Zoom into an Ancient and Fractured Martian Landscape

Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.
Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.

Peer at this new image of Mars’ Ladon Basin and you get some notion of the violence that took place during the early history of Mars.

ESA’s Mars Express imaged the southern part of the partially buried crater informally known as Ladon Basin. The basin is the site of an ancient impact which is about 440 kilometers (273 miles) across. On an earthly scale, Ladon Basin would stretch from London to Paris or fill up most of Colorado.

These zoomable images allows you to quickly zoom into whatever part of the picture you want to see close up. Just slide the scale (between the plus and minus sign) at the bottom of the application to zoom in.

Continue reading “Zoom into an Ancient and Fractured Martian Landscape”

Reminiscent of Apollo, Australian Facilities Will Receive First Signals of Curiosity Rover Landing

The movie “The Dish” tells the wonderful story of how Australian radio communication dishes saved the day as Apollo 11 landed on the Moon, allowing the world to watch in wonder. While the movie isn’t entirely accurate, Australia does have a marvelous history of providing tracking and communication with spacecraft on historic missions. The tradition continues with the upcoming landing of the Mars Science Laboratory Curiosity rover when it sets down on Mars on August 5/6 after a nail-biting entry, descent and landing.

The Canberra Deep Space Communication Complex (CDSCC) will be the main tracking station for the landing activities. Its 70-m and two 34-m antennas will receive signals from the spacecraft both directly and then relayed through another NASA spacecraft, Mars Odyssey, in orbit around the Red Planet.

The 64-m Parkes telescope – the one featured in “The Dish” — will record signals directly from the spacecraft as a backup in case there is a problem with the relaying. But as the spacecraft descends, it will drop below the Martian horizon (and out of direct sight of Earth-based antennas) about two minutes before touchdown, and Parkes will cease receiving its signals.

A third, smaller, antenna managed by the European Space Agency (ESA) at New Norcia near Perth in WA will provide extra redundancy. It will receive signals from the spacecraft recorded and re-sent through ESA’s Mars Express satellite, which is in orbit around Mars.

Signals from the Canberra station will be sent directly to mission scientists at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. Data from Parkes and New Norcia will be sent later for analysis.

While the landing is not controlled from Earth, as the lag-time in radio signals (13.8 minutes one way) makes any input from Earth impossible, tracking the spacecraft as it approaches Mars is very important.

Astrophoto: Tracking Curiosity by Glen James Nagle
Tracking Curiosity. Image Credit: Glen James Nagle

“We are looking forward to receiving and sending that touchdown signal from MSL, so we can help end those ‘7 minutes of terror’ for the amazing scientists and engineers waiting at JPL,” said Glen Nagle, Education and Public Outreach Officer at Canberra Deep Space Communication Complex, via email. Nagle took this panoramic image, above, early in December 2011 in Canberra while the dishes were getting their first data from MSL after its launch, so the facility has been an integral part of guiding the spacecraft during its entire journey to Mars.

The last opportunity to send the spacecraft any commands will be two hours before it enters the atmosphere. “After that, it’s on its own,” said Nagle.

NASA engineers also want to know exactly where the spacecraft enters the atmosphere so they can locate the rover when it lands, and of course, the hopeful rover fans back on Earth will want to find out as soon as possible to know if the landing succeeded or not.

The spacecraft will slam into the atmosphere at 20,000 km per hour. Over the next seven minutes the craft and then its payload must be slowed to essentially zero.

The landing has several stages: cruise, deployment of the entry capsule and then the parachute, separation of the heat shield, and finally the operation of the “skycrane” that will lower the 900-kg rover, Curiosity, onto the Martian surface.

As each stage is successfully completed the spacecraft will send a unique tone indicating that it has occurred.

During the landing, the mission scientists can only watch and wait. They call this time the “seven minutes of terror”.

The exact landing time for the spacecraft is determined by several factors, including descent time on the parachute, Martian winds, and any variation how the spacecraft flies under power before the landing. Confirmation of a touchdown signal could be received on Earth at 05:31 UTC on Aug. 6 (10:31 p.m. PDT on Aug. 5 and 1:31 a.m. EDT Aug. 6, 3.31 pm AEST Aug. 6) plus or minus a minute.

Winds could mean that descent time on the parachute is longer, but at this time of year on Mars the weather is very stable and is not expected to cause any problems.

If the final set of tones is not heard, Mars Odyssey will listen for them again when it orbits over the landing site 1.5 hours later.

“The expertise of Australian personnel in space communications and CSIRO’s partnership with NASA will be showcased during this critical event in the Mars Science Laboratory’s mission,” says Chief of CSIRO Astronomy and Space Science, Dr. Phil Diamond. “All of our technology and our people are ready.”

And so are all the rover fans back on Earth!

