Another great shot by the HiRISE camera on the Mars Reconnaissance Orbiter: this one of the Opportunity rover sitting on the edge of Santa Maria Crater. The High Resolution Imaging Science Experiment took this image on March 1, 2011, and also visible are the tracks in the Martian soil that Oppy created as she made her way to the crater.
“Opportunity has been studying this relatively fresh 90-meter diameter crater to better understand how crater excavation occurred during the impact and how it has been modified by weathering and erosion since,” said Matt Golombeck, a research geologist at the Jet Propulsion Laboratory, and part of the rover team. “Note the surrounding bright blocks and rays of ejecta.”
You can see a non-annotated image here. March 1 on Earth is the 2,524th Martian day, or sol, of Opportunity’s work on Mars.
By the way, MRO celebrates its 5th anniversary of being in orbit of Mars on March 10. Wow, 5 years already? But its been 5 years of great images and discoveries, with wishes from all of us for many more!
There could be more subsurface ice on Mars than previously thought, and vast stretches of it may lie just south of the equator. Indeed, one of the proposed landing sites for the Mars Science Laboratory could hold the mother lode of enticing scientific prospects. Observations from two spacecraft, the Mars Reconnaissance Orbiter and Mars Express, have revealed potential subsurface ice deposits in areas just south of the equator, including one near Holden Crater, with an estimated reservoir of perennial subsurface water ice of about 50 – 500 kg m -2 just two or three meters beneath the surface. This is the first evidence of ice at “tropical” latitudes on Mars as low as 25 degrees.
In 2009, MRO observations revealed water ice as low as 45 degrees North in a recent small impact crater, and permanent water ice at Mars’ poles is known to exist. But most robotic missions – and hopefully one day human missions – need to land closer to the equator to meet safety criteria and engineering constraints. As evidence, the four proposed landing sites for the MSL hover within 25 degrees of the equator.*
Of course, subsurface ice can’t be seen directly on Mars, but certain surface characteristics and thermal properties belie potential underground ice. The OMEGA (Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité ) onboard Mars Express and CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) onboard the Mars Reconnaissance Orbiter use near-infrared imaging spectrometers to measure solar radiation scattered by the surface, providing spectral images that have been used to assess the composition of both minerals and condensates on the surface of Mars.
What drew scientists to this region, were observed surface distributions of seasonal CO2 frost on pole facing slopes. Carbon dioxide ice usually only forms on the surface if there is a cold layer beneath, which can come from water ice or bedrock.
But in this case, Mathieu Vincendon and his team at Brown University concluded that bedrock couldn’t be responsible for creating the observed thermal properties that stores and releases heat two or three meters beneath the surface. Evidence of a uniform layer of bedrock stretching across the equatorial region has never been seen in orbital images, which would have been revealed by erosion or impact processes.
“Using different modeling hypotheses within the range of uncertainties leads to the result that water ice is present within one meter of the surface on all 20-30° pole facing slopes down to about 25°S,” the team writes in their paper. “ The relevant thermal depths probed are 2 or 3 meters. Hence, an ice rich layer that thick is implied, which leads to an estimated reservoir of perennial subsurface water ice of about 50 – 500 kg m -2 on steep slopes.”
The team believes that the subsurface ice could be possible remnants of the last ice age on Mars, and could provide water that will be needed for the future exploration of Mars. More thermal measurements of seasonal temperature variations could help to derive more precise permafrost depths.
Holden crater is located at the edge of the subsurface water ice area at 26°S.
*Eberswalde Crater is -23.90 degrees S, Mawrth Vallis is 23.99 degrees N, Gale crater is -4.49 degrees S, and Holden is -26.4 degrees S.
Happy Valentine’s Day from Mars to all the readers of Universe Today !
Well it’s truly a solar system wide Valentines celebration. From the Moon, Mars and even Comet Temple 1 with some pixie Stardust for the romantic rendezvous upcoming in a few short hours [Stardust-NExT Flyby at 11:37 p.m. EST Feb 14].
