One of the benefits of having a spacecraft in orbit around another planet for several years is the ability to make long-term observations and interpretations. The Mars Reconnaissance Orbiter has been orbiting Mars for over seven years now, and by studying before-and-after images from the High Resolution Imaging Science Experiment (HiRISE) camera, scientists have been able to estimate that the Red Planet gets womped by more than 200 small asteroids or bits of comets per year, forming craters at least 3.9 meters (12.8 feet) across.
“It’s exciting to find these new craters right after they form,” said Ingrid Daubar of the University of Arizona, Tucson, lead author of the paper published online this month by the journal Icarus. “It reminds you Mars is an active planet, and we can study processes that are happening today.”
Over the last decade, researchers have identified 248 new impact sites on parts of the Martian surface in the past decade from spacecraft images, determining when the craters appeared. The 200-per-year planetwide estimate is a calculation based on the number found in a systematic survey of a portion of the planet.
The orbiters took pictures of the fresh craters at sites where before-and-after images by other cameras helped figure out when the impacts occurred. This combination provided a new way to make direct measurements of the impact rate on Mars. This will lead to better age estimates of recent features on Mars.
Daubar and co-authors calculated a rate for how frequently new craters at least 3.9 meters in diameter are excavated. The rate is equivalent to an average of one each year on each area of the Martian surface roughly the size of the U.S. state of Texas. Earlier estimates pegged the cratering rate at three to 10 times more craters per year. They were based on studies of craters on the moon and the ages of lunar rocks collected during NASA’s Apollo missions in the late 1960s and early 1970s.
“Mars now has the best-known current rate of cratering in the solar system,” said HiRISE Principal Investigator Alfred McEwen of the University of Arizona, a co-author on the paper.
These asteroids, or comet fragments, typically are no more than 3 to 6 feet (1 to 2 meters) in diameter. Space rocks too small to reach the ground on Earth cause craters on Mars because the Red Planet has a much thinner atmosphere.
For comparison, the meteor over Chelyabinsk, Russia, in February was about 10 times bigger than the objects that dug the fresh Martian craters.
HiRISE targeted places where dark spots had appeared during the time between images taken by the spacecraft’s Context Camera (CTX) or cameras on other orbiters. The new estimate of cratering rate is based on a portion of the 248 new craters detected. It comes from a systematic check of a dusty fraction of the planet with CTX since late 2006. The impacts disturb the dust, creating noticeable blast zones. In this part of the research, 44 fresh impact sites were identified.
Estimates of the rate at which new craters appear serve as scientists’ best yardstick for estimating the ages of exposed landscape surfaces on Mars and other worlds.
Editor’s note: This guest post is written by Louisa Preston, an Astrobiologist and Planetary Geologist. She is a TED Fellow, and Postdoctoral Research Associate at The Open University, UK.
In the last century humanity has taken gigantic leaps forward in the robotic exploration of the cosmos — not least in the search for habitable worlds and environments that could house life outside of the Earth. The next logical step is for humanity itself to leave the confines of our planet, and take on long-term human exploration of the Solar System. Mars in particular is a key target for future human planetary adventures even though on the face of it, it seems so hostile to human life. In fact Mars actually has the most clement environment of any planet in the Solar System outside of Earth and is known to have all of the resources necessary in some accessible form, to sustain life on the surface. So how might we survive on Mars? The crucial things for humans on Mars are the availability of oxygen, shelter, food and water, and not just endless consumables delivered to the planet from Earth. For humans to live long-term on Mars, they will need a self-sustaining habitat to be able to thrive in for generations.
In short, they’ll need a garden. And maybe a robot, too.
Any garden on Mars would need protection in the form of a greenhouse or geodesic dome that could keep the vegetables, fruits, grains and flowers sheltered from the extreme UV radiation that floods the Martian surface, whilst still allowing enough sunlight through to allow them to grow. This dome would also have to be strong enough to provide support and protection against potentially devastating Martian dust storms.