Read more about what it has taken to navigate MSL all the way to Mars at our previous article, “How Will MSL Navigate to Mars? Very Precisely.”

And here’s another previous article about how we *really* watched the footage from the Apollo 11 Moon landing, thanks to the Australian radio dishes.

Lead image caption: The 70-m antenna at the Canberra Deep Space Communication Complex. (Credit: CDSCC)

source: CSIRO

What Will Curiosity’s “View” Be as it Approaches the Red Planet?

Curiosity made a risky landing that was partly made possible from learning from mistakes, according to a NASA official. Credit: NASA

Imagine if you were tucked away inside the Mars Science Laboratory backshell, just like the Curiosity rover. What would you see as you approached Mars? Bill Dunford from Riding With Robots on the High Frontier wanted to know the same thing. “I was wondering what Mars would look like if you could physically ride along,” he wrote. “If you were somehow onboard the spacecraft that’s carrying the rover, and you had a window to look through, what would you be able to see?”

To find out, he took advantage of NASA’s Eyes on the Solar System website. This amazing tool creates realistic simulated views based on real data, and allows you to travel to any planet, moon or spacecraft across time and space, in 3D and in real time. It is absolutely awesome and very fun to play with! Bill created the video above by using Eyes on the Solar System, which provides a great look at the view approaching Mars.

Then, Bill also used Eyes on the Solar System to follow Curiosity down to the surface and view the landing, which, if all goes well on 10:31 p.m. PDT on August 5th (05:31 UTC on Aug. 6), should look something like this:

Of course, no one will be there on Mars to see it happen, and we won’t know for at least 14 minutes after the fact if it happened successfully. So consider yourself lucky to have this sneak peak!

See more screenshots and information at Riding With Robots, and check out Bill’s one-page “Cheat Sheet” which provides a quick guide to the mission and the landing, with links to all sorts of information.

Join Universe Today’s Live Webcast of the Curiosity Rover Landing

The NASA team threw in every bit of data they could to model the Mars Curiosity landing. Credit: NASA

Want to be part of the Mars Science Laboratory landing event and join thousands of others in watching it live? Universe Today is teaming up with Google, the SETI Institute and CosmoQuest to provide unprecedented, live coverage of the historic landing of the Curiosity rover on Mars. Starting at 8 pm PDT on August 5th (03:00 UTC August 6th) a live, 4-hour webcast will highlight the landing of the car-sized robotic roving laboratory. During the webcast, via a Google+ Hangout on Air, scientists, engineers and other experts will provide unique insight into the rover and the landing, and viewers will have the chance to interact and ask questions.

Hosted by Universe Today’s Fraser Cain, along with Dr. Pamela Gay and Dr. Phil Plait, the webcast will feature interviews with special guests, a live video feed from NASA of the landing, and live coverage from the Jet Propulsion Laboratory (JPL) and the Planetary Society’s PlanetFest by reporters Scott Lewis and Amy Shira Teitel, who will be on location to interview members of the MSL team, as well as and other scientists and NASA officials that will be on hand.

The landing itself is scheduled for 10:31 p.m. PDT Aug. 5 (05:31 UTC Aug. 6). Curiosity’s landing will mark the start of a two-year mission to investigate whether one of the most intriguing places on Mars ever has offered an environment favorable for microbial life.

As you know, Universe Today, in collaboration with CosmoQuest hosts weekly virtual star parties and science conversations via Google+ Hangouts on Air, and for the Transit of Venus, hosted a special Hangout event that was watched by nearly 7,000 viewers.

Those interested in watching Universe Today’s MSL landing event can find more information and also sign up to “attend” the Hangout on Air here.

The feed will also be available on Universe Today’s YouTube live feed.

You can also follow the action via Twitter from Universe Today (@universetoday) and CosmoQuest (@CosmoQuestX ) by using the hashtag #marshangout

We also have the event listed on Facebook.

Problems with Mars Odyssey Could Impact Telemetry for Curiosity Rover’s Landing

Caption: NASA’s Mars Odyssey spacecraft passes above Mars’ south pole in this artist’s illustration. The spacecraft has been orbiting Mars since October 24, 2001. Image credit: NASA/JPL

The “seven minutes of terror” could stretch into a longer time of trepidation for the hopeful Mars rover team and fans waiting back on Earth to find out if the Curiosity rover has landed safely. A problem with the Mars Odyssey orbiter means there could be a delay in the telemetry relayed to Earth as the Mars Science Laboratory descends and lands on Mars on August 5/6, 2012.

“There’s no impact to landing itself,” said NASA’s Mars exploration program chief Doug McCuistion at a press briefing on Monday. “It’s simply how that data gets returned to us and how timely that data is.”