The Martian camera team from Malin Space Systems, San Diego, wishes to share a special heart-shaped feature from Arabia Terra – images above and below – with all Mars fans on this St. Valentine’s Day, Feb. 14, 2011. And certainly, I love Mars ! Especially those gorgeous and brainy twin gals Spirit & Opportunity.
The image was taken on May 23, 2010 – at the start of northern summer on Mars – by the Malin-built and operated Context Camera on NASA’s Mars Reconnaissance Orbiter.
The bright heart shaped feature is about 1 kilometer (0.6 mile) long. Arabia Terra lies in the northern hemisphere of Mars
The tip of the heart lies above a small impact crater centered at 21.9 degrees north latitude, 12.7 degrees west longitude.
According to a JPL press release, “The crater is responsible for the formation of the bright, heart-shaped feature. When the impact occurred, darker material on the surface was blown away, and brighter material beneath it was revealed.
Some of this brighter material appears to have flowed further downslope to form the heart shape, as the small impact occurred on the blanket of material ejected from a much larger impact crater.
The Jet Propulsion Laboratory, Pasadena, Calif manages MRO for NASA.
More Martian hearts images below from another Malin built camera aboard NASA’s Mars Global Surveyor orbiter
Mars, it is a-changin’, and more than scientists expected. Several series of before-and-after images taken by the HiRISE camera on the Mars Reconnaissance Orbiter the past two years show sand dunes in Mars northern hemisphere changing – both gradually and suddenly. A team of researchers analyzing the images say that the changes have been caused mostly by sand and ice cascading down the slipfaces of the dunes. But, also, there could be “alien” processes that we don’t see occurring on Earth.
“The numbers and magnitude of the changes have been really surprising,” said HiRISE Deputy Principal Investigator Candice Hansen.
In the past, Mars was thought to be a dead world, frozen in time with not many changes taking place on its surface. But since the arrival of high-resolution cameras orbiting the Red Planet – first on the Mars Global Surveyor, and now on MRO and ESA’s Mars Express – that notion has fallen by the wayside. Avalanches, new gullies and now shifting sand dunes are appearing regularly on images from Mars.
Even with the known winds on Mars, scientists had considered the dunes to be fairly static, shaped long ago when winds on the planet’s surface were thought to be much stronger than they are today.
Hansen and her colleagues’ new paper that is published in this week’s edition of the journal Science identifies the seasonal changes from a layer of frozen carbon dioxide – a.k.a or dry ice – which covers the region in winter and sublimates away in the spring, along with stronger-than-expected gusts of wind as initiating sand transport on the northern dunes of Mars.
“This gas flow destabilizes the sand on Mars’ sand dunes, causing sand avalanches and creating new alcoves, gullies and sand aprons on Martian dunes,” Hansen said. “The level of erosion in just one Mars year was really astonishing. In some places hundreds of cubic yards of sand have avalanched down the face of the dunes.”
Recently, scientists have seen how the scars of past sand avalanches could be partially erased in just one Mars year. Models of Mars’ atmosphere do not predict wind speeds adequate to lift sand grains, and data from Mars landers such as Phoenix show high winds are a rare occurrence.
“Perhaps polar weather is more conducive to high wind speeds,” Hansen said.
The researchers say changes were seen in about 40 percent of far-northern monitoring locations over the two-Mars-year period of the study.
Related research with HiRISE previously identified gully-cutting activity in smaller fields of sand dunes covered by seasonal carbon-dioxide ice in Mars’ southern hemisphere. A report four months ago showed that those changes coincided with the time of year when ice builds up.
“The role of the carbon-dioxide ice is getting clearer,” said Serina Diniega of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., lead author of the earlier report and a co-author of the new report. “In the south, we saw before-and-after changes and connected the timing with the carbon-dioxide ice. In the north, we’re seeing more of the process of the seasonal changes and adding more evidence linking gully activity with the carbon dioxide.”
“Understanding how Mars is changing today is a key first step to understanding basic planetary processes and how Mars changes over time,” said HiRISE Principal Investigator Alfred McEwen, a co-author of both reports. “There’s lots of current activity in areas covered by seasonal carbon-dioxide frost, a process we don’t see on Earth. It’s important to understand the current effects of this unfamiliar process so we don’t falsely associate them with different conditions in the past.”