The crops would need to be kept warm, as outside the dome it will be on average a freezing -63 °C. Solar panels arranged outside the habitat and heating filaments underneath it could provide the desired warmth.
Liquid water is needed for irrigation of the plants and for future human consumption, but with water on Mars mainly frozen beneath the surface, we would need to mine the ice and melt it. The atmosphere on Mars is chiefly composed of CO2, which humans cannot use for any of our vital functions. However plants can! They can utilise this atmospheric CO2 to photosynthesise, which would actually create the oxygen we would need.
These are all important aspects of long-term human habitation of Mars that need to be tested and perfected before we arrive, but thankfully most of these can be investigated whilst safely here on the Earth in Mars analogue environments and specially designed spaces.
Our premise is that of a pioneer AstroGardening robot, designed and built by ourselves, to be sent to Mars to set up garden habitats in advance of the first human inhabitants. It will scatter ‘seed pills’ containing various seeds, clay and nutrients across the habitat and nurture the growing plants.
But before we actually go to Mars, we are working on an interactive ‘Mars Garden’ exhibit and AstroGardening Rover designed to educate and inspire.
Installation designer Vanessa Harden and I are building such a space; an interactive experience designed for museums and science centers to entertain and educate on the perils and benefits of gardening on Mars, the ways in which we need to design tools to do this, the plants that would best grow in Mars soil and the methods we might use to obtain liquid water.
Visitors to this Mars concept habitat will get to meet the AstroGardening robot himself and walk around a lush and tranquil Martian garden. They will also get to see the range of food stuffs that we can actually grow in the Martian soil such as asparagus, potatoes, sweet potatoes, radish, alfalfa, and mung bean.
Our aim for this exhibit is to communicate the science behind future human habitation of Mars, the effect we as humans can have on an environment, and the ethics and logistics of colonising other planets.
The exhibit has already been invited to tour around some of London’s most celebrated and beautiful venues such as observatories and planetariums, museums and art galleries, schools and universities, before heading across the ocean to the US and Canada.
But we need the public’s help to make this tour and exhibit a reality.
We have a Kickstarter page for this concept to raise the funds to begin building our vision. See our page and watch our video (below) to find out how you can help.
NASA’s Curiosity rover reaches out in ‘handshake’ like gesture to welcome the end of solar conjunction and resumption of contact with Earth. This mosaic of images was snapped by Curiosity on Sol 262 (May 2, 2013) and shows her flexing the robotic arm with dramatic scenery of Mount Sharp in the background. Two drill holes are visible on the surface bedrock below the robotic arm’s turret where she discovered a habitable site.
Credit: NASA/JPL-Caltech/Ken Kremer-(kenkremer.com)/Marco Di Lorenzo[/caption]
NASA’s Curiosity rover has reached out in a Martian ‘handshake’ like gesture welcoming the end of solar conjunction that marks the resumption of contact with her handlers back on Earth – evidenced in a new photo mosaic of images captured as the robot and her human handlers contemplate a short traverse to a 2nd drilling target in the next few days.
“We’ll move a small bit and then drill another hole,” said John Grotzinger to Universe Today. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.
The rover science team and Grotzinger have selected that 2nd drill location and are itching to send the rover on her way to the bumpy spot called “Cumberland.”
Cumberland lies about nine feet (2.75 meters) west of the “John Klein’ outcrop where Curiosity conducted humanity’s first ever interplanetary drilling on the alien Martian surface in February 2013.
“We’ll confirm what we found in the John Klein hole,” Grotzinger told me.
Curiosity discovered a habitable zone at the John Klein drill site.
After pulverizing and carefully sifting the John Klein drill tailings, a powered, aspirin sized portion of the gray rock was fed into a trio of inlet ports atop the rovers deck and analyzed by Curiosity’s duo of miniaturized chemistry labs named SAM and Chemin inside her belly to check for the presence of organic molecules and determine the inorganic chemical composition.
‘Cumberland’ and ‘John Klein’ are patches of flat-lying bedrock shot through with pale colored calcium sulfate hydrated mineral veins and a bumpy surface texture at her current location inside the ‘Yellowknife Bay’ basin.