McCuistion said the Odyssey team is assessing why the orbiter has gone into safe mode several times since early June, as well as having problems with its attitude control system. The glitches possibly could mean the spacecraft may not be in position to track and relay real-time data from MSL as it descends through Mars’ atmosphere and lands, possibly delaying the telemetry to Earth by several hours.

Curiosity’s automated landing sequence won’t be affected; it’s just that the data won’t be sent immediately – and the 14-minute communications lag between Earth and Mars means that the MSL team won’t be getting real-time updates about the rover’s perilous journey anyway; however, now it might be an even longer delay.

Caption: This artist’s concept from an animation depicts Curiosity, the rover to be launched in 2011 by NASA’s Mars Science Laboratory, as it is being lowered by the mission’s rocket-powered descent stage during a critical moment of the “sky crane” landing in 2012. Image Credit: NASA/JPL-Caltech

The rover is scheduled to land at 10:31 p.m. PDT on Aug. 5 (05:31 UTC, 1:31 a.m. EDT on Aug. 6).

Under normal circumstances, it’s a challenge for the orbiters to get in position to welcome another spacecraft to Mars, and provide tracking data and telemetry relay.

“If we were not to do anything, the Mars’ orbiting spacecraft may be on the other side of the planet,” said MSL navigation team chief Tomas Martin-Mur, during a previous interview with UT. “So as soon as we launch, we tell the other spacecraft where we are going to be by the time of entry so they can change their orbits over time, so they will be flying overhead as MSL approaches the planet.”

The orbiters – which also includes NASA’s Mars Reconnaissance Orbiter and ESA’s Mars Express – have been doing special maneuvers to be aligned in just the right place, nearby to MSL’s point of entry into Mars’ atmosphere.

But the glitches for Odyssey means it may not be in the right place.

MRO will be attempting to image the rover as it descends and lands — with possible hopes of catching the rover as it is descending on the “sky-crane” landing system — but MRO can only record data for later playback, whereas Odyssey could provide immediate relay. Mars Express won’t be aligned to see the last minute of flight, McCuistion said.

The Odyssey orbiter put itself in the precautionary, Earth-pointed status called safe mode on July 11, as it finished a maneuver adjusting, or trimming, its orbit. Odyssey’s computer did not reboot, so diagnostic information was subsequently available from the spacecraft’s onboard memory. Based on analysis of that information, the mission’s controllers sent commands yesterday morning taking Odyssey out of safe mode and reorienting it to point downward at Mars.

“We are on a cautious path to resume Odyssey’s science and relay operations soon,” said Gaylon McSmith, Odyssey project manager. “We will also be assessing whether another orbit trim maneuver is warranted.”

The landing is one of the most perilous times for a rover. “Those seven minutes are the most challenging part of this entire mission,” said Pete Theisinger, MSL’s project manager. “For the landing to succeed, hundreds of events will need to go right, many with split-second timing and all controlled autonomously by the spacecraft. We’ve done all we can think of to succeed. We expect to get Curiosity safely onto the ground, but there is no guarantee. The risks are real.”

We’ll provide updates as to Odyssey’s status. Here’s a look at the seven minutes of terror MSL will experience:

Sources: JPL, NASA

NASA Holding Big Events for Curiosity Rover Landing; Register for Chance to Attend

It’s a big rover, so nothing but a big event is appropriate. NASA is going to hold the first-ever multi-center “Social” (formerly known as Tweetups) in conjunction with the landing of the Mars Science Laboratory’s Curiosity rover on Aug. 6 EDT (Aug. 5 PDT). In case you’re not familiar, NASA Socials are in-person meetings with people who engage with the agency through Twitter, Facebook, Google+ and other social networks.

You can register to attend events at one of six NASA centers: Ames Research Center in Moffett Field, Calif.; Glenn Research Center in Cleveland; Goddard Space Flight Center in Greenbelt, Md.; Johnson Space Center in Houston; Langley Research Center in Hampton, Va.; and Jet Propulsion Laboratory (JPL) in Pasadena, Calif. JPL will be having the main event, and each of the other centers will be connected via a multi-center NASA Television simulcast with JPL, home of the Curiosity rover.

If you live close to any of these centers or are willing to travel, and are at all even remotely interested in space exploration, you should register for the chance to attend. Tweetups NASA Socials are incredible events (some attendees have called them life-altering) where you get behind-the-scenes looks at the centers, tours that aren’t normally given to the public, and presentations by scientists, engineers and managers. The events also will provide guests the opportunity to interact with fellow social media users, space enthusiasts and members of NASA’s social media team. Participants will learn about the Mars Science Laboratory mission and their respective NASA field center. They are encouraged to share their experience with others through their favorite social networks.