Six men from Europe, Russia and China on a 520-day mock mission to Mars, have now reached the point in their mission where they have arrived ‘in orbit’ of Mars. Mars500, the first full-duration simulation, is like a real Mars mission, where the crew has been in isolation, living and working like astronauts, eating special food and exercising the same way as crews aboard the International Space Station, and even experiencing lag time in communications. Now after 244 days of virtual interplanetary flight, the crew is getting ready to ‘land’ on Mars on February 12 where they will make three EVAs onto simulated Martian terrain.
Mars500 is not a just a flight of fancy or fantasy, but scientists from Russia and the European Space agency say it is a “pioneering international study of the complex psychological and technical issues that must be tackled for long spaceflights.”
The simulation has been running for more than eight months in hermetically sealed modules imitating a Mars spacecraft at the Institute of Biomedical Problems (IBMP) in Moscow.
“Mars500 is a visionary experiment,” said Simonetta Di Pippo, ESA Director for Human Spaceflight. “Europe is getting ready to make a step further in space exploration: our technology and our science grow stronger every day. Mars 500 today is only an enriching simulation, but we are working to make it real.”
The crew has now opened a hatch between the mothership and the mockup of a lander that, according to script, was launched separately to Mars.
In the coming days, the cargo inside the ‘lander’ will be transferred into the habitat and the lander will be prepared for ‘undocking’ and ‘landing’.
The crew will then divide: Russian Alexandr Smoleevskiy, Italian Diego Urbina and Chinese Wang Yue will enter the lander, while the rest of the crew, Romain Charles from France and Sukhrob Kamolov and Alexey Sitev from Russia ‘remain in orbit’.
The hatch between the interplanetary spacecraft and lander will be closed on 8 February. The lander will undock and ‘touch down’ on Mars on 12 February.
The simulated Martian terrain is actually housed in a large hall alongside the Mars500 modules. The first EVA will take place on February 14, with subsequent sorties taking place on February 18 and 22.
Then the lander will return to orbit and dock with the mothership the following day.
The lander crew will stay in quarantine for three days before the hatch is opened on 27 February and the astronauts are reunited.
After that, the crew is faced with another long, monotonous ‘interplanetary cruise’ before arriving home in early November 2011.
Mars is a small planet. In fact, for scientists who do solar system modeling, the planet is too small. “This is an outstanding problem in terrestrial planet formation,” said Dr. David Minton from the Southwest Research Institute. “Everyone who does simulations of how you form terrestrial planets always ends up with a Mars that is 5-10 times bigger than it is in real life.” Minton has been working alongside colleague Dr. Hal Levison to create new simulations that explain the small size of Mars by including the effect of what is known as planetesimal-driven migration, and additionally, small objects that Minton calls “Marstinis” could stir or shake up our ideas about the early solar system and the Late Heavy Bombardment.
Planetary scientists agree that the terrestrial planets formed very quickly within the first 50-100 million years of the solar system’s history and our Moon formed from an impact between a Mars-sized object and the proto-Earth at some point during that time. Much later was the Late Heavy Bombardment, the time period where a large number of impact craters formed on the Moon within a time span of only seventy million years — and by inference Earth, Mercury, Venus, and Mars were likely pummeled as well.
Most planetary formation theories can’t account for this intense period of bombardment so late in the solar system’s history, but Levison was part of a team that in 2005 proposed the Nice Model, which suggested how the Late Heavy Bombardment was triggered when the giant planets — which formed in a more compact configuration – rapidly migrated away from each other (and their orbital separations all increased), and a disk of small “planetesimals” that lay outside the orbits of the planets was destabilized, causing a sudden massive delivery of these planetesimals – asteroids and comets — to the inner solar system.
But, according to the model, planetesimals likely also caused the migration of the planets, too. The planets formed from a giant disk of gas, dust, rocky debris and ice surrounding the early Sun. Debris coalesced to form bigger planet-sized objects, and simulations shows that bigger planet-sized object embedded in a disk of smaller objects will migrate as a result of angular momentum and energy conservation as the planets scatter the planetesimals they encounter.
