Mars 2016 Methane Orbiter: Searching for Signs of Life

Elements of the ESA-NASA ExoMars program 2016-2018. Credit: ESA

[/caption]

The new joint Mars exploration program of NASA and ESA is quickly pushing forward to implement an agreed upon framework to construct an ambitious new generation of red planet orbiters and landers starting with the 2016 and 2018 launch windows.

The European-led ExoMars Trace Gas Mission Orbiter (TGM) has been selected as the first spacecraft of the joint initiative and is set to launch in January 2016 aboard a NASA supplied Atlas 5 rocket for a 9 month cruise to Mars. The purpose is to study trace gases in the martian atmosphere, in particular the sources and concentration of methane which has significant biological implications. Variable amounts of methane have been detected by a martian orbiter and ground based telescopes on earth. The orbiter will likely be accompanied by a small static lander provided by ESA and dubbed the Entry, Descent and Landing Demonstrator Module (EDM).

The NASA Mars Program is shifting its science strategy to coincide with the new joint venture with ESA and also to build upon recent discoveries from the current international fleet of martian orbiters and surface explorers Spirit, Opportunity and Phoenix (see my earlier mars mosaics). Doug McCuiston, NASA’s director of Mars Exploration at NASA HQ told me in an interview that, “NASA is progressing quickly from ‘Follow the Water’ through assessing habitability and on to a theme of ‘Seeking the Signs of Life’. Looking directly for life is probably a needle in the haystack, but the signatures of past or present life may be more wide spread through organics, methane sources, etc”.

NASA and ESA will issue an “Announcement of Opportunity for the orbiter in January 2010” soliciting proposals for a suite of science instruments according to McCuiston. “The science instruments will be competitively selected. They are open to participation by US scientists who can also serve as the Principal Investigators (PI’s)”. Proposals are due in 3 months and will be jointly evaluated by NASA and ESA. Instrument selections are targeted for announcement in July 2010 and the entire cost of the NASA funded instruments is cost capped at $100 million.

Mars Trace Gas Mission orbiter slated for 2016 launch is the first spacecraft in the new ESA & NASA Mars Exploration Joint Initiative. Credit: NASA ESA
Mars Trace Gas Mission orbiter slated for 2016 launch is the first spacecraft in the new ESA & NASA Mars Exploration Joint Initiative. Credit: NASA ESA

“The 2016 mission must still be formally approved by NASA after a Preliminary Design Review, which will occur either in late 2010 or early 2011. Funding until then is covered in the Mars Program’s Next Decade wedge, where all new-start missions reside until approved, or not, by the Agency”, McCuiston told me. ESA’s Council of Ministers just gave the “green light” and formally approved an initial budget of 850 million euros ($1.2 Billion) to start implementing their ExoMars program for the 2016 and 2018 missions on 17 December at ESA Headquarters in Paris, France. Another 150 million euros will be requested within two years to complete the funding requirement for both missions.

ESA has had to repeatedly delay its own ExoMars spacecraft program since it was announced several years ago due to growing complexity, insufficient budgets and technical challenges resulting in a de-scoping of the science objectives and a reduction in weight of the landed science payload. The ExoMars rover was originally scheduled to launch in 2009 and is now set for 2018 as part of the new architecture.

The Trace Gas orbiter combines elements of ESA’s earlier proposed ExoMars orbiter and NASA’s proposed Mars Science Orbiter. As currently envisioned the spacecraft will have a mass of about 1100 kg and carry a roughly 115 kg science payload, the minimum deemed necessary to accomplish its goals. The instruments must be highly sensitive in order to be capable of detecting the identity and extremely low concentration of atmospheric trace gases, characterizing the spatial and temporal variation of methane and other important species, locating the source origin of the trace gases and determining if they are caused by biologic or geologic processes. Current photochemical models cannot explain the presence of methane