Registration for the five new NASA Socials opens at noon EDT, Friday, June 29, and closes at noon Tuesday, July 3. NASA randomly will select participants from online registrations. People may register for NASA Socials to be held at multiple locations, but selectees will be chosen for one event only. Each field center’s social and number of guests allowed varies. For more information on each center’s activities and rules pertaining to NASA Social registration, visit:
http://www.nasa.gov/social

Curiosity is currently scheduled to land at Mars’ Gale crater at approximately 1:31 a.m. EDT Aug. 6 (10:31 p.m. PDT Aug. 5), so be prepared to stay up late! But it should be worth it.

During the two-year prime mission, the rover will investigate whether the selected area of Mars offered environmental conditions favorable for microbial life or if evidence of it existed. Find out more about MSL at this website: http://www.nasa.gov/msl

Experts React to Obama Slash to NASA’s Mars and Planetary Science Exploration

Earth’s next Mars rover will NOT be made in USA. President Obama has killed NASA funding for the ExoMars Rover joint project by NASA and ESA planned for 2018 Launch and designed to search for evidence of life. Credit: ESA - Annotation: Ken Kremer

[/caption]

Earth’s next Mars Rover – NOT Made in USA

Just days after President Obama met with brilliant High School students at the 2012 White House Science Fair to celebrate their winning achievements and encourage America’s Youth to study science and take up careers in the Science, Technology, Engineering and Math (STEM) technical fields, the Obama Administration has decided on deep budgets cuts slashing away the very NASA science programs that would inspire those same students to shoot for the Stars and Beyond and answer the question – Are We Alone ?

Last year, the Obama Administration killed Project Constellation, NASA’s Human Spaceflight program to return American astronauts to the Moon. This year, the President has killed NASA’s ExoMars Robotic Spaceflight program aimed at dispatching two ambitious missions to Mars in 2016 and 2018 to search for signs of life.

Both ExoMars probes involved a joint new collaboration with the European Space Agency (ESA) carefully crafted to share costs in hard times and get the most bang for the buck – outlined in my earlier Universe Today story, here.

Expert Scientists and Policy makers have been voicing their opinions.

President Obama meets America’s brightest Young Rocket Scientists
President Barack Obama hosted the winning science fair students from a range of nationwide competitions at the 2nd White House Science Fair on February 7, 2012. The ExoMars missions were eliminated from the NASA budget announced on Feb. 13, 2012.

All of NASA’s “Flagship” Planetary Science missions have now been cancelled in the 2013 Fiscal Year Budget proposed on Feb. 13, and others missions have also been curtailed due to the severe economy.

“There is no room in the current budget proposal from the President for new Flagship missions anywhere,” said John Grunsfeld, NASA’s Associate Administrator for Science at a NASA budget briefing for the media on Feb. 13.

ESA is now looking to partner with Russia as all American participation in ExoMars is erased due to NASA’ s forced pull out.

On Feb. 13, NASA’s Fiscal 2013 Budget was announced and the Obama Administration carved away nearly half the Mars mission budget. Altogether, funding for NASA’s Mars and Planetary missions in the Fiscal 2013 budget would be sliced by $300 million – from $1.5 Billion this year to $1.2 Billion in 2013. NASA was forced to gut the Mars program to pay for the cost overruns of the James Webb Space Telescope.

Mars rover scientist Prof. Jim Bell of Arizona State University and President of The Planetary Society (TPS) told Universe Today that “no one expects increases”, but cuts of this magnitude are “cause for concern”.

NASA’s robotic missions to Mars and other solar system bodies have been highly successful, resulted in fundamental scientific breakthroughs and are wildly popular with students and the general public.

“With these large proposed cuts to the NASA Mars exploration program, there will be a lot of cause for concern,” said Bell.

“The Mars program has been one of NASA’s crown jewels over the past 15 years, both in terms of science return on investment, and in terms of public excitement and engagement in NASA’s mission. It would also represent an unfortunate retreat from the kind of international collaboration in space exploration that organizations like The Planetary Society so strongly support.”

NASA Budget Cuts in Fiscal Year 2013 will force NASA to kill participation in the joint ESA/NASA collaboration to send two Astrobiology related missions to orbit and land rovers on Mars in 2016 and 2018- designed to search for evidence of Life. Credit: ESA - Annotation: Ken Kremer

Bell and other scientists feel that any cuts should be balanced among NASA programs, not aimed only at one specific area.

“Certainly no one expects increasing budgets in these austere times, and it is not useful or appropriate to get into a battle of “my science is better than your science” among the different NASA Divisions and Programs.” Bell told me.

“However, it would be unfortunate if the burden of funding cuts were to befall one of NASA’s most successful and popular programs in a disproportionate way compared to other programs. As Ben Franklin said, “We should all hang together, or surely we will all hang separately.”

Bell added that science minded organizations should work with Congress to influence the debate over the coming months.

“Of course, this would only be an initial proposal for the FY13 and beyond budget. Over the winter, spring, and summer many professional and public organizations, like TPS, will be working with Congress to advocate a balanced program of solar system exploration that focuses on the most important science goals as identified in the recent NRC Planetary Decadal Survey, as well as the most exciting and publicly compelling missions that are supported by the public–who ultimately are the ones paying for these missions.”

“Let’s hope that we can all find a productive and pragmatic way to continue to explore Mars, the outer solar system, and our Universe beyond,” Bell concluded.

“The impact of the cuts … will be to immediately terminate the Mars deal with the Europeans,” said Scott Hubbard, of Stanford University and a former NASA planetary scientist who revived the agency’s Mars exploration program after failures in 1999, to the Washington Post. “It’s a scientific tragedy and a national embarrassment.”

“I encourage whoever made this decision to ask around; everyone on Earth wants to know if there is life on other worlds,” Bill Nye, CEO of The Planetary Society, said in a statement. “When you cut NASA’s budget in this way, you’re losing sight of why we explore space in the first place.”

“There is no other country or agency that can do what NASA does—fly extraordinary flagship missions in deep space and land spacecraft on Mars.” Bill Nye said. “If this budget is allowed to stand, the United States will walk away from decades of greatness in space science and exploration. But it will lose more than that. The U.S. will lose expertise, capability, and talent. The nation will lose the ability to compete in one of the few areas in which it is still the undisputed number one.”

Ed Weiler is NASA’s recently retired science mission chief (now replaced by Grunsfeld) and negotiated the ExoMars program with ESA. Weiler actually quit NASA specifically in opposition to the Mars Program cuts ordered by the Office of Management and Budget (OMB) and had these comments for CBS News;

“To me, it’s bizarro world,” Weiler said an interview with CBS News. “Why would you do this? The President of the United States, President Obama, declared Mars to be the ultimate destination for human exploration. Obviously, before you send humans to the vicinity of Mars or even to land on Mars, you want to know as much about the planet as you possibly can. … You need a sample return mission. The president also established a space policy a few years ago which had the concept of encouraging all agencies to have more and more foreign collaboration, to share the costs and get more for the same bucks.”

“Two years ago, because of budget cuts in the Mars program, I had to appeal to Europe to merge our programs. … That process took two long years of very delicate negotiations. We thought we were following the president’s space policy exactly. Congressional reaction was very positive about our activities. You put those factors in place and you have to ask, why single out Mars? I don’t have an answer.”

Space Analysts and Political leaders also weighed in:

“The president’s budget is just a proposal,” said Howard McCurdy, a space-policy specialist at American University in Washington to the Christian Science Monitor.

The cuts “reflect the new reality” in which the economy, budget deficits, and the federal debt have elbowed their way to the top of Washington’s agenda, McCurdy adds.

“You don’t cut spending for critical scientific research endeavors that have immeasurable benefit to the nation and inspire the human spirit of exploration we all have,” said Rep. John Culberson (R-Tex.). Texas is home to NASA’s Johnson Space Center.

Rep. Adam Schiff (D-CA), who represents the district that’s home to the Jet Propulsion Laboratory (JPL), released this statement following his meeting with NASA Administrator Charles Bolden to discuss the agency’s 2013 budget proposal:

“Today I met with NASA Administrator Charles Bolden to express my dismay over widespread reports that NASA’s latest budget proposes to dramatically reduce the planetary science program, and with it, ground breaking missions to Mars and outer planetary bodies like Jupiter’s icy moon Europa, and to inform him of my vehement opposition to such a move.”

“America’s unique expertise in designing and flying deep-space missions is a priceless national asset and the Mars program, one of our nation’s scientific crown jewels, has been a spectacular success that has pushed the boundaries of human understanding and technological innovation, while also boosting American prestige worldwide and driving our children to pursue science and engineering degrees in college.

“As I told the Administrator during our meeting, I oppose these ill-considered cuts and I will do everything in my power to restore the Mars budget and to ensure American leadership in space exploration.”

In an interview with the San Gabriel Valley Tribune, Schiff said, “What they’re proposing will be absolutely devastating to planetary science and the Mars program. I’m going to be fighting them tooth and nail. Unfortunately if this is the direction the administration is heading, it will definitely hurt JPL – that’s why I’m so committed to reversing this.”

NASA still hopes for some type of scaled back Mars missions in the 2016 to 2020 timeframe which will be outlined in an upcoming article.

In the meantime, the entire future of America’s Search for Life on the Red Planet now hinges on NASA’s Curiosity Mars Science Laboratory rover speeding thru interplanetary space and a pinpoint touchdown inside the layered terrain of Gale Crater on August 6, 2012.

Curiosity will be NASA’s third and last generation of US Mars rovers – 4th Generation Axed !

NASA’s Opportunity Rover is now Earth’s only surviving robot on Mars

3 Generations of NASA’s Mars Rovers

Three Generations of Mars Rovers in the Mars Yard. This grouping shows 3 generations of NASA’s Mars rovers from 1997 to 2012 set inside the Mars Yard at the Jet Propulsion Lab in Pasadena, Calif. The Mars Pathfinder Project (front) landed the first Mars rover - Sojourner - in 1997. The Mars Exploration Rover Project (left) landed Spirit and Opportunity on Mars in 2004. The Mars Science Laboratory Project (right) is on course to land Curiosity on Mars in August 2012. Credit: NASA/JPL-Caltech

[/caption]

NASA Mars rovers have come a long way in terms of size and capability since the rebirth of Red Planet surface exploration just 15 years ago – spanning from 1997 to 2012.

To get a really excellent sense of just how far America’s scientists and engineers have pushed the state of the art in such a short time – when the willpower and funding existed and coincided to explore another world – take a good look at the new pictures here showing 3 generations of NASA’s Mars rovers; namely Mars Pathfinder (MPF), the 1st generation Mars rover, Mars Exploration Rover (MER), the 2nd generation, and Mars Science Laboratory (MSL), the 3rd and newest generation Mars rover.

The newly released pictures graphically display a side by side comparison of the flight spare for Mars Pathfinder (1997 landing) and full scale test rovers of the Mars Exploration Rover (2004 landing) and Mars Science Laboratory (in transit for a 2012 planned landing). The setting is inside the “Mars Yard” at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. where the teams conduct mission simulations.

It’s been nothing less than a quantum leap in advancement of the scientific and technological capability from one generation to the next.

Sojourner - NASA’s 1st Mars Rover
Sojourner takes an Alpha Proton X-ray Spectrometer (APXS) measurement of Yogi rock after Red Planet landing on July 4, 1997 landing. Sojourner was only 2 feet long, the size of a microwave oven.
Credit: NASA

Just consider the big increase in size – growing from a microwave oven to a car !

The “Marie Curie” flight spare and the actual “Sojourner” rover on Mars are 2 feet (65 centimeters) long – about the size of a microwave oven. The MER rovers “Spirit and Opportunity” and the “Surface System Test Bed” rover are 5.2 feet (1.6 meters) long – about the size of a golf cart. The MSL “Curiosity” and the “Vehicle System Test Bed” rover are 10 feet (3 meters) long – about the size of a car.

Side view of Three Generations of Mars Rovers
Front; flight spare for the first Mars rover, Sojourner. Left; Mars Exploration Rover Project test rover. Right; Mars Science Laboratory test rover Credit: NASA/JPL-Caltech

With your own eyes you can see the rapid and huge generational change in Mars rovers if you have the opportunity to visit the Kennedy Space Center Visitor Complex and stroll by the Mars exhibit with full scale models of all three of NASA’s Red Planet rovers.

At the KSC Visitor Complex in Florida you can get within touching distance of the Martian Family of Rovers and the generational differences in size and complexity becomes personally obvious and impressive.

NASA’s Family of Mars rovers at the Kennedy Space Center
Full scale models on display at the Kennedy Space Center Visitor Complex. Curiosity and Spirit/Opportunity are pictured here. Sojourner out of view. Credit: Ken Kremer

All of the Mars rovers blasted off from launch pads on Cape Canaveral Air Force Station, Florida.

Sojourner, Spirit and Opportunity launched atop Delta II rockets at Space Launch Complex 17 in 1996 and 2003. Curiosity launched atop an Atlas V at Space Launch Complex 41 in 2011.

Three Generations of Mars Rovers with Standing Mars Engineers
The rovers are pictured here with real Mars Engineers to get a sense of size and perspective. Front rover is the flight spare for the first Mars rover, Sojourner. At left is a Mars Exploration Rover Project test rover, working sibling to Spirit and Opportunity. At right is a Mars Science Laboratory test rover the size of Curiosity which is targeting a August 2012 Mars landing. The Mars engineers are JPL's Matt Robinson, left, and Wesley Kuykendall. Credit: NASA/JPL-Caltech

Opportunity is still exploring Mars to this day – 8 years after landing on the Red Planet, with a warranty of merely 90 Martian days.

Curiosity is scheduled to touch down inside Gale crater on 6 August 2012.

So, what comes next ? Will there be a 4th Generation Mars rover ?

Stay tuned – only time and budgets will tell.

Doomed Phobos-Grunt Mars Mission Destructively Plunges to Earth

Phobos-Grunt plunged to Earth into the Pacific Ocean on Jan 15, 2012 - Crash Zone Map shows orbital track of Phobos-Grunt on Final Orbit before crashing to Earth in the Pacific Ocean west of South America on Jan 15, 2012.

[/caption]

Story and Crash Zone Map updated 1 p.m. EST Jan 16

Today (Jan. 15) was the last day of life for Russia’s ambitious Phobos-Grunt mission to Mars after a desperate two month race against time and all out attempts to save the daring spaceship by firing up a malfunctioning thruster essential to putting the stranded probe on a trajectory to the Red Planet, failed.

According to the Russian news agency Ria Novosti, the doomed Phobos-Grunt spacecraft apparently plunged into the southern Pacific Ocean today, (Jan. 15) at about 12:45 p.m. EST, 21:45 Moscow time [17:45 GMT] after a fiery re-entry into the Earth’s atmosphere.

“Phobos-Grunt fragments have crashed down in the Pacific Ocean,” Russia’s Defense Ministry official Alexei Zolotukhin told RIA Novosti. He added that the fragments fell 1,250 kilometers to the west of the Chilean island of Wellington.

Universe Today will monitor the developing situation and update this story as warranted. On Jan. 16 Roscosmos confirmed the demise of Phobos-Grunt at 12:45 p.m. EST in the Pacific Ocean – during its last orbit; #1097.

Artist’s concept of Phobos-Grunt re-entry and breakup in the Earth’s atmosphere on Jan 15, 2012

The demise of the Phobos-Grunt spacecraft was expected sometime today, (Jan 15) after a fiery and destructive fall back to Earth, said Roscosmos, the Russian Federal Space Agency, in an official statement released early today before the crash.

Since the re-entry was uncontrolled, the exact time and location could not be precisely calculated beforehand.

Mission Poster for the Russian Phobos-Grunt soil sample return spacecraft that launched to Mars and its moon Phobos on 9 November 2011. The mission did not depart Earth orbit when the upper stage engines failed to ignite. Credit: Roskosmos ( Russian Federal Space Agency)/IKI

The actual crash time of the 13,500 kg space probe was slightly earlier than predicted.

Roscosmos head Vladimir Popovkin had previously stated that perhaps 20 to 30 fragments weighing perhaps 400 pounds (180 kg) might survive and would fall harmlessly to Earth.

The spacecraft burst into a large quantity of pieces as it hit the atmosphere, heated up and broke apart. But the actual outcome of any possible fragments is not known at this time.

Shortly after launching from the Baikonur Cosmodrome on Nov. 9, 2011, the probe became stuck in low Earth orbit after its MDU upper stage engines repeatedly failed to ignite and send the ship on a bold sample return mission to the tiny Martian Moon Phobos.

Phobos-Grunt was loaded with over 11,000 kg of toxic propellants, including dimethylhydrazine and dinitrogen tetroxide, that went unused due to the thruster malfunction and that were expected to be incinerated during the plunge to Earth.

Frictional drag forces from the Earth’s atmosphere had gradually lowered the ship’s orbit in the past two months to the point of no return after all attempts to fire the thrusters and raise the orbit utterly failed.

The audacious goal of Phobos-Grunt was to carry out history’s first ever landing on Phobos, retrieve 200 grams of soil and bring the treasured samples back to Earth for high powered analysis that could help unlock secrets to the formation of Mars, Phobos and the Solar System.

Phobos-Grunt spacecraft being encapsulated inside the nose cone by technicians at the Baikonur Cosmodrome prior to Nov. 9, 2011 blastoff. Credit: Roscosmos

The Holy Grail of planetary science is to retrieve Martian soil samples – and scientists speculated that bits of the Red Planet could be intermixed with the soil of its mini moon Phobos, barely 15 miles in diameter.

The science return from Phobos-Grunt would have been first rate and outstanding.

It’s a sad end to Russia’s attempts to restart their long dormant interplanetary space science program.

The $165 mission was Russia’s first Mars launch in more than 15 years.

Radar image of the Russian Mars orbiter Phobos-Grunt, created with the TIRA space observation radar by researchers at the Fraunhofer Institute in Germany. One can clearly see the extended solar panels (centre) and the tank ring (bottom)
Credit: Fraunhofer FHR
Click to enlarge

Roscosmos had stated that the Atlantic Ocean – to the west of Africa – was at the center of the predicted crash zone. But nothing was certain and the probe had the possibility to crash sooner, perhaps over the Pacific Ocean or South America or later over Africa, Europe or Russia.

Roscosmos had predicted the time of the plunge to Earth to be from 12:50 p.m. EST and 1:34 p.m. EST (1750 to 1834 GMT) or 21:50 to 22: 34 Moscow time on January 15. The last orbit carried the probe over the Pacific Ocean towards South America on a northeasterly heading.

Russia enlisted assistance from ESA and the US in a bid to establish contact with the probe to reorient itself and fire up its engines for a belated journey to the Red Planet. Other than extremely brief signals the efforts proved futile and today’s Pacific plunge is the unfortunate end result.

Hopefully the Russians will not give up in despair, but rather fix the flaws and launch an exciting new Mars mission.

NASA has had better luck with their Mars mission this season.

The Curiosity Mars Science Lab rover is precisely on course to the Red Planet following the Jan 11 firing of the cruise stage thrusters for the first of up to 6 Trajectory Correction Maneuvers – read the details here

Phobos-Grunt imaged while flying over Holland on Dec 28, 2011 by astrophotographer Ralf Vandebergh. Solar panels are deployed. Credit: Ralf Vandebergh

Read Complete Coverage about Phobos-Grunt, Curiosity and the Mars Rovers by Ken Kremer here:
Crucial Rocket Firing Puts Curiosity on Course for Martian Crater Touchdown
8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Curiosity Starts First Science on Mars Sojurn – How Lethal is Space Radiation to Life’s Survival

Russians Race to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – Video
Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Crucial Rocket Firing Puts Curiosity on Course for Martian Crater Touchdown

[/caption]

NASA’s car-sized Curiosity Mars Science Lab (MSL) rover is now on course to touch down inside a crater on Mars in August following the completion of the biggest and most crucial firing of her 8.5 month interplanetary journey from Earth to the Red Planet.

Engineers successfully commanded an array of thrusters on MSL’s solar powered cruise stage to carry out a 3 hour long series of more than 200 bursts last night (Jan. 11) that changed the spacecraft’s trajectory by about 25,000 miles (40,000 kilometers) – an absolute necessity that actually put the $2.5 Billion probe on a path to Mars to “Search for Signatures of Life !”

“We’ve completed a big step toward our encounter with Mars,” said Brian Portock of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., deputy mission manager for the cruise phase of the mission. “The telemetry from the spacecraft and the Doppler data show that the maneuver was completed as planned.”

Mars Science Lab and cruise stage separate from Centaur upper stage just minutes after Nov. 26, 2011 launch. Thrusters on cruise stage performed course correction on Jan. 11, 2012. Up to 6 firings total will put the NASA robot on precision course to Mars.
Credit: NASA TV

This was the first of six possible TCM’s or trajectory correction maneuvers that may be required to fine-tune the voyage to Mars.

Until now, Curiosity was actually on a path to intentionally miss Mars. Since the Nov. 26, 2011 blastoff from Florida, the spacecraft’s trajectory was tracking a course diverted slightly away from the planet in order to prevent the upper stage – trailing behind – from crashing into the Red Planet.

The upper stage was not decontaminated to prevent it from infecting Mars with Earthly microbes. So, it will now sail harmlessly past the planet as Curiosity dives into the Martian atmosphere on August 6, 2012.

The thruster maneuver also served a second purpose, which was to advance the time of the Mars encounter by about 14 hours. The TCM burn increased the velocity by about 12.3 MPH (5.5 meters per second) as the vehicle was spinning at 2 rpm.

“The timing of the encounter is important for arriving at Mars just when the planet’s rotation puts Gale Crater in the right place,” said JPL’s Tomas Martin-Mur, chief navigator for the mission.


Video caption: Rob Manning, Curiosity Mars Science Lab Chief Engineer at NASA JPL describes the Jan. 11, 2012 thruster firing that put the robot on a precise trajectory to Gale Crater on Mars. Credit: NASA/JPL

As of today, Jan. 12, the spacecraft has traveled 81 million miles (131 million kilometers) of its 352-million-mile (567-million-kilometer) flight to Mars. It is moving at about 10,300 mph (16,600 kilometers per hour) relative to Earth, and at about 68,700 mph (110,500 kilometers per hour) relative to the Sun.

The next trajectory correction maneuver is tentatively scheduled for March 26, 2012.

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Credit: Ken Kremer

The goal of the 1 ton Curiosity rover is to investigate whether the layered terrain inside Gale Crater ever offered environmental conditions favorable for supporting Martian microbial life in the past or present and if it preserved clues about whether life ever existed.

Curiosity will search for the ingredients of life, most notably organic molecules – the carbon based molecules which are the building blocks of life as we know it. The robot is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Curiosity’s Roadmap through the Solar System-From Earth to Mars
Schematic shows 8.5 month interplanetary trajectory of Curiosity. Credit: NASA/JPL-Caltech

Curiosity Countdown – 205 days to go until Curiosity lands at Gale Crater on Mars !

January 2012 marks the 8th anniversary of the landings of NASA’s Spirit and Opportunity Mars rovers back in January 2004.

Opportunity continues to operate to this day. Read my salute to Spirit here

Read continuing features about Curiosity and Mars rovers by Ken Kremer starting here:
8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life