“The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water,” NASA said in a statement.
Curiosity snapped high resolution color images of Cumberland on Sol 192 (Feb. 19, 2013) as part of the ongoing data collection campaign to put Yellowknife Bay into scientific context and search for future drill targets.
The John Klein bore hole (drilled on Feb 8, 2013, Sol 182) is visible in our new photo mosaic above created by myself and my imaging partner Marco Di Lorenzo. It was stitched from a ‘Martian baker’s dozen’ of raw images captured on May 2 (Sol 262). and shows the hand-like tool turret positioned above the first pair of drill holes.
Our new Sol 262 mosaic illustrates that Curiosity is again fully functional and flexing the miracle arm following a relaxing month long period of ‘Spring Break’ when there was no two- way communication with Earth during April’s solar conjunction.
See below our Sol 169 panoramic context view of Curiosity inside Yellowknife Bay collecting spectroscopic science measurements at the John Klein outcrop.
Curiosity found that the fine-grained, sedimentary mudstone rock at the John Klein worksite inside the shallow depression known as Yellowknife Bay possesses significant amounts of phyllosilicate clay minerals; indicating the flow of nearly neutral liquid water and a habitat friendly to the possible origin of simple Martian microbial life forms eons ago.
Grotzinger also explained to Universe Today that Curiosity will soon to more capable than ever before.
“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities’” said Grotzinger.
“Then we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”
Curiosity will spend a month or more at the Cumberland site to collect and completely analyze the drill tailings.
Then she’ll resume her epic trek to mysterious Mount Sharp, the 3.5 mile (5 km) high mountain that dominates her landing site and is her ultimate driving inside Gale Crater according to Grotzinger.
“After that [Cumberland] we’re likely to begin the trek to Mt. Sharp, though we’ll stop quickly to look at a few outcrops that we passed by on the way into Yellowknife Bay,” Grotzinger explained to Universe Today.
The Shaler outcrop passed by on the path into Yellowknife Bay is high on the list of stops during the year long journey to Mount Sharp, says Grotzinger. Read more details about Shaler in a new BBC story by Jonathan Amos – here – featuring our Shaler outcrop mosaic.
And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013
Well here’s your chance to get connected for a double barreled dose of Red Planet adventure courtesy of MAVEN – NASA’s next ‘Mission to Mars’ which is due to liftoff this November from the Florida Space Coast.
For a limited time only, NASA is offering the general public two cool ways to get involved and ‘Go to Mars’ aboard a DVD flying on the solar winged MAVEN (Mars Atmosphere and Volatile Evolution) orbiter.
You can send your name and a short poetic message to Mars via the ‘Going to Mars’ campaign being managed by the University of Colorado at Boulder’s Laboratory for Atmospheric and Space Physics (CU/LASP).
“Anybody on planet Earth is welcome to participate!” says NASA.
“The Going to Mars campaign offers people worldwide a way to make a personal connection to space, space exploration, and science in general, and share in our excitement about the MAVEN mission,” said Stephanie Renfrow, lead for the MAVEN Education and Public Outreach program at CU/LASP.
Signing up to send your name is easy. Simply click on the MAVEN mission website – here.
Everyone who submits their name will be included on a DVD that will be attached to the winged orbiter. And you can print out a beautiful certificate of participation emblazoned with your name!
Over 1 million folks signed up to send their names to Mars with NASA’s Curiosity rover. So they are all riding along as Curiosity continues making ground breaking science discoveries and already found habitats that could support potential Martian microbes.
Writing the haiku poem will require thought, inspiration and creativity and involves a public contest – because only 3 poems will be selected and sent to Mars. The public will vote for the three winning entries.
Haiku’s are three line poems. The rules state that “the first and last lines must have exactly five syllables each and the middle line must have exactly seven syllables. All messages must be original and not plagiarized in any way.”