“Perturbations from small rocky or icy objects surrounding a larger object can cause the larger object to ‘scoot’ along the disk,” Minton told Universe Today. “Every time these little planetesimals encounter the bigger object, they actually cause a little nudge in the position of the bigger object. It turns out if you work out the math, if there is any sort of slight imbalance to the number of objects encountering on the sunward side versus encountering on the anti-sunward side, you can actually cause a net movement of the big body, and it actually happens pretty quickly.”
Minton and Levison have been applying the same physics of planetesimal-driven migration to the formation of the terrestrial planets.
“In the case of Mars, imagine these planetary embryos located in the Earth-Venus zone,” Minton said. “Then you have a one little embryo growing to become Mars-sized, and it would start migrating because of planetesimal-driven migration, and it scoots away from the other guys. So it has left the pack, and as it moves through the disk, it gets stranded away from where all the action is going on.”
So Mars’ growth got stalled at its current size because it migrated away from the planet-building materials.
Minton said their simulations of this work really well.
“We’ve been doing a lot of math and the migration is pretty rapid,” he said, “and Mars could migrate through the disk before any other Mars-sized planet could form. In an early solar system where you have a Mars stranded off at the edge of the disk at 1.5 AU, which is where it is right now and all the other action going on in the Earth-Venus zone, then Earth and Venus were able to grow to the size they are now, where they are both roughly the same size and mass and Mars is stranded on its own.”
And with Mars there is a twist of Marstinis, which could offer an alternate explanation for the Late Heavy Bombardment.
The migrating Mars could have picked up planetesimals in its resonance, where two or more orbiting bodies exert a gravitational influence on each other.
“It is not at all obvious why that is,” Minton said, “but the same thing is thought to have happened in the outer solar system which is what gave Pluto its orbit. We think Pluto was actually picked up in the 3:2 resonance with Neptune when Neptune migrated out, and that’s why Pluto and the other “Plutinos” are living in these resonances with Neptune.”
The Plutinos are other Kuiper Belt objects near Pluto. That resonance means Pluto and the Plutinos go around the Sun three times for every 2 times Neptune does. There are also Two-tinos, which are caught in a 1:2 resonance with Neptune – and which are found towards the outer edge of the Kuiper belt. The new simulations show that these lines of resonances are almost like a snowplow, and as Neptune migrated out it picked up all these little icy bodies, Pluto and the Plutinos.
This also could have happened to Mars, and as Mars migrated through the disk it would have also picked up little objects.
“I’ve decided to calls these Marstinis, to keep in the Plutino and Two-tino, theme,” Minton said with a grin. “I don’t know if that will stick or not.”
But the interesting thing about the Marstinis, Minton said, is that a 3:2 resonance with Mars is actually a very unstable zone.
“There is actually a resonance there with Saturn that only existed in the time of the Late Heavy Bombardment,” he said, “so before that, Saturn — we think — was in a different position, so this particular resonance was in a different position. So it was only after the giant planets migrated to their current location that this resonance location became unstable. So we think that these Marstinis would have been stable and in that interim period between the end of planet formation and the Late Heavy Bombardment, all of a sudden this region became unstable when the planets shifted positions to their current locations.”
So could the Marstinis be responsible for the Late Heavy Bombardment?
“These Marstinis were pushed out from the planet forming regions out to the asteroid belt,” Minton said, “then all of a sudden the planets migrated and this whole region became unstable and so they all could have gone flinging into the inner solar system and end up hitting the Moon.”
There are a couple of other arguments, too where the Marstinis fit the profile of what hit the Moon during the Late Heavy Bombardment.
“We have reasons to think that the objects that hit the Moon during the Late Heavy Bombardment were sort of like asteroids but not exactly like the asteroids we have now,” Minton said. “So, there are some chemical arguments you can make, also you can make some arguments from the impact probabilities that may not have been enough mass in the asteroid belt to supply all the asteroids and impacts we see on the Moon.”
