In this season of Christmas tidings, many of us were blessed to witness the eerie Red Moon of the total lunar eclipse a few nights ago on Dec. 21. Here in “bonechilling” New Jersey, it was miraculously crystal clear the entire night from the beginning around 1:30 a.m. EST to the end – about three and one half hours later at around 5 a.m.
UPDATE: Check out more readers “Red Moon, Red Planet” astropix contributions below !
The eclipse occurred as the moon passed through the Earth’s inner dark shadow, or umbra and changed dramatically to varying shades of red, orange and brown.
During totality – when the moon was completely immersed in the umbral shadow for about 72 minutes – the red moon changed from a faint red glow to a brilliant crimson red. At times it appeared to be blood red and as though the surface was stirring and oozing droplets of warm and viscous blood. It was surreal and looked to me as though it had been magically and majestically painted up into the night sky.
Well all this redness hanging in the sky during totality caused me to ponder Mars – the Red Planet – especially with the avalanche of good news streaming back lately.
And the wispy white light at near total eclipse harkened to the Martian polar ice caps.
So please send your telescopic shots and descriptions of the Red Planet and/or the Red Moon and I’ll post them here. Email kremerken at yahoo dot com or post as comments to add here.
Despite the shadow the moon does not completely disappear. The red moon’s glow was caused by sunlight refracted through the earth’s atmosphere and cast upon the lunar surface. The hue varies depending on a variety of atmospheric conditions and can be intensified by floating clouds of volcanic ash and dust. The recent volcanic eruptions at Mount Merapi in Indonesia in October and at Mount Eyjafjallajökull in Iceland last April sent massive plumes of particles skyward which may have influenced the thrilling event.
Red Moon, Red Planet. One day we’ll journey there and back again.
———
Send me your astropix of Red Moon and/or Red Mars to post here:
Check out these gorgeous views of Mars in January 2010 from Efrain Morales Rivera at the Jaicoa Observatory in Aquadilla, Puerto Rico
From Robert Vanderbei of Amateur Astronomers Association Of Princeton in New Jersey; A Lunar Eclipse Montage ! Just ahead of the monster blizzard which struck the northeast Corridor of the US on Dec 26.
Some pictures of the eclipse put together as a composite from beginning to totality by Russell King of Willingboro Astronomical Society, New Jersey.
The Opportunity rover is now sending back a plethora of awesome views of Santa Maria Crater since just arriving at the western edge of the crater on Dec. 15 (Sol 2450). This intermediate stop on the rovers 19 km long journey from Victoria Crater to giant Endeavour Crater looks to be well worth the trip and affords another fine feather in the science teams cap.
Santa Maria appears to be “relatively unweathered and fresh”, according to Ray Arvidson, of Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers. A bounty of boulders and rocks from the ejecta ring the rim. The crater is roughly 90 meters in diameter with an estimated depth between 9 to 14 meters. It is somewhat oval in shape, not perfectly circular.
After initially driving to a distance of about five meters from the rim on Dec. 16 (Sol 2451), Opportunity has now carefully crawled even nearer to the precipice of the craters steep cliffs. At each spot the rover snaps a series of panoramic images to document the site scientifically and esthetically and plan the next sols drive.
The team back on Earth – and millions of kilometers away – must tread with extreme caution as Opportunity creeps ever closer to the edge lest she fall off a cliff. Whereas the cameras revealed a dramatic gaping hole on Dec. 16, Opportunity is now positioned close enough to point her cameras directly at the steep walled cliffs and towards the sand dunes at the crater floor crater unveiling another stunningly gorgeous Martian vista.
Compare the panoramas from Sols 2451 and 2454 above and below as Opportunity pulled up to the rim in stages and began exploring the crater environment from different vantage points.