The complete contest rules are found at the mission website – here:
This is a simple way for kids and adults alike to participate in humanity’s exploration of the Red Planet. And it’s also a great STEM activity for educators and school kids of all ages before this year’s school season comes to a close.
“This new campaign is a great opportunity to reach the next generation of explorers and excite them about science, technology, engineering and math,” said Bruce Jakosky, MAVEN principal investigator from CU/LASP. “I look forward to sharing our science with the worldwide community as MAVEN begins to piece together what happened to the Red Planet’s atmosphere.”
MAVEN is slated to blast off atop an Atlas V rocket from Cape Canaveral Florida on Nov. 18, 2013. It will join NASA’s armada of four robotic spacecraft when it arrives at Mars during 2014.
MAVEN is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. The spacecraft will investigate how the loss of Mars’ atmosphere to space determined the history of water on the surface.
But don’t dawdle- the deadline for submissions is July 1.
So, sign up to ‘Go to Mars’ – and do it NOW!
Juice up your inner poet and post your ‘Haiku’ here – if you dare
Buzz Aldrin, celebrated Apollo astronaut and an outspoken champion for the pursuit of space exploration has written a new book titled “Mission to Mars.” While the title focuses on Mars, the book covers much more. Aldrin says that while Mars is the destination, getting there is a journey that includes taking advantage of the efforts from commercial space companies, embracing space tourism, working towards planetary defense, developing technology, promoting STEM (science, technology, engineering and mathematics) education, and working together with international partners. What Aldrin calls his “unified vision” could provide a timeline of crewed missions to Mars is between 2035-2040.
“His point is trying to unify all of this,” said noted journalist and long-time Space.com writer Leonard David in an email to Universe Today. David is a co-author with Aldrin on this new book. “I hope the book is a good platform for moving the space exploration agenda forward.”
“Mission to Mars” is written from Aldrin’s perspective, and Aldrin and David spend little time looking back at the past achievements of Gemini and Apollo, and instead look forward of how the next steps in space exploration should be taken.
Universe Today had the chance to talk with Buzz Aldrin about his book and his plan. Following is part 1 of our interview:
Universe Today: Mr. Aldrin, it is an honor to talk with you – and congratulations on publishing another book. We really enjoyed getting the chance to read it and get your perspective on the future of space exploration.
Buzz Aldrin: Thank you very much. As far as the title, I really wanted to change the title to add an “s” to mission, as after thinking about it, it is the same title as Mike Collins’ book he wrote after we came back from the Moon, and it’s also the title of a not-so-successful movie! In this book, we also talk about much more than just one mission to Mars. We want many missions there, with a future-focused space exploration program.
Universe Today: Ever since you walked on the Moon, I think that Mars has been the ultimate destination that we’ve all dreamed about, and back in 1969, I think many people thought that by 2013, we certainly would have humans on Mars by this time. What do you think has been the biggest reason or roadblock that we’ve yet to achieve that goal?
Buzz Aldrin: There are probably a number of reasons. With Apollo, once having achieved the goal in a relatively intense parade of achievements, leading up to the crescendo of landing on the Moon six out of seven times, then it all ended. The events in the future are going to require much longer commitments to a pathway and a unified vision of what we should be doing and where we should go in space. I have always felt Mars should be the next destination following our landings on the Moon, but a unified vision is what we need to be able to increase the probability of being successful.
We are in a world that focuses on short term returns, and the politics these days is controlled by the desire to have an extraordinary portion of influence and control over the direction of the space program. That is probably one of the most important reasons for my embarking on a creating a foundation for the evolution of space policy, using what we’ve learned from the past to redirect some of our policies in the future for two things: the expansion of humans outward into the solar system and specifically for the US, global leadership in space as long as possible.
UT: You’ve long proposed the cycling system of having spacecraft almost on a railroad or bus lines of going regularly back and forth to Mars. Can you explain for our readers why this is the most efficient way of getting supplies and people to Mars?