But there are other outstanding issues such as how long the Late Heavy Bombardment lasted, when it started, were comets ever important in the bombardment history of the Moon or was it all asteroids? Minton said further exploration of the Moon would answer many of these questions.
“These are all things that we really need to go to the Moon to find out and there is almost nowhere else you can go to do it. It really is one of the best places to go to understand all the solar system history.
Minton will present his findings at the upcoming Lunar and Planetary Science Conference in March, 2011.
You can listen to an interview I did with Minton about planetesimal-driven migration for the NASA Lunar Science Institute podcast (also available on the 365 Days of Astronomy.)
Scientists say a close-up look inside rare meteorite fragments from Mars shows evidence that impacts created flowing water near the surface of the Red Planet. At look at five different meteorite samples, including what is thought the be one of the very first Martian meteorite ever found on Earth, shows veins resulting from the impact and serpentine mineralization, which is associated with the production of methane.
PhD student Hitesh Changela and Dr. John Bridges from the University of Leicester used electron microscopes to study the structure and composition of five nakhlite meteorites, including one that was found in 1911 in El-Nakhla in Egypt (the meteorites were named after the location in which they were found). The meteorites had been housed in Natural History Museum, London, and the scientists sliced minute slivers of rock from the samples, about 0.1 microns thick.
By comparing the five meteorites, they showed the presence of veins created during an impact on Mars. Changela and Bridges suggest that this impact was associated with a 1-10 km diameter impact crater, and buried ice melted during this impact, creating flowing water which then deposited clay, serpentine minerals, carbonate and a gel deposit in the veins.
The scientists say their findings tie in with the recent water-related geological discoveries of clay and carbonate on the surface of Mars made by NASA and ESA orbiting spacecraft and the Mars Exploration rovers.
“We are now starting to build a realistic model for how water deposited minerals formed on Mars,” said Bridges, “showing that impact heating was an important process. The constraints we are establishing about temperature, pH and duration of the hydrothermal action help us to better understand the evolution of the Mars surface. This directly ties in with the current activities of landing site selection for Mars rovers and Mars Sample Return. With models like this we will better understand the areas where we think that water was once present on Mars.”
Since serpentine mineralization is associated with the production of methane, the scientists say further research on the meteorites could help show how the methane was produced. A mission heading to Mars in 2016, the Trace Gas Orbiter, will help search for and understand the origin of any methane — a potential biomarker — in Mars’ atmosphere.
Findings from the research have been published in Meteoritics and Planetary Science (Dec. 2010 issue, vol 45).
This unusual landscape on Mars can be found within a crater on the southern hemisphere of the Red Planet. But if you look on the actual location of this HiRISE image on the Google Map of Mars, below, you’ll see these spots are just spots among spots.
Seasonal spots appear on dunes found on the floors of craters on Mars; most likely it is from carbon dioxide frost that is “defrosting” and later may sublimate away. At one time, these spots that seemingly come and go with the seasons were thought to be signs of life on Mars. The jury is still out on that line of thinking.
Headline from the future? Actually, it’s happening now, although not quite on Mars, but about as close as humans can currently get. Six college students are the latest crew to embark on a two-week stint at the Mars Desert Research Station, a simulated Mars habitat set up by the Mars Society located in the San Rafael Swell of Utah. Looking across the very Mars-like red, rocky, panoramic vistas outside the habitat, participants might think they are on the Red Planet. And this latest crew, the 99th for MDRS, will be testing a microbial detection system and an EVA optimization method using an iPad.
The students — all graduate students or about to be – are from different colleges but came together in the summer of 2010 at the NASA Academy at the Ames Research Center in California, a 10-week immersive research internship.
“At the NASA Academy, we worked on a group project called LAMBDA – the Life and Microbial Detection Apparatus,” participant Max Fagin, from Dartmouth University, told Universe Today. “We wanted to do some follow-up work, in looking at microbial fuel cells, which run off the metabolic activity of bacteria — technology that could be applied to sewage reclamation plants in order to generate power.”
Fagin said the technology has been around a while, but they are trying to adapt it to detect microbes in soil samples, similar to what the Viking mission did in the 1970’s.
“We put a sample into the device and based on the power that is generated you can determine whether that power is coming from microbial activity or organic activity,” Fagin said.
They finished the summer internship with a good theoretical analysis and a non-working prototype, but wanted to field test their research, as well as continue work on other individual projects.
Donna Viola, a senior undergraduate at the University of Maryland, Baltimore County, had been on two crew rotations on the MDRS previously and suggested to her fellow NASA Academy team that they apply as a group to the MDRS where they could test LAMBDA in actual conditions, with actual soil samples in the field where there may be potentially extremophile forms of life to find.
The team was accepted and began their crew rotation at MDRS on January 29. They will be there until February 12, all the while in complete Mars simulation. Crew members must wear a space suit when going outside the Habitat; they eat only space-travel type food (along with vegetables grown on-site in a greenhouse); power is provided by batteries or a power generation system; and there is also a water recycling system.
Viola is the Commander, Heidi Beemer is the team geologist and Executive Commander, Kevin Newman is the Engineer, Andie Gilkey is the team scientist and Health and Safety Officer, Chief Biologist, Sukrit Ranjan is the team astronomer and Fagin is the EVA Engineer.
See the crew biographies.
14 students total were part of the NASA Ames Academy, and even though only 6 are at the MDRS, the rest are serving as ground and mission support.
The last six weeks the team has been updating the LAMBDA device and making it field worthy, integrating it with the control system, and testing it.
While at MDRS, the crew has a few other projects, such as working on a proposed combination EVA planner and EVA monitor that runs on an iPad. “It monitors the astronauts’ health, vital signs, how much energy they are consuming, whether they should speed up or slow down – it’s basically an EVA optimizer,” Fagin said.
They will also fly a payload on a high altitude balloon that tests the feasibility of using balloon borne payloads on Mars. “There are no FAA regulations on Mars, so on Mars you could build a weather station on a balloon – such as on a 10 km tether and reel it in and out to get very nice vertical cuts of the atmospheric profiles of wind velocity and direction and dust profiles,” Fagin explained. “And also you could do astronomy by launching a small telescope. But we can’t do the tether part because they are here on Earth so we’ll be using a balloon and have to retrieve it.” They will also be flying a generic meteorological payloads and doing astronomical projects at the observatory on site, the Musk Observatory, which has a 14-inch telescope.
During their stay, the crew is required to send daily reports and dispatches from the commander, engineers, crew scientists, and journalists through the MDRS website which provides updates on the status of science experiments, updates on crew health and morale, and on the habitat and how it is faring. There is also a live webcam of different parts of the station.
MDRS is the second research station to be built by the Mars Society. The first was the Arctic station (FMARS) on Devon Island, built in 2000. Stations to be built in Europe (European Mars Analog Research Station / Euro MARS) and Australia (Australia Mars Analog Research Station / MARS Oz) are currently in the planning stages.
The goal of these analog research stations is to develop key knowledge, field tactics and equipment needed to prepare for the human exploration of Mars, testing habitat design features and tools, and to assess crew selection protocols. Utah is much warmer than Mars, the desert location is optimal because of its Mars-like terrain and appearance.
The first dispatches from the LAMBDA crew report how they are getting acclimated to the habitat and the equipment, as well as preparing for doing their actual science research.
Fagin said without the NASA Academy at Ames, this group of students wouldn’t be together at the MDRS today.
“This grew out of everything we did at the NASA Academy,” he said. “Without those experiences we would have no idea how to approach the situation, wouldn’t understand the science or engineering that needs to go into such a project, and certainly wouldn’t have the team-working abilities to do this if we hadn’t developed them while we were at the NASA Academy.”
Congrats to Universe Today writer Ken Kremer and his image processing partner Marco Di Lorenzo for their handiwork being featured on today’s Astronomy Picture of the Day. It’s one of their great images they have enhanced of the Opportunity Rover peering into its current location at Santa Maria Crater on Mars. Check it out on APOD!