The rover handlers are highly adept at precisely maneuvering the 175 kg vehicle back and forth inside the danger zone at crater rims. After all Opportunity has been on a crater tour for her entire 7 year extended mission to the red planet and controllers at NASA’s Jet Propulsion Laboratory (JPL) have honed their driving techniques at countless locales both treacherous and dazzling, especially about the precipitous 50 meter cliff drops at Victoria Crater.
High priority activity on the west side of Santa Maria includes collecting the first pair in a series of long-baseline, high resolution stereo panoramas which will be used to create a digital elevation map in 3 D, according to Guy Webster, the Public Affairs Officer at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., which manages the Mars Rover mission for NASA.
The newly assembled crater maps – see the first mosaics herein – will be scrutinized and utilized for planning the best locations to visit during the upcoming multi-week science campaign. .
JPL engineers will move Opportunity in a counterclockwise direction around the rim from the Sol 2450 approach point.
“One last drive before the Christmas break will take us ~ 20m away to a lookout point, to set us up for another drive next week,” tweeted JPL Rover driver Scott Maxwell. “Last weekend’s drive around Santa Maria took us to this gorgeous new outlook. It’s grand here.”
“There are no plans to enter the crater.” Webster confirmed to me. There is no reason to take a risk when Opportunity is so close to those phyllosilicate clays at Endeavour which formed in water and have never before been directly analyzed on the Martian surface.
“
The current plan calls for Opportunity to stay at Santa Maria through the upcoming Solar conjunction which starts in late January and ends in mid-February,” Webster stated.
The rover will remain stationary during that period and conduct a lengthy focused investigation of a specific spot using the instruments on the robotic arm – which include a rock drill, microscope and spectrometers.
“We will use the ‘no-new-commanding’ time of conjunction for a long-integration assessment of the composition of a selected target,” added Webster.
“The team plans to use Opportunity’s RAT- or Rock Abrasion Tool – on a target at Santa Maria,” says rover project manager John Callas of JPL. The RAT is a high tech device that uses a grinding wheel to cut into martian rocks and has performed far beyond expectation. The diamond embedded abrader teeth still have some life left, and the team wants to save some abrasion capability for the Endeavour rim targets.
NASA is using its powerful science surveyor orbiting more than 241 kilometers above Mars to target the surface explorations of the long lived Opportunity rover to compelling science targets on the ground. Opportunity is currently on a long term trek to the giant crater named Endeavour, some 22 kilometers in diameter, which shows significant signatures of clays and water bearing sulfate minerals which formed in the presence of flowing liquid water billions of years ago.
An armada of orbiters and rovers from Earth are carrying out a coordinated attack plan to unlock the mysteries of the red planet, foremost being to determine whether life ever arose on Mars.
On Dec. 15 (Sol 2450), Opportunity arrived at Santa Maria crater which is just 6 km distant from the western rim of Endeavour. Over the past 2 years, the rover has traversed more than two thirds of the 19 km distance from Victoria crater -her last big target – to Endeavour.
High resolution spectral and imaging mappers aboard NASA’s Mars Reconnaissance Orbiter (MRO) are enabling researchers on the rover team to prioritize targets and strategically guide Opportunity to the most fruitful locations for scientific investigations.
The on board CRISM mapping spectrometer has detected clay minerals, or phyllosilicates, at multiple locations around Endeavour crater including the western rim closest to Opportunity. CRISM is the acronym for Compact Reconnaissance Imaging Spectrometer for Mars. Images from MRO’s HiRISE camera are utilized to scout out the safest and most efficient route. See maps above and below.
“This is the first time mineral detections from orbit are being used in tactical decisions about where to drive on Mars,” said Ray Arvidson of Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers and a co-investigator for CRISM.
Clay minerals are a very exciting scientific find because they can form in more neutral and much less acidic aqueous environments which are more conducive to the possibility for the formation of life. They have never before been studied up close by science instruments on a landed mission.