Buzz Aldrin: When a spacecraft departs Earth, the main portion of it is rarely ever re-used. This one spacecraft contributes its one mission, as we did with the Apollo spacecraft. Now, if we can depart a spacecraft from the Earth that can carry some of the mass, in particular the radiation protection and other supplies for a brief 5-6 month trajectory of swinging past Mars, we can reduce costs.
Years ago I devised a method with cycling orbits of spacecraft on continuous trajectories between the Earth and Mars – a spacecraft going to Mars and then returning back to Earth at just the right time, angle and velocity to be able to repeat the process 26 months later when Earth, again, is in a favorable position. By using interplanetary cyclers, I feel, and other space experts agree with me, this is the most economical transportation system concept between the Earth and Mars.
When I first discovered this, it was studied and understood by the 1986 Paine Commission, a group who looked at pioneering space, led by the administrator of NASA who had directed us in our lunar landings, Tom Paine. This was, I think, one of the best and most complete studies ever really done.
But since this Commission’s reference to cycling spacecraft, NASA officials and space companies have paid little attention to the advantages of cycling orbits — with the exception of the University of Purdue, which works with engineers at JPL and Caltech — and together with my pioneering ideas, we have discovered that if there are two cycling spacecraft, it gives us a bigger advantage and reduction in the fuel needed. In each cycle, the Cycler’s trajectory swings it by the Earth, and a smaller Earth-departing interceptor spacecraft ferries crew and cargo up to dock with the Cycler spacecraft, and likewise at Mars to reach the surface. So we’ve improved the cycling orbit potential. We now need to test the long-duration equipment that will be needed. Ultimately, this Cycler system of transportation offers a way to make travel to Mars sustainable for the long-term.
For the spacecraft, what I’ve done is taken my concept, which is based on some of NASA’s work of an interplanetary vehicle and put of them together side by side for redundancy, and perhaps adding a few other necessary elements, to become the Cycling spaceship. I also propose building a permanent base on the surface of Mars by actually landing on the moon of Mars Phobos, and building it tele-robotically from there, with various objects such as inflatable habitats, to be assembled into a Mars base. These missions should be international in nature.
All of this is very complex and we need to learn how to build up to it. But one of the most attractive ways would be, before finalizing the Mars base, we could execute an international lunar base. This could be based upon US leadership of what could be an international lunar development authority — much like Intelsat was developed for international satellite communications in geosynchronous orbit. We also have the International Space Station to do some of the initial testing of equipment, such as long duration life support systems.
Not only does NASA need this long-duration life support but also the recently announced Inspiration Mars Mission, which would send a married couple in January 2018 on a flyby of Mars. This would do much to stimulate the planning and testing of the progressive development of the interplanetary space capabilities.
Before we execute an international partner mission back to the Moon, we can test that assembly process on the Big Island of Hawaii where people have been working to select a site similar to where we might have a lunar base built and there we could practice building a base tele-robotically. Once on the Moon, we could develop lunar infrastructure, and allow for robotic mining that could be done for commercial development.
We’ll need cooperative activities between the government, NASA, other government agencies and the commercial companies executing their activities designed to evolve into profit-making businesses.
UT: You mention in your book that a space race with China would be counterproductive. Do you think there’s a way to work with them and have it be productive and beneficial beyond space exploration?
Buzz Aldrin: Right now, unfortunately, Congress forbids NASA personnel to even talk with China. The great opportunity of bringing China into the ISS, is that we could still do this during the lifetime of the space station. China is developing its own its space station, but there doesn’t seem to be an openness between our two countries to work on the big picture of space exploration. Everyone is out for their own return. But there could be a wonderful opportunity here for the US to exercise global leadership in space activities.
Tomorrow: Part 2 of our interview with Buzz Aldrin, where he discusses his thoughts on NASA’s asteroid-lassoing plans, space elevators, and future commercial mission.
Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) – back dropped with Mount Sharp – where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
See drill hole and conjunction videos below[/caption]
After taking a well deserved and unavoidable break during April’s solar conjunction with Mars that blocked two way communication with Earth, NASA’s powerful Martian fleet of orbiters and rovers have reestablished contact and are alive and well and ready to Rock ‘n Roll ‘n Drill.
