It is a scientific certainty that Mars was once a much different place, with a denser atmosphere, warmer temperatures, and where water once flowed. Evidence of this past is preserved in countless surface features, ranging from river channels and alluvial deposits to lakebeds. However, roughly 4 billion years ago, the planet began to change into what we see today, an extremely cold and desiccated environment. Between all that, it is possible Mars experienced glacial and interglacial periods, which is evidenced by images like the one taken by the NASA Mars Reconnaissance Orbiter (MRO) shown above.
Continue reading “This Sure Looks Like the Movements of a Glacier Across Ancient Mars”Want to Live on Mars? Here's Where the Water is
When crewed missions begin to travel to Mars for the first time, they will need to be as self-sufficient as possible. Even when Mars and Earth are at the closest points in their orbits to each other every 26 months (known as “Opposition“), it can take six to nine months for a spacecraft to travel there. This makes resupply missions painfully impractical and means astronauts must pack plenty of supplies for the journey. They will also need to grow some of their food and leverage local resources to meet their needs, a process known as In-Situ Resource Utilization (ISRU).
In particular, astronauts will need to know where to find water on the Red Planet, which is no small challenge. Luckily, the European Space Agency (ESA) has created a mineral map showing the locations of aqueous minerals (rocks that have been chemically altered by water). This map was created by the Mars Orbital Catalog of Aqueous Alteration Signatures (MOCAAS) project and took over ten years to complete. When it comes time to select landing sites for crewed missions to Mars (in the next decade and beyond), maps like this will come in mighty handy!
Continue reading “Want to Live on Mars? Here's Where the Water is”One Feature Mars has That we Don’t: Polar Megadunes
For fans of astrophotography, Kevin M. Gill needs no introduction. Even if you’re not up on the latest astronomical news and developments, chances are you’ve still seen some of his images over the years. From beautiful artist renditions to breathtaking photographs of far-off planets, Gill has covered it all. Among the latest images available on his official Flickr page are pictures of a unique feature on Mars: the Chasma Boreale Megadunes!
Continue reading “One Feature Mars has That we Don’t: Polar Megadunes”How Much Carbon Dioxide Snow Falls Every Winter on Mars?
Like Earth, Mars experiences climatic variations during the course of a year because of the obliquity of its rotational axis. This leads to the annual deposition/sublimation of the CO2 ice/snow, which results in the formation of the seasonal polar caps. Similarly, these variations in temperature result in interaction between the atmosphere and the polar ice caps, which has a seasonal effect on surface features.
On Mars, however, things work a little differently. In addition to water ice, a significant percentage of the Martian polar ice caps are made up of frozen carbon dioxide (“dry ice”). Recently, an international team of scientists used data from NASA’s Mars Global Surveyor (MGS) mission to measure how the planet’s polar ice caps grow and recede annually. Their results could provide new insights into how the Martian climate varies due to seasonal change.
Continue reading “How Much Carbon Dioxide Snow Falls Every Winter on Mars?”How Old is the Ice at Mars’ North Pole?
On Earth, the study of ice core samples is one of many methods scientists use to reconstruct the history of our past climate change. The same is true of Mars’ northern polar ice cap, which is made up of many layers of frozen water that have accumulated over eons. The study of these layers could provide scientists with a better understanding of how the Martian climate changed over time.
This remains a challenge since the only way we are able to study the Martian polar ice caps right now is from orbit. Luckily, a team of researchers from UC Boulder was able to use data obtained by the High-Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO) to chart how the northern polar ice caps’ evolved over the past few million years.
Continue reading “How Old is the Ice at Mars’ North Pole?”Another Incredible Picture of Mars, This Time From a Region Just Outside Valles Marineris
The Mars Reconnaissance Orbiter (MRO) delivers once again! Using its advanced imaging instrument, the High Resolution Imaging Experiment (HiRISE) camera, the orbiter captured a breathtaking image (shown below) of the plains north of Juventae Chasma. This region constitutes the southwestern part of Valles Marineris, the gigantic canyon system that runs along the Martian equator.
Continue reading “Another Incredible Picture of Mars, This Time From a Region Just Outside Valles Marineris”This is the Spot Where ESA’s Schiaparelli Crashed Into Mars
On October 19th, 2016, the NASA/ESA ExoMars mission arrived at the Red Planet to begin its study of the surface and atmosphere. While the Trace Gas Orbiter (TGO) successfully established orbit around Mars, the Schiaparelli Lander crashed on its way to the surface. At the time, the Mars Reconnaissance Orbiter (MRO) acquired images of the crash site using its High Resolution Imaging Science Experiment (HiRISE) camera.
In March and December of 2019, the HiRISE camera captured images of this region once again to see what the crash site looked like roughly three years later. The two images show the impact crater that resulted from the crash, which was partially-obscured by dust clouds created by the recent planet-wide dust storm. This storm lasted throughout the summer of 2019 and coincided with Spring in Mars’ northern hemisphere.
Continue reading “This is the Spot Where ESA’s Schiaparelli Crashed Into Mars”It Hasn’t Rained on Mars for a Long Time, but These Sand Dunes Look Like Raindrops, and They’re Filled with Chemicals Made in Water
Mars is well-known for being a dry and arid place, where dusty red sand dunes are prevalent and water exists almost entirely in the form of ice and permafrost. An upside to this, however, is the fact that these conditions are the reason why Mars’ many surface features are so well preserved. And as missions like the Mars Reconnaissance Orbiter (MRO) have shown, this allows for some pretty interesting finds.