Opportunity may soon get a quick taste of water bearing sulfate minerals at Santa Maria because spectral data from CRISM suggest the presence of sulfate deposits at the southeast rim of the crater. Opportunity has previously investigated these sulfate minerals at other locations along her circuitous traverse route – but which she discovered without the help of orbital assets.
“We’ve just pulled up to the rim of Santa Maria, and the workload is very high,” Steve Squyres informed me. Squyres, of Cornell University, is the Principal Scientific Investigator for NASA’s Spirit and Opportunity Mars rovers.
Opportunity drove to within about 5 meters of the crater rim on Dec. 16 (Sol 2451). JPL Mars rover driver Scott Maxwell tweeted this message ; “Today’s NAVCAM mosaic of Santa Maria Crater. Woo-hoo! Glorious and beautiful!” and this twitpic
The rover will conduct an extensive science campaign at Santa Maria by driving to different spots over the next several weeks and gathering data to compare observations on the ground to those from CRISM in orbit.
Santa Maria crater appears to be relatively fresh and steep walled and was likely created by a meteor strike only a few million years ago. Endeavour is an ancient crater with a discontinuous rim that is heavily eroded at many points. By exploring craters, scientists can look back in time and decipher earlier geologic periods in Mars history.
Scientists believe that the clay minerals stem from an earlier time period in Martian history and that the sulfate deposits formed later. Mars has experiences many episodes of wet environments at diverse locations in the past and climate-change cycles persist into the present era.
After the upcoming Solar Conjunction in February 2011, Opportunity will depart eastwards for the last leg of the long march to Endeavour. She heads for a rim fragment dubbed Cape York which spectral data show is surrounded by exposures of water bearing minerals. Cape York is not yet visible in the long distance images because it lies to low. See maps below.
Thereafter, Opportunity alters direction and turns south towards her next goal –
Cape Tribulation – which is even more enticing to researchers because CRISM has detected exposures of the clay minerals formed in the milder environments more favorable to life. Cape Tribulation has been clearly visible in rover images already taken months ago in early 2010.
Opportunity could reach Endeavour sometime in 2011 if she can continue to survive the harsh environment of Mars and drive at her current accelerated pace. Opportunity arrived at Mars in January 2004 for a planned 90 day mission. The rover has far surpassed all expectations and will soon celebrate 7 earth years of continuous operations on the red planet. Virtually all the data from Spirit and Opportunity are relayed back to Earth via NASA’s Mars Odyssey orbiter.
Opportunity used its panoramic camera in a super-resolution technique to record this view of the horizon on Sol 2298 (July 11, 2010) which shows the western rim of Endeavour Crater, including the highest ridge informally named “Cape Tribulation”. CRISM data revealed exposures of clay minerals at Cape Tribulation.
Opportunity’s Path on Mars Through Sol 2436
The red line shows where Opportunity has driven from the place where it landed in January 2004 — inside Eagle Crater, at the upper left end of the track — to where it reached on the 2,436th Martian day, or sol, of its work on Mars (Nov. 30, 2010). The map covers an area about 15 kilometers (9 miles) wide. North is at the top. Subsequent drives brought Opportunity to Santa Maria Crater, which is about 90 meters (295 feet) in diameter. After investigating Santa Maria the rover heads for Endeavour Crater. The western edge of 22-kilometer-wide (14-mile-wide) Endeavour is in the lower right corner of this map. Some sections of the discontinuous raised rim and nearby features are indicated with informal names on the map: rim segments “Cape York” and “Solander Point”; a low area between them called “Botany Bay”; “Antares” crater, which formed on sedimentary rocks where the rim was eroded down; and rim fragment “Cape Tribulation,” where orbital observations have detected clay minerals. The base map is a mosaic of images from the Context Camera on NASA’s Mars Reconnaissance Orbiter.
NASA recently celebrated the anniversary of the historic Apollo 12 lunar landing mission with another history making craft – the long lived Opportunity Mars rover. Opportunity traversed around and photographed ‘Intrepid’ crater on Mars in mid November 2010. The crater is informally named in honor of the ‘Intrepid’ lunar module which landed two humans on the surface of the moon on 19 November 1969, some forty one years ago.