“Both orbiters and both rovers are in good health after conjunction,” said NASA JPL spokesman Guy Webster exclusively to Universe Today.
Curiosity’s Chief Scientist John Grotzinger confirmed to me today (May 1) that further drilling around the site of the initial John Klein outcrop bore hole is a top near term priority.
The goal is to search for the chemical ingredients of life.
“We’ll drill a second sample,” Grotzinger told Universe Today exclusively. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.
“We’ll move a small bit, either with the arm or the wheels, and then drill another hole to confirm what we found in the John Klein hole.”
Earth, Mars and the Sun have been lined up in nearly a straight line for the past several weeks, which effectively blocked virtually all contact with NASA’s four pronged investigative Armada at the Red Planet.
NASA’s Red Planet fleet consists of the Curiosity (MSL) and Opportunity (MER) surface rovers as well as the long lived Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO) robotic orbiters circling overhead. ESA’s Mars Express orbiter is also exploring the Red Planet.
“All have been in communications,” Webster told me today, May 1.
The NASA spacecraft are functioning normally and beginning to transmit the science data collected and stored in on board memory during the conjunction period when a commanding moratorium was in effect.
“Lots of data that had been stored on MRO during conjunction has been downlinked,” Webster confirmed to Universe Today.
And NASA is already transmitting and issuing new marching orders to the Martian Armada to resume their investigations into unveiling the mysteries of the Red Planet and determine whether life ever existed eons ago or today.
“New commanding, post-conjunction has been sent to both orbiters and Opportunity.”
“And the sequence is being developed today for sending to Curiosity tonight (May 1), as scheduled more than a month ago,” Webster explained.
“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities,” said Grotzinger.
“After that we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”
Curiosity is at work inside the Yellowknife Bay basin just south of the Martian equator. Opportunity is exploring the rim of Endeavour crater at the Cape York rim segment.
Mars Solar Conjunction is a normal celestial event that occurs naturally about every 26 months. The science and engineering teams take painstaking preparatory efforts to insure no harm comes to the spacecraft during the conjunction period when they have no chance to assess or intervene in case problems arise.
So it’s great news and a huge relief to the large science and operations teams handling NASA’s Martian assets to learn that all is well.
Since the sun can disrupt and garble communications, mission controllers suspended transmissions and commands so as not to inadvertently create serious problems that could damage the fleet in a worst case scenario.
So what’s on tap for Curiosity and Opportunity in the near term ?
“For the first few days for Curiosity we will be installing a software upgrade.”
“For both rovers, the science teams will be making decisions about how much more to do at current locations before moving on,” Webster told me.
The Opportunity science team has said that the long lived robot has pretty much finished investigating the Cape York area at Endeavour crater where she made the fantastic discovery of phyllosilicates clay minerals that form in neutral water.
Signals from Opportunity received a few days ago on April 27 indicated that the robot had briefly entered a standby auto mode while collecting imagery of the sun.
NASA reported today that all operations with Opportunity was “back under ground control, executing a sequence of commands sent by the rover team”, had returned to normal and the robot exited the precautionary status.
“The Curiosity team has said they want to do at least one more drilling in Yellowknife Bay area,” according to Webster.
Curiosity has already accomplished her primary task and discovered a habitable zone that possesses the key ingredients needed for potential alien microbes to once have thrived in the distant past on the Red Planet when it was warmer and wetter.
The robot found widespread evidence for repeated episodes of flowing liquid water, hydrated mineral veins and phyllosilicates clay minerals on the floor of her Gale Crater landing site after analyzing the first powder ever drilled from a Martian rock.
Video Caption: Historic 1st bore hole drilled by NASA’s Curiosity Mars rover on Sol 182 of the mission (8 Feb 2013). Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/Ken Kremer (http://www.kenkremer.com/)
During conjunction Curiosity collected weather, radiation and water measurements but no imagery.