Consider the picture recently taken by Curiosity’s
Mars’ North Pole is Doing the Dust Storms Thing Again
It’s easy to take for granted the detailed, almost real-time knowledge of Mars that we have at our fingertips. After all, in the not-too-distant past, Mars was largely mysterious. All we had were ground-based images of the planet. Now? Now we have daily weather reports and images of dust storms.
Continue reading “Mars’ North Pole is Doing the Dust Storms Thing Again”Huge Sheets of Ice Found Hidden Just Beneath the Surface of Mars
Its an established fact that Mars was once a warmer and wetter place, with liquid water covering much of its surface. But between 4.2 and 3.7 billion years ago, the planet lost its atmosphere, which caused most of its surface water to disappear. Today, much of that water remains hidden beneath the surface in the form of water ice, which is largely restricted to the polar regions.
In recent years, scientists have also learned of ice deposits that exist in the equatorial regions of Mars, though it was unlcear how deep they ran. But according to a new study led by the U.S. Geological Survey, erosion on the surface of Mars has revealed abundant deposits of water ice. In addition to representing a major research opportunity, these deposits could serve as a source of water for Martian settlements, should they ever be built.
The study, titled “Exposed subsurface ice sheets in the Martian mid-latitudes“, recently appeared in Science. The study was led by Colin M. Dundas, a researcher with the U.S. Geological Survey, and included members from the Lunar and Planetary Laboratory (LPL) at the University of Arizona, Johns Hopkins University, the Georgia Institute of Technology, the Planetary Science Institute, and the Institute for Geophysics at the University of Texas at Austin.
For the sake of their study, the team consulted data obtained by the High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). This data revealed eight locations in the mid-latitude region of Mars where steep slopes created by erosion exposed substantial quantities of sub-surface ice. These deposits could extend as deep as 100 meters (328 feet) or more.
The fractures and steep angles indicate that the ice is cohesive and strong. As Dundas explained in a recent NASA press statement:
“There is shallow ground ice under roughly a third of the Martian surface, which records the recent history of Mars. What we’ve seen here are cross-sections through the ice that give us a 3-D view with more detail than ever before.”
These ice deposits, which are exposed in cross-section as relatively pure water ice, were likely deposited as snow long ago. They have since become capped by a layer of ice-cemented rock and dust that is between one to two meters (3.28 to 6.56 ft) thick. The eight sites they observed were found in both the northern and southern hemispheres of Mars, at latitudes from about 55° to 58°, which accounts for the majority of the surface.
It would be no exaggeration to say that this is a huge find, and presents major opportunities for scientific research on Mars. In addition to affecting modern geomorphology, this ice is also a preserved record of Mars’ climate history. Much like how the Curiosity rover is currently delving into Mars’ past by examining sedimentary deposits in the Gale Crater, future missions could drill into this ice to obtain other geological records for comparison.
These ice deposits were previously detected by the Mars Odyssey orbiter (using spectrometers) and ground-penetrated radar aboard the MRO and the ESA’s Mars Express orbiter. NASA also sent the Phoenix lander to Mars in 2008 to confirm the findings made by the Mars Odyssey orbiter, which resulted in it finding and analyzing buried water ice located at 68° north latitude.
However, the eight scarps that were detected in the MRO data directly exposed this subsurface ice for the first time. As Shane Byrne, the University of Arizona Lunar and Planetary Laboratory and a co-author on the study, indicated:
“The discovery reported today gives us surprising windows where we can see right into these thick underground sheets of ice. It’s like having one of those ant farms where you can see through the glass on the side to learn about what’s usually hidden beneath the ground.”
These studies would also help resolve a mystery about how Mars’ climate changes over time. Today, Earth and Mars have similarly-tiled axes, with Mars’ axis tilted at 25.19° compared to Earth’s 23.439°. However, this has changed considerably over the course of eons, and scientists have wondered how increases and decreases could result in seasonal changes.
Basically, during periods where Mars’ tilt was greater, climate conditions may have favored a buildup of ice in the middle-latitudes. Based on banding and color variations, Dundas and his colleagues have suggested that layers in the eight observed regions were deposited in different proportions and with varying amounts of dust based on varying climate conditions.
As Leslie Tamppari, the MRO Deputy Project Scientist at NASA’s Jet Propulsion Laboratory, said:
“If you had a mission at one of these sites, sampling the layers going down the scarp, you could get a detailed climate history of Mars. It’s part of the whole story of what happens to water on Mars over time: Where does it go? When does ice accumulate? When does it recede?”
The presence of water ice in multiple locations throughout the mid-latitudes on Mars is also tremendous news for those who want to see permanent bases constructed on Mars someday. With abundant water ice just a few meters below the surface, and which is periodically exposed by erosion, it would be easily accessible. It would also mean bases need not be built in polar areas in order to have access to a source of water.
This research was made possible thanks to the coordinated use of multiple instruments on multiple Mars orbiters. It also benefited from the fact that these missions have been studying Mars for extended periods of time. The MRO has been observing Mars for 11 years now, while the Mars Odyssey probe has been doing so for 16. What they have managed to reveal in that time has provided all kinds of opportunities for future missions to the surface.