Apollo 12 was only the second of NASA’s Apollo missions to place humans on the Earth’s moon. Apollo astronauts Pete Conrad and Gordon Bean precisely piloted their lunar landing spacecraft nicknamed ‘Intrepid’ to a safe touchdown in the ‘Ocean of Storms’, a mere 180 meters (600 feet) away from the Surveyor 3 robotic lunar probe which had already landed on the moon in April 1967. The unmanned Surveyor landers paved the way for NASA’s manned Apollo landers.
As Conrad and Bean walked on the moon and collected lunar rocks for science, the third member of the Apollo 12 crew, astronaut Dick Gordon, orbited alone in the ‘Yankee Clipper’ command module and collected valuable science data from overhead.
On the anniversary of the lunar landing, the rover science team decided to honor the Apollo 12 mission as Opportunity was driving east and chanced upon a field of small impact craters located in between vast Martian dune fields. Informal crater names are assigned by the team to craters spotted by Opportunity in the Meridiani Planum region based on the names of historic ships of exploration.
Rover science team member James Rice, of NASA’s Goddard Space Flight Center, Greenbelt, Md., suggested using names from Apollo 12 because of the coincidental timing according to NASA. “The Apollo missions were so inspiring when I was young, I remember all the dates. When we were approaching these craters, I realized we were getting close to the Nov. 19 anniversary for Apollo 12,” Rice said. He sent Bean and Gordon photographs that Opportunity took of the two craters named for the two Apollo 12 spaceships.
Bean wrote back the following message to the Mars Exploration Rover team: “I just talked with Dick Gordon about the wonderful honor you have bestowed upon our Apollo 12 spacecraft. Forty-one years ago today, we were approaching the moon in Yankee Clipper with Intrepid in tow. We were excited to have the opportunity to perform some important exploration of a place in the universe other than planet Earth where humans had not gone before. We were anxious to give it our best effort. You and your team have that same opportunity. Give it your best effort.”
On November 4, Opportunity drove by and imaged ‘Yankee Clipper’ crater. After driving several more days she reached ‘Intrepid’ on November 9. The rover then traversed around the crater rim and photographed the crater interior from different vantage points, collecting two panoramic views along the way.
Opportunity soon departed Intrepid on Sol 2420 (Nov. 14) to resume her multi-year trek eastwards and took a series of crater images that day – from a very different direction – which we were inspired to assemble into a panoramic mosaic (in false color) in tribute to the Apollo 12 mission (see above).
Our mosaic tribute clearly shows the rover wheel tracks as Opportunity first approached Intrepid on Nov. 9 – which is fittingly reminiscent of the Apollo 12 astronauts walking on the moon 41 years ago as they explored a lunar crater. By comparison, the arrival mosaic from Sol 2417 shows distant Endeavour crater in the background.
Intrepid crater is about 16 meters in diameter, thus similar in size to ‘Eagle’ crater inside which Opportunity first landed on 24 January 2004 after a 250 million mile ‘hole in one shot’ from Earth. Eagle was named in honor of the Apollo 11 mission.
“Intrepid is fairly eroded with sand filling the interior and ejecta blocks planed off by the saltating sand”, said Matt Golembek, Mars Exploration Program Landing Site Scientist at the Jet Propulsion Laboratory (JPL), Pasadena, Calif. Asked about the age of Intrepid crater, Golembek told me; “Based on the erosional state it is at least several million years old, but less than around 20 million years old.”
Opportunity is blazing ahead towards a huge 22 km (14 mile) wide crater named ‘Endeavour’, which shows distinct signatures of clays and past wet environments based on orbital imagery thus making the crater a compelling science target.
“Intrepid is 1.5 km from Santa Maria crater and about 7.5 km from Endeavour.”
“We should be at Santa Maria crater next week, where we will spend the holidays and conjunction. Then it will be 6 km to Endeavour,” Golembek said.
The road ahead looks to be alot friendlier to the intrepid rover. “The terrain Opportunity is on is among the smoothest and easiest to traverse since Eagle and Endurance. Should be smooth sailing to Endeavour, averaging about 100 meters per drive sol. We should easily beat MSL to the phyllosilicates,” Golembek explained.
Phyllosilicates are clay minerals that form under wet, warm, non-acidic conditions. They have never before been studied on the Martian surface.
MSL is the Mars Science Lab, NASA’s next Mars lander mission and which is scheduled to blast off towards the end of 2011. Golembek leads the landing site selection team.
The amazing Opportunity rover has spent nearly seven years roving the Martian surface, conducting a crater tour during her very unexpectedly long journey at ‘Meridiani Planum’ on Mars which now exceeds 26 km (16 miles). The rovers were designed with a prime mission “warranty” of just 90 Martian days – or sols – and have vastly exceeded their creators expectations.
“What a ride. This still does not seem real,” Rob Manning told me. Manning headed the Entry, Descent and Landing team at JPL for both the Spirit and Opportunity rovers. “That would be fantastic if Opportunity could get to the phyllosilicates before MSL launches.”
The Opportunity rover has done it again — found another strange-looking rock sitting on Meridiani Planum, and it looks like another meteorite. “The dark color, rounded texture and the way it is perched on the surface all make it look like an iron meteorite,” said Matt Golombek from the MER science team. Unofficially named “Oileán Ruaidh” (pronounced ay-lan ruah), which is the Gaelic name (translated: Red Island) for an island off the coast of northwestern Ireland. The rock is about the size of a toaster: 45 centimeters (18 inches) wide from the angle at which it was first seen. Stu Atkinson has posted some enhanced images of the rock on his website, Road to Endeavour, which I have nabbed and posted here. Thanks Stu! The 3-D version above looks awesome with the red/green glasses. And look for more detailed images of the rock on his site soon, as Opportunity comes in for a closer look. UPDATE: As promised, Stu has provided an enhanced close-up of this rock, below.
Here’s an extreme close-up of Oileán Ruaidh, and it certainly has that “iron meteorite” look about it. It almost looks like the head of a craggy old snapping turtle!
JPL issued a press release today with an update that mission controllers have still not heard from the hibernating Spirit rover. Even though the rover is experiencing one of Mars’ harshest winters since the rovers arrived, the rover team has begun an active “paging” technique called ‘sweep and beep’ in an effort to communicate with Spirit instead of just passively listening for any activity from the rover. Based on models of Mars’ weather and its effect on available power, mission managers believe that if Spirit responds, it most likely will be in the next few months. But in a ‘hope for the best, prepare for the worst’ kind of way, the press release added, “However, there is a very distinct possibility Spirit may never respond.”
“It will be the miracle from Mars if our beloved rover phones home,” said Doug McCuistion, director of NASA’s Mars Exploration Program. “It’s never faced this type of severe condition before – this is unknown territory.”
The Martian winter runs from May through November here on Earth, so there’s still a lot of long, dark winter to get through. Spirit has not communicated since March 22, 2010 and is likely in a low-power hibernation mode since the rover was not able to get to a favorable slope for its fourth Martian winter. The low angle of sunlight during these months limits the power generated from the rover’s solar panels. During hibernation, the rover shuts down communications and other activities so available energy can be used to recharge and heat batteries, and to keep the mission clock running.
On July 26, rover engineers began the sweep and beep. “Instead of just listening, we send commands to the rover to respond back to us with a communications beep,” said John Callas, project manager for the rover. “If the rover is awake and hears us, she will send us that beep.”
The earliest date the rover could generate enough power to send a beep to Earth was calculated to be around July 23. However, mission managers don’t anticipate the batteries will charge adequately until late September to mid-October.
So, there is still a lot of time to wait things out. While I don’t think the rover team is giving up on Spirit at all, it appears they want to prepare the rover faithful for the worst.
But I’m going to make a prediction here: not only will Spirit wake up, but the rover driving team will be able to get her out of the sand trap she is stuck in. Just a hunch, but you heard it here and only time will tell if my prediction comes true.
Based on previous Martian winters, the rover team anticipates the increasing haziness in the sky over Spirit will offset longer daylight for the next two months. The amount of solar energy available to Spirit then will increase until the southern Mars summer solstice in March 2011. JPL says that if we haven’t heard from Spirit by March, 2011 it is unlikely that we will ever hear from it.
Leave it to Steve Squyres, however, principal investigator for the rovers, to leave us with a little hope: “This has been a long winter for Spirit, and a long wait for us,” he said. “Even if we never heard from Spirit again, I think her scientific legacy would be secure. But we’re hopeful we will hear from her, and we’re eager to get back to doing science with two rovers again.”
The Opportunity rover has captured an image of a dust devil, and surprisingly, this is the first one ever that Oppy has spied. Spirit has seen dozens of dust devils over on the other side of the planet in Gusev Crater, and even the Phoenix lander’s camera captured several of these whirling dust dervishes during its short four-and-a-half month life. Plus the different orbiting spacecraft have seen evidence of plenty of dust devils by using their eyes from the skies. But this is the first one Oppy’s cameras have managed to shoot. This tall column of swirling dust appeared in a routine image that Opportunity took with its panoramic camera on July 15, 2010. The rover took the image in the drive direction, east-southeastward, right after a drive of about 70 meters (230 feet), and was taken for use in planning the next drive.
But obviously, over the years, Opportunity has benefited from dust devils – or perhaps just gusts of wind – as she has had a series of unexpected boosts in electrical power when the pervasive Martian dust gets cleaned off her solar panels. And just one day before Opportunity captured this dust devil image, wind cleaned some of the dust off the rover’s solar array, increasing electricity output from the array by more than 10 percent. These unexpected – but welcome – Martian “car washes” have helped extend the life of both rovers.
“That might have just been a coincidence, but there could be a connection” between the cleaning event and the dust devil in the image, said Mark Lemmon of the rover team from Texas A&M University. The team is resuming systematic checks for afternoon dust devils with Opportunity’s navigation camera, for the first time in about three years.
Lemmon said that Spirit’s location inside Gusev Crater, is rougher in ground texture, and dustier, than the area where Opportunity is working in the Meridiani Planum region. Those factors at Gusev allow vortices of wind to form more readily and raise more dust, compared to conditions at Meridiani. Orbiters have photographed tracks left by dust devils near Opportunity, but the tracks are scarcer there than near Spirit. Swirling winds at Meridiani may be more common than visible signs of them, if the winds occur where there is no loose dust to disturb.
Either some little Martians came by and gave the Opportunity rover a quick once-over cleaning, or a recent gust of wind blew layers of dust off her solar panels. The image above (supplied by our favorite photo- whiz Stu Atkinson), shows Oppy’s solar panels on sol 2274 and 2299 (approximately June 18 and July 12 here on Earth) with a marked difference in the amount of dust on the panels. Yesterday, the Twitter account for the rovers, @marsrovers Tweeted: “Love those Martian dust busters! A recent wind gust cleaned Oppy’s solar panels giving her a little power boost for the road.” And on the road she is, heading earnestly for Endeavour Crater, with several recent drives of around 70 meters (230 feet) per sol. But she now has some new autonomous software the rover team is trying out, and with her new greater power capacity, she should be able to keep on truckin’. Mars rover driver Scott Maxwell reported on Twitter this week that Opportunity is 40% of the way from Victoria Crater to Endeavour.
And what’s the latest news about Spirit – still silent?
According to Maxwell (again on Twitter), the power models for sunlight hitting Gusev Crater say the very earliest we could possibly hear from Spirit could be sometime late this week. But he added that more likely would be hearing from Spirit by around mid-November.
But catching Spirit awake is complicated, with timing being everything. “Even if Spirit’s waking up (soon), we’ll have a hard time catching her during one of her wakeups,” Maxwell said. “This will take some luck as well as skill,” having the Mars Reconnaissance Orbiter or Mars Odyssey overhead and listening at the very moment Spirit is talking. Maxwell added that the team is working on how to locate Spirit if she’s had a Mission Clock fault and doesn’t know how to send communications to Earth.
It is very likely that Spirit has experienced a low-power fault and has turned off all sub-systems, including communication and gone into a deep sleep. While sleeping, the rover will use the available solar array energy to recharge her batteries. When the batteries recover to a sufficient state of charge, and if the Mission Clock hasn’t gone completely bonkers, Spirit will wake up and begin to communicate.
Spirit’s odometry remains at 7,730.50 meters (4.80 miles).
But meanwhile, Oppy’s total odometry is 21,550.77 meters (21.55 kilometers, or 13.99 miles), and she’ll be putting on more as she heads towards Endeavour Crater. Maxwell later said he has an idea to speed up the rover’s drives as much as 30%, so that will be interesting to find out more about his idea. “A 30% speedup would shave 2-3 months off our trip to Endeavour — maybe even more than that. Worth a try! Phyllosilicates, here we come!,” he tweeted, referring to the water-based minerals that scientists are hoping to find within the crater. That would mean water helped form the rocks in Mars’ early history.
Speaking of Endeavour, recently, NASA and JPL released an image showing the newly-given names of different points on Oppy’s next destination, and there’s a push by some people in Australia for one additional feature to be named “Nobby’s Head.”
The rover team is using the theme of names of places visited by British Royal Navy Capt. James Cook in his 1769-1771 Pacific voyage in command of H.M.S. Endeavour. My friend Col Maybury from radio station 2NUR in Newcastle, New South Wales, Australia is helping to promulgate this request to NASA, with the support of the Minister of Tourism and Newcastle’s Lord Mayor. “Hopefully we will get a favourable reply soon,” Col wrote me.
Cook first came to this location in May of 1770. At midnight by moonlight he saw an island jutting up from the sea and wrote in his journal: “A small round rock or Island, laying close under the land, bore South 82 degrees West, distance 3 or 4 Leagues.”
Now called Nobby Head, it is the entrance of Newcastle Harbour, formed by the Hunter River, a great coal port of New South Wales. The feature on Mars is the same shape as Nobby Head on Earth. Wish Col and the people of Newcastle good luck in their “endeavour” to name this feature! (Anyone from the rover team naming committee reading this?!)
Mars rover team members have begun informally naming features around the rim of Endeavour Crater, as they develop plans to investigate that destination when NASA’s Opportunity rover arrives there after many more months of driving. A new, super-resolution view of a portion of Endeavour’s rim reveals details that were not discernible in earlier images from the rover. Several high points along the rim can be correlated with points discernible from orbit.
Super-resolution is an imaging technique combining information from multiple pictures of the same target to generate an image with a higher resolution than any of the individual images.
Endeavour has been the team’s long-term destination for Opportunity since the summer of 2008, when the rover finished two years of studying Victoria Crater. By the spring of 2010, Opportunity had covered more than a third of the charted, 19-kilometer (12-mile) route from Victoria to Endeavour and reached an area with a gradual, southward slope offering a view of Endeavour’s elevated rim.
After the rover team chose Endeavour as a long-term destination, the goal became even more alluring when observations with the Compact Reconnaissance Imaging Spectrometer for Mars, on NASA’s Mars Reconnaissance Orbiter, found clay minerals exposed at Endeavour. Clay minerals, which form under wet conditions, have been found extensively on Mars from orbit, but have not been examined on the surface. Additional observations with that spectrometer are helping the rover team choose which part of Endeavour’s rim to visit first with Opportunity.
The team is using the theme of names of places visited by British Royal Navy Capt. James Cook in his 1769-1771 Pacific voyage in command of H.M.S. Endeavour for informal names of sites at Endeavour Crater. Points visible in the super-resolution view from May 12 include “Cape Tribulation” and “Cape Dromedary.”
See more images and info on the names of the different features at Stu Atkinson’s “Road to Endeavour” blog.
[/caption]
Even though the Mars Rover Spirit is asleep, a new look at old data from one of her instruments confirms the presence of large amounts of carbonate-rich rocks, which means that regions of the planet may have once harbored water. The Miniature Thermal Emission Spectrometer, or Mini-TES, instrument on the rover looked at an outcrop of rocks called “Comanche” back in 2005, but the instrument was partially “blinded” by dust. Only when scientists developed a special calibration to remove the spectral effects of the dust on the instrument was the spectral data revealed to show evidence for carbonate-rich outcrops in a range of low hills inside Gusev crater on Mars.
Spirit has gone into hibernation because of low power levels during the extremely cold winter months on Mars. She is stuck in some loose sand in the Home Plate region, and the rover teams were unable to get her solar panels in a good position to soak up the sun’s energy.
”]
See more images of Comanche, below, courtesy of Stu Atkinson.
Carbonates are clues to neutral pH conditions, and the mineral forms readily in the presence of water and a carbon dioxide atmosphere. If conditions were right for carbonate-bearing rocks to form, water would have been present, and could have created an environment favorable to life. Yet until now, geologic clues for the presence of carbonates on the surface of Mars have been scarce.
“Mini-TES got dusted months before Spirit reached Comanche, and we didn’t have a good way to correct for the dust effects at the time,” said Steve Ruff, research scientist at Arizona State University’s Mars Space Flight Facility. Ruff is one of a team of scientists on the paper, whose lead author is Richard V. Morris of NASA’s Johnson Space Center in Houston. “We knew there was something weird about the outcrop’s spectrum as seen by Mini-TES, but couldn’t say what caused it.”
Ruff said that even though Spirit’s Mössbauer spectrometer indicated that carbonate was possible, the team needed more evidence to be convinced. When the calibration method to remove the spectral effects of the dust made that data available, and combined with chemical data from a third spectrometer, “the Mini-TES spectra put the discovery over the edge,” Ruff said.
Scientists have been searching for Martian carbonate rocks for decades because such minerals are crucial to understanding the early climate history of Mars and the related question of whether the planet might once have held life.
Small amounts of carbonate minerals have been detected on Mars before, but Ruff said this new data is different. “We’re seeing a couple of large outcrops of rock poking through the soil of the Columbia Hills,” he said. “The rocks are about 25 percent carbonate by weight, by far the highest abundance we’ve seen on Mars.”
The mineral is rich in magnesium and iron and possibly formed a long time ago by precipitation from the hot, residual waters from leftover magma that flowed through buried carbonate deposits.
NASA’s other Mars rover, Opportunity, has discovered ample evidence for alteration of rocks by water in Meridiani Planum, on the other side of Mars from Spirit’s Gusev Crater. But the water at Meridiani was strongly acidic. While life can evolve to survive in acidic conditions — such as in some of Yellowstone National Park’s geysers and hot springs — few scientists think it can start under those conditions.
Moreover, acidic water quickly destroys carbonate minerals, as for example vinegar dissolves hard water deposits. Thus finding outcrops of carbonate rock shows that the hydrothermal water at Comanche was liquid, chemically neutral, and abundant.
While there’s no evidence for life, Ruff says, the conditions would have been more favorable for it.
Ruff added that more old data from Spirit could hold new clues to Mars’ past. “The Comanche data have been available to scientists and the public for about four years now. The new finding shows that this data set still harbors potentially major discoveries.”