In this latest video update from the Mars Science Laboratory team, Ashwin Vasavada, the mission’s Deputy Project Scientist, discusses the recent finding that the Red Planet doesn’t have the same atmosphere it used to. Curiosity’s microwave oven-sized Sample Analysis at Mars (SAM) instrument analyzed an atmosphere sample and the results provided the most precise measurements ever made of isotopes of argon in the Martian atmosphere.
On May 28, 1971, the Soviet Union launched the Mars 3 mission which, like its previously-launched and ill-fated sibling Mars 2, consisted of an orbiter and lander destined for the Red Planet. Just over six months later on December 2, 1971, Mars 3 arrived at Mars — five days after Mars 2 crashed. The Mars 3 descent module separated from the orbiter and several hours later entered the Martian atmosphere, descending to the surface via a series of parachutes and retrorockets. (Sound familiar?) Once safely on the surface, the Mars 3 lander opened its four petal-shaped covers to release the 4.5-kg PROP-M rover contained inside… and after 20 seconds of transmission, fell silent. Due to unknown causes, the Mars 3 lander was never heard from or seen again.
Until now.
The set of images above shows what might be hardware from the 1971 Soviet Mars 3 lander, seen in a pair of images from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter.
While following news about Mars and NASA’s Curiosity rover, Russian citizen enthusiasts found four features in a five-year-old image from Mars Reconnaissance Orbiter that resemble four pieces of hardware from the Mars 3 mission: the parachute, heat shield, terminal retrorocket and lander. A follow-up image by the orbiter from last month shows the same features.
“Together, this set of features and their layout on the ground provide a remarkable match to what is expected from the Mars 3 landing, but alternative explanations for the features cannot be ruled out.”
– Alfred McEwen, HiRISE Principal Investigator
Vitali Egorov from St. Petersburg, Russia, heads the largest Russian Internet community about Curiosity. His subscribers did the preliminary search for Mars 3 via crowdsourcing. Egorov modeled what Mars 3 hardware pieces should look like in a HiRISE image, and the group carefully searched the many small features in this large image, finding what appear to be viable candidates in the southern part of the scene. Each candidate has a size and shape consistent with the expected hardware, and they are arranged on the surface as expected from the entry, descent and landing sequence.
“I wanted to attract people’s attention to the fact that Mars exploration today is available to practically anyone,” Egorov said. “At the same time we were able to connect with the history of our country, which we were reminded of after many years through the images from the Mars Reconnaissance Orbiter.”
The predicted Mars 3 landing site was at latitude 45 degrees south, longitude 202 degrees east, in Ptolemaeus Crater. HiRISE acquired a large image at this location in November 2007, and promising candidates for the hardware from Mars 3 were found on Dec. 31, 2012.
The candidate parachute is the most distinctive feature in the images (seen above at top.) It is an especially bright spot for this region, about 8.2 yards (7.5 meters) in diameter.
The parachute would have a diameter of 12 yards (11 meters) if fully spread out over the surface, so this is consistent.
“Together, this set of features and their layout on the ground provide a remarkable match to what is expected from the Mars 3 landing, but alternative explanations for the features cannot be ruled out,” said HiRISE Principal Investigator Alfred McEwen of the University of Arizona, Tucson. “Further analysis of the data and future images to better understand the three-dimensional shapes may help to confirm this interpretation.”
Although today Mars’ atmosphere is sparse and thin — barely 1% the density of Earth’s at sea level — scientists don’t believe that was always the case. The Red Planet likely had a much denser atmosphere similar to ours, long, long ago. So… what happened to it?
NASA’s Curiosity rover has now found strong evidence that Mars lost much of its atmosphere to space — just as many scientists have suspected. The findings were announced today at the EGU 2013 General Assembly in Vienna.
Curiosity’s microwave oven-sized Sample Analysis at Mars (SAM) instrument analyzed an atmosphere sample last week using a process that concentrates selected gases. The results provided the most precise measurements ever made of isotopes of argon in the Martian atmosphere.
Isotopes are variants of the same element with different atomic weights.
