point opposite to the Sun in the sky, and rises as the Sun sets. In the case of Mars, this occurs about every 2.13 years.

But another myth arose in 2003, one that now makes its return every August, whether Mars does or not.You’ve no doubt gotten the chain mail from a well-meaning friend/relative/coworker back in the bygone days a decade ago, back before the advent social media when spam was still sorta hip. “Mars to appear as large as the Full Moon!!!” it breathlessly exclaimed. “A once in a lifetime event!!!”

Though a little over the top, the original version did at least explain (towards the end) that Mars would indeed look glorious on the night of August 27th, 2003 … through a telescope.

Mars during the historic opposition season of '03.
Mars during the historic opposition season of ’03.

But never let facts get in the way of a good internet rumor. Though Mars didn’t reach opposition again until November 7th 2005, the “Mars Hoax” email soon began to make its rounds every August.

Co-workers and friends continued to hit send. Spam folder filled up. Science news bloggers debunked, and later recycled posts on the silliness of it all.

Now, a decade later, the Mars Hoax seems to have successfully made the transition over to social media and found new life on Facebook.

Mars as seen during a close conjunction with the Moon on July 17th, 2003. Mars was 20 arc seconds in size at the time leading up to the August 2003 opposition.
How Mars really appears next to the Moon: Mars as seen during a close conjunction with the Moon on July 17th, 2003. Mars was 20 arc seconds in size at the time, leading up to the August 2003 opposition. Image courtesy of Rick Stankiewicz, used with permission.

No one knows where the Mars Hoax meme goes to weather the lean months, only to return complete with all caps and even more exclamation points each and every August. Is it the just a product of the never ending quest for the almighty SEO? Are we now destined to recycle and relive astronomical events in cyber-land annually, even if they’re imaginary?

Perhaps, if anything there’s a social psychology study somewhere in there, begging the question of why such a meme as the Mars Hoax endures… Will it attain a mythos akin to the many variations of a “Blue Moon,” decades from now, with historians debating where the cultural thread came from?

Here are the facts:

-Mars reaches opposition about every 2.13 Earth years.

-Due to its eccentric orbit, Mars can vary from about 56 million to over 101 million kilometres from the Earth during oppositions.

-Therefore, Mars can appear visually from 13.8” to 25.1” arc seconds in size.

-But that’s still tiny, as the Moon appears about 30’ across as seen from the Earth. You could ring the local horizon with about 720 Full Moons end-to-end, and place 71 “maxed out Mars’s” with room to spare across each one of them!

-And although the Full Moon looks huge, you can cover it up with a dime held at arm’s length…. Try it sometime, and amaze your email sending/Facebook sharing friends!

Important: Mars NEVER gets large enough to look like anything other than a star-like point to the naked eye.

Reality check... how Mars really appears compared to the Moon as seen during a close conjunction in 2012.
Reality check… how Mars actually appears compared to the Moon as seen during a close conjunction in 2012.

-And finally, and this is the point that should be getting placed in all caps on Facebook, to the tune of thousands of likes…  MARS ISN’T EVEN ANYWHERE NEAR OPPOSITION in August 2013!!! Mars is currently low in the dawn sky in the constellation Cancer on the other side of the Sun. Mars won’t be reaching opposition until April 8th, 2014, when it will reach magnitude -1.4 and an apparent size of 15.2” across.

Still, like zombies from the grave, this myth just won’t die. In the public’s eye, Mars now shines “As big as” (or bigger, depending on the bad hyperbole used) as Full Moon now every August. Friends and relatives hit send, (or these days, “share” or “retweet”) observatories and planetariums get queries, astronomers shake their heads, and science bloggers dust off their debunking posts for another round. Hey, at least it’s not 2012, and we don’t have to keep remembering how many “baktuns are in a piktun…”

What’s a well meaning purveyor & promoter science to do?

Feed those hungry brains a dose of reality.

There are real things, fascinating things about Mars afoot. We’re exploring the Red Planet via Mars Curiosity, an SUV-sized, nuclear powered rover equipped with a laser. The opposition coming up next year means that the once every 2+ year launch window to journey to Mars is soon opening. This time around, the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission and, just perhaps, India’s pioneering Mars Orbiter Mission may make the trip. Launching from Cape Canaveral on November 18th, MAVEN seeks to answer the questions of what the climate and characteristics of Mars were like in the past by probing its tenuous modern day atmosphere.

The circumstances for opositions of Mars from
The circumstances for the oppositions of Mars from 2001 to 2029.

And as opposition approaches in 2014, Mars will again present a fine target for small telescopes.  As a matter of fact, Mars will pass two intriguing celestial objects next month, passing in front of the Beehive cluster and — perhaps — a brightening Comet ISON. More to come on that later this week!

And it’s worth noting that after a series of bad oppositions in 2010 and 2012, oppositions in 2014 and 2016 are trending towards more favorable. In fact, the Mars opposition of July 27th, 2018 will be nearly as good as the 2003 approach, with Mars appearing 24.1” across. Not nearly as “large as a Full Moon” by a long shot, but hey, a great star party target.

Will the Mars Hoax email enjoy a resurgence on Facebook, Twitter or whatever is in vogue then? Stay tuned!

Haiku for Mars: Winners Selected for MAVEN Mission

A DVD bound for Mars... (Courtesy of Lockheed Martin/LASP).

Fans of Mars and spaceflight waxed poetic as the haiku selected to travel to Mars aboard the MAVEN spacecraft were announced earlier this month.

The contest received 12,530 valid entries from May 1st through the contest cutoff date of July 1st. Students learned about Mars, planetary exploration and the MAVEN mission as they composed haiku ranging from the personal to the insightful to the hilarious.

“The contest has resonated with people in ways that I never imagined! Both new and accomplished poets wrote poetry to reflect their views of Earth and Mars, their feelings about space exploration, their loss of loved ones who have passed on, and their sense of humor,” said Stephanie Renfrow, MAVEN Education & Public Outreach & Going to Mars campaign lead.

A total of 39,100 votes were cast in the contest; all entries receiving more than 2 votes (1,100 in all) will be carried on a DVD affixed to the MAVEN spacecraft bound for Martian orbit.

Five poems received more than a thousand votes. Among these were such notables as that of one 8th grader from Denver Colorado, who wrote;

                Phobos & Deimos

                          Moons orbiting around Mars

                                       Snared by Gravity

Another notable entry which was among the poems sited for special recognition by the MAVEN team was that of Allison Swets of Michigan;

                 My body can’t walk

                            My mouth can’t make words but I

                                         Soar to Mars today

377 artwork entries were also selected to fly aboard MAVEN as well.

Didn’t get picked? There’s still time to send your name aboard MAVEN along with thousands that have already been submitted. You’ve got until September 10!

Part of NASA’s discontinued Scout-class of missions, the Mars Atmosphere and Volatile EvolutioN mission, or MAVEN, is due to launch out of Cape Canaveral on November 18th, 2013. Selected in 2008, MAVEN has a target cost of less than $500 million dollars US, not including launch carrier services atop an Atlas V rocket in a 401 flight configuration.

(Credit: NASA).
An artist’s concept of MAVEN in orbit around Mars (Credit: NASA/Goddard Space Flight Center).

The Phoenix Lander was another notable Scout-class mission that was extremely successful, concluding in 2008.

Principal investigator for MAVEN is the University of Boulder at Colorado’s Bruce Jakosky of the Laboratory for Atmospheric and Space Physics (LASP).

The use of poetry to gain public interest in the mission is appropriate, as MAVEN seeks to solve the riddle that is the Martian atmosphere. How did Mars lose its atmosphere over time? What role does the solar wind play in stripping it away? And what is the possible source of that anomalous methane detected by Mars Global Surveyor from 1999 to 2004?

MAVEN is based on the design of the Mars Odyssey and Mars Reconnaissance Orbiter spacecraft. It will carrying an armada of instruments, including a Neutral Gas & Ion Mass Spectrometer, a Particle and Field Package with several analyzers, and a Remote Sensing Package built by LASP.

MAVEN just arrived at the Kennedy Space Center earlier this month for launch processing and mating to its launch vehicle. Launch will be out of Cape Canaveral Air Force Station on November 18th with a 2 hour window starting at 1:47 PM EST/ 18:47 UT.

MAVEN spacecraft at a Lockheed Martin clean room near Denver, Colo. (Credit: Lockheed Martin).
MAVEN spacecraft at a Lockheed Martin clean room near Denver, Colo. (Credit: Lockheed Martin).

Assuming that MAVEN launches at the beginning of its 20 day window, it will reach Mars for an orbital insertion on September 22, 2014. MAVEN will orbit the Red Planet in an elliptical 150 kilometre by 6,200 kilometre orbit, joining the Mars Reconnaissance Orbiter, the European Space Agencies’ Mars Express and the aging Mars Odyssey orbiter, which has been surveying Mars since 2001.

The window for an optimal launch to Mars using a minimal amount of fuel opens every 24 to 26 months. During the last window of opportunity in 2011, the successful Mars Curiosity rover and the ill-fated Russian mission Phobos-Grunt sought to make the trip.

This time around, MAVEN will be joined by India’s Mars Orbiter Mission, launching from the Satish Dhawan Space Center on October 21st. If successful, the Indian Space Research Organization (ISRO) will join Russia, ESA & NASA in nations that have successfully launched missions to Mars.

This window comes approximately six months before Martian opposition, which next occurs on April 8th, 2014. In 2016, ESA’s ExoMars Mars Orbiter and NASA’s InSight Lander will head to Mars. And 2018 may see the joint ESA/NASA ExoMars rover and… if we’re lucky, Dennis Tito’s proposed crewed Mars 2018 flyby.

Interestingly, MAVEN also arrives in Martian orbit just a month before the close 123,000 kilometre passage of comet C/2013 A1 Siding Spring, although as of this time, there’s no word if it will carry out any observations of the comet.

These launches will also represent the first planetary missions to depart Earth since 2011. You can follow the mission as @MAVEN2Mars on Twitter. We’ll also be attending the MAVEN Conference and Workshop this weekend in Boulder and tweeting our adventures (wi-fi willing) as @Astroguyz. We also plan on attending the November launch in person as well!

And in the end, it was perhaps for the good of all mankind that our own rule-breaking (but pithy) Mars haiku didn’t get selected:

                        Rider of the Martian Atmosphere

                                  Taunting Bradbury’s golden-bee armed  Martians 

                                       While dodging the Great Galactic Ghoul

Hey, never let it be said that science writers make great poets!

Curiosity rover Celebrates 1 Year on Mars with Dramatic Discoveries

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp.
Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Story updated with further details[/caption]

NASA’s mega Mars rover Curiosity is celebrating 1 Year on the Red Planet since the dramatic landing on Aug. 6, 2012 by reveling in a string of groundbreaking science discoveries demonstrating that Mars could once have supported past life – thereby accomplishing her primary science goal – and with a promise that the best is yet to come!

“We now know Mars offered favorable conditions for microbial life billions of years ago,” said the mission’s project scientist, John Grotzinger of the California Institute of Technology in Pasadena.

“Curiosity has landed in an ancient river or lake bed on Mars,” Jim Green, Director of NASA’s Planetary Science Division, told Universe Today.

Curiosity is now speeding onwards towards Mount Sharp, the huge 3.4 mile (5. 5 km) mountain dominating the center of her Gale Crater landing site – and which is the primary destination of the mission.

During Year 1, Curiosity has transmitted over 190 gigabits of data, captured more than 71,000 images, fired over 75,000 laser shots to investigate the composition of rocks and soil and drilled into two rocks for sample analysis by the pair of state-of-the-art miniaturized chemistry labs housed in her belly – SAM & CheMin.

“From the sophisticated instruments on Curiosity the data tells us that this region could have been habitable in Mars’ distant past,” Green told me.

“This is a major step forward in understanding the history and evolution of Mars.”

And just in the nick of time for her 1 year anniversary, the car sized robot just passed the 1 mile (1.6 kilometer) driving mark on Aug. 1, or Sol 351.

Mount Sharp still lies roughly 5 miles (8 kilometers) distant – as the Martian crow flies.

“We will be on a general heading of southwest to Mount Sharp,” Jim Erickson, Curiosity Project Manager of NASA’s Jet Propulsion Laboratory (JPL), told Universe Today in an exclusive interview. See the NASA JPL route maps below.

“We have been going through various options of different planned routes.”

How long will the journey to Mount Sharp take?

“Perhaps about a year,” Erickson told me.

“We have put some new software – called autonav, or autonomous navigation – on the vehicle right after the conjunction period back in March 2013. This will increase our ability to drive.”

The total distance driven by NASA's Mars rover Curiosity passed the one-mile mark a few days before the first anniversary of the rover's landing on Mars.  This map traces where Curiosity drove between landing at "Bradbury Landing" on Aug. 5, 2012, PDT, (Aug. 6, 2012 (Universal Time and EDT) and the position reached during the mission's 351st Martian day, or sol, (Aug. 1, 2013). The Sol 351 leg added 279 feet (85.1 meters) and brought the odometry since landing to about 1.05 miles (1,686 meters).  Credit: NASA/JPL-Caltech/Univ. of Arizona
The total distance driven by NASA’s Mars rover Curiosity passed the one-mile mark a few days before the first anniversary of the rover’s landing on Mars. This map traces where Curiosity drove between landing at “Bradbury Landing” on Aug. 5, 2012, PDT, (Aug. 6, 2012 (Universal Time and EDT) and the position reached during the mission’s 351st Martian day, or sol, (Aug. 1, 2013). The Sol 351 leg added 279 feet (85.1 meters) and brought the odometry since landing to about 1.05 miles (1,686 meters). Credit: NASA/JPL-Caltech/Univ. of Arizona

“We are trying to make that significantly faster by bringing the new autonav online. That will help. But how much it helps really depends on the terrain.”

So far the terrain has not been problematical.

“Things are going very well and we have a couple of drives under our belt,” said Erickson, since starting the long trek to Mount Sharp about a month ago.

The lower reaches of Mount Sharp are comprised of exposed geological layers of sedimentary materials that formed eons ago when Mars was warmer and wetter, and much more hospitable to microscopic life.

“It has been gratifying to succeed, but that has also whetted our appetites to learn more,” says Grotzinger. “We hope those enticing layers at Mount Sharp will preserve a broad diversity of other environmental conditions that could have affected habitability.”

Indeed, Curiosity’s breakthrough discovery that the surface of Mars possesses the key chemical ingredients required to sustain microbial life in a habitable zone, has emboldened NASA to start mapping out the future of Mars exploration.

NASA announced plans to start work on a follow on robotic explorer launching in 2020 and develop strategies for returning Martian samples to Earth and dispatching eventual human missions to Mars in the 2030’s using the new Orion capsule and SLS Heavy lift rocket.

“NASA’s Mars program is back on track with the 2016 InSight lander and the 2020 rover,” Jim Green, Director of NASA’s Planetary Science Division, told Universe Today in an interview.

“Successes of our Curiosity — that dramatic touchdown a year ago and the science findings since then — advance us toward further exploration, including sending humans to an asteroid and Mars,” said NASA Administrator Charles Bolden in a statement.

“Wheel tracks now, will lead to boot prints later.”

Following the hair-raising touchdown using with the never before used sky-crane descent thrusters, the science team directed the 1 ton robot to drive to a nearby area of interesting outcrops on the Gale crater floor – at a place called Glenelg and Yellowknife Bay.

Along the way, barely 5 weeks after landing, Curiosity found a spot laden with rounded pebbles at the Hottah outcrop of concretions that formed in an ancient stream bed where hip deep liquid water once flowed rather vigorously.

In February 2013, Curiosity conducted the historic first ever interplanetary drilling into Red Planet rocks at the ‘John Klein’ outcrop inside Yellowknife Bay that was shot through with hydrated mineral veins of gypsum.

The Yellowknife Bay basin looks like a dried up river bed.

This scene combines seven images from the telephoto-lens camera on the right side of the Mast Camera (Mastcam) instrument on NASA's Mars rover Curiosity   on Sol 343 of the rover's work on Mars (July 24, 2013).  Credit: NASA/JPL-Caltech/Malin Space Science Systems
This scene combines seven images from the telephoto-lens camera on the right side of the Mast Camera (Mastcam) instrument on NASA’s Mars rover Curiosity on Sol 343 of the rover’s work on Mars (July 24, 2013). The center of the scene is toward the southwest. Credit: NASA/JPL-Caltech/Malin Space Science Systems

Analysis of pulverized portions of the gray colored rocky powder cored from the interior of ‘John Klein’ revealed evidence for phyllosilicates clay minerals that typically form in pH neutral water. These starting findings on the crater floor were unexpected and revealed habitable environmental conditions on Mars – thus fulfilling the primary science goal of the mission.

See herein our context panoramic mosaic from Sol 169 showing the robotic arm touching and investigating the Martian soil and rocks at ‘John Klein’.

And if you take a visit to Washington, DC, you can see our panorama (assembled by Ken Kremer and Marco Di Lorenzo) on permanent display at a newly installed Solar System exhibit at the US National Mall in front of the Smithsonian National Air & Space Museum- details here.

A mosaic by the Mars Science Laboratory Curiosity rover, assembled by Ken Kremer and Marco Di Lorenzo is now part of the permanent Solar System Exhibit outside the National Air and Space Museum on the US National Mall in Washington, D.C. Image courtesy Ken Kremer.
A mosaic by the Mars Science Laboratory Curiosity rover, assembled by Ken Kremer and Marco Di Lorenzo is now part of the permanent Solar System Exhibit outside the National Air and Space Museum on the US National Mall in Washington, D.C. Image courtesy NCESSE.

“We have found a habitable environment [at John Klein] which is so benign and supportive of life that probably if this water was around, and you had been on the planet, you would have been able to drink it,” says Grotzinger, summing up the mission.

Curiosity captured unique view of Martian moon Phobos & Diemos together on Sol 351 (Aug 1, 2013). Credit: NASA/JPL/MSSS, contrast enhanced by Marco Di Lorenzo and Ken Kremer
Curiosity captured unique and rare view of tiny Martian moons Phobos & Deimos together on Sol 351 (Aug 1, 2013). Look close and see craters on pockmarked Phobos. Credit: NASA/JPL/MSSS, contrast enhanced by Marco Di Lorenzo and Ken Kremer
On the long road to Mount Sharp, Curiosity will make occasional stops for science.

This past week she captured rare sky watching images of the diminutive Martian moons – Phobos and Deimos – together!

Meanwhile, Curiosity’s 10 year old sister rover Opportunity Is trundling merrily along and will arrive shortly at her own mountain climbing goal on the opposite of Mars.

And NASA’s next Mars orbiter called MAVEN (for Mars Atmosphere and Volatile Evolution), has just arrived intact at the Kennedy Space Center after a cross country trip aboard a USAF C-17.

Technicians at Kennedy will complete final preparations for MAVEN’s blastoff to the Red Planet on Nov. 18 from the Florida Space Coast atop an Atlas V rocket.

On Tuesday, Aug 6, NASA will broadcast a half day of new programming on NASA TV commemorating the landing and discussing the science accomplished so far and what’s coming next.

And stay tuned for more astonishing discoveries during ‘Year 2’ on the Red Planet from our intrepid rover Curiosity – Starting Right Now !

Ken Kremer

Curiosity Route Map From 'Glenelg' to Mount Sharp. This map shows where NASA's Mars rover Curiosity landed in August 2012 at "Bradbury Landing"; the area where the rover worked from November 2012 through May 2013 at and near the "John Klein" target rock in the "Glenelg" area; and the mission's next major destination, the entry point to the base of Mount Sharp.  Credit: NASA/JPL-Caltech/Univ. of Arizona
Curiosity Route Map From ‘Glenelg’ to Mount Sharp
This map shows where NASA’s Mars rover Curiosity landed in August 2012 at “Bradbury Landing”; the area where the rover worked from November 2012 through May 2013 at and near the “John Klein” target rock in the “Glenelg” area; and the mission’s next major destination, the entry point to the base of Mount Sharp. Credit: NASA/JPL-Caltech/Univ. of Arizona

MAVEN Takes Final Test Spins, Flexes Solar Panels Before Imminent Trek to Florida Launch Site

The solar panels on the MAVEN spacecraft are deployed as part of environmental testing procedures at Lockheed Martin Space Systems in Littleton, Colorado, before shipment to Florida 0on Aug. 2 and blastoff for Mars on Nov. 18, 213. Credit: Lockheed Martin

The solar panels on NASA’s MAVEN Mars orbiter are deployed as part of environmental testing procedures at Lockheed Martin Space Systems in Littleton, Colorado, before shipment to Florida on Aug. 2 and blastoff for Mars on Nov. 18, 2013. Credit: Lockheed Martin
Watch cool testing videos below![/caption]

MAVEN is NASA’s next mission to Mars and in less than three days time the spacecraft ships out on a cross country trek for the first step on the long sojourn to the Red Planet.

But before all that, technicians took MAVEN for a final spin test, flexed her solar arrays and bombarded her with sound and a whole lot more.

On Aug. 2, MAVEN (Mars Atmosphere and Volatile EvolutioN Mission) journeys half a continent from its assembly facility at Lockheed Martin in Littleton, Colorado to the Kennedy Space Center and the Florida Space Coast aboard a USAF C-17.

Unlike Curiosity, which is roving across a crater floor on the Red Planet at this very moment, MAVEN is an orbiter with a first of its kind mission.

MAVEN is the first spacecraft from Earth devoted to investigating and understanding the upper atmosphere of Mars.

The goal is determining how and why Mars lost virtually all of its atmosphere billions of years ago, what effect that had on the climate and where did the atmosphere and water go?

To ensure that MAVEN is ready for launch, technicians have been busy this year with final tests of the integrated spacecraft.

Check out this video of MAVEN’s Dry Spin Balance Test

The spin balance test was conducted on the unfueled spacecraft on July 9, 2013 at Lockheed Martin Space Systems in Littleton, Colorado.

NASA says the purpose of the test “is to ensure that the fully integrated spacecraft is correctly balanced and to determine the current center of gravity. It allows the engineering team to fine-tune any necessary weight adjustments to precisely fix the center of gravity where they want it, so that it will perform as expected during the cruise to Mars.”

It was the last test to be completed on the integrated spacecraft before its shipment to Florida later this week.

This next video shows deployment tests of the two “gull-wing” solar panels at Lockheed Martin Space Systems.

Wingtip to wingtip, MAVEN measures 11.43 m (37.5 feet) in length.

In mid May, MAVEN was moved into a Thermal Vacuum Chamber at Lockheed Martin for 19 days of testing.


The TVAC test exposed MAVEN to the utterly harsh temperatures and rigors of space similar to those it will experience during its launch, cruise, and mission at Mars.

MAVEN is slated to blast off atop an Atlas V-401 rocket from Cape Canaveral Air Force Station, Florida on Nov. 18, 2013. The 2000 pound (900 kg) spacecraft will be housed inside a 4 meter payload fairing.

After a 10 month interplanetary voyage it will join NASA’s armada of four robotic spacecraft when it arrives in Mars orbit in September 2014.

Scientists hope that measurements from MAVEN will help answer critical questions like whether, when and how long the Martian atmosphere was once substantial enough to sustain liquid water on its surface and support life.

“What we’re doing is measuring the composition of the atmosphere as a measure of latitude, longitude, time of day and solar activities,” said Paul Mahaffy, of NASA’s Goddard Space Flight Center in Greenbelt, Md, and the principal investigator for MAVEN’s mass spectrometer instrument.

“We’re trying to understand over billions of years how the atmosphere has been lost.”

Ken Kremer

…………….
Learn more about MAVEN, Cygnus, Antares, LADEE, Mars rovers and more at Ken’s upcoming lecture presentations

Aug 12: “RockSat-X Suborbital Launch, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

NASA’s MAVEN orbiter is due to blast off for Mars on Nov. 18, 2013 atop an Atlas V rocket similar to this which launched Curiosity from Cape Canaveral on Nov. 26, 2011. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN orbiter is due to blast off for Mars on Nov. 18, 2013 atop an Atlas V rocket similar to this which launched Curiosity from Cape Canaveral on Nov. 26, 2011. Credit: Ken Kremer/kenkremer.com