“We found arguably the clearest and most robust signature of atmospheric loss on Mars,” said Sushil Atreya, a SAM co-investigator at the University of Michigan.
SAM found that the Martian atmosphere has about four times as much of a lighter stable isotope (argon-36) compared to a heavier one (argon-38). This ratio is much lower than the Solar System’s original ratio, as estimated from measurements of the Sun and Jupiter.
This also removes previous uncertainty about the ratio in the Martian atmosphere in measurements from NASA’s Viking project in 1976, as well as from small volumes of argon extracted from Martian meteorites retrieved here on Earth.
These findings point to a process that favored loss of the lighter isotope over the heavier one, likely through gas escaping from the top of the atmosphere. This appears to be in line with a previously-suggested process called sputtering, by which atoms are knocked out of the upper atmosphere by energetic particles in the solar wind.
Lacking a strong magnetic field, Mars’ atmosphere would have been extremely susceptible to atmospheric erosion by sputtering billions of years ago, when the solar wind was an estimated 300 times the density it is today.
These findings by Curiosity and SAM will undoubtedly support those made by NASA’s upcoming MAVEN mission, which will determine how much of the Martian atmosphere has been lost over time by measuring the current rate of escape to space. Scheduled to launch in November, MAVEN will be the first mission devoted to understanding Mars’ upper atmosphere.
Find out more about MAVEN and how Mars may have lost its atmosphere in the video below, and follow the most recent discoveries of the MSL mission here.
Curiosity and Mount Sharp – Parting Shot ahead of Mars Solar Conjunction
Enjoy this parting view of Curiosity’s elevated robotic arm and drill staring at you; back dropped with her ultimate destination – Mount Sharp – in this panoramic vista of Yellowknife Bay basin snapped on March 23, Sol 223, by the rover’s navigation camera system. The raw images were stitched by Marco Di Lorenzo and Ken Kremer and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/KenKremer (kenkremer.com)
See video below explaining Mars Solar Conjunction[/caption]
Earth’s science invasion fleet at Mars is taking a break from speaking with their handlers back on Earth.
Why ? Because as happens every 26 months, the sun has gotten directly in the way of Mars and Earth.
Earth, Mars and the Sun are lined up in nearly a straight line. The geometry is normal and it’s called ‘Mars Solar Conjunction’.
Conjunction officially started on April 4 and lasts until around May 1.
From our perspective here on Earth, Mars will be passing behind the Sun.
Watch this brief NASA JPL video for an explanation of Mars Solar Conjunction.
Therefore the Terran fleet will be on its own for the next month since the sun will be blocking nearly all communications.
In fact since the sun can disrupt and garble communications, mission controllers will be pretty much suspending transmissions and commands so as not to inadvertently create serious problems that could damage the fleet in a worst case scenario.
Right now there are a trio of orbiters and a duo of rovers from NASA and ESA exploring Mars.
The spacecraft include the Curiosity (MSL) and Opportunity (MER) rovers from NASA. Also the Mars Express orbiter from ESA and the Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO) from NASA.
Because several of these robotic assets have been at Mars for nearly 10 years and longer, the engineering teams have a lot of experience with handling them during the month long conjunction period.
“This is our sixth conjunction for Odyssey,” said Chris Potts of JPL, mission manager for NASA’s Mars Odyssey, which has been orbiting Mars since 2001. “We have plenty of useful experience dealing with them, though each conjunction is a little different.”
But there is something new this go round.
“The biggest difference for this 2013 conjunction is having Curiosity on Mars,” Potts said. Odyssey and the Mars Reconnaissance Orbiter relay almost all data coming from Curiosity and the Mars Exploration Rover Opportunity, as well as conducting the orbiters’ own science observations.
The rovers and orbiters can continue working and collecting science images and spectral data.
But that data will all be stored in the on board memory for a post-conjunction playback starting sometime in May.
Learn more about Curiosity’s groundbreaking discoveries and NASA missions at Ken’s upcoming lecture presentations:
April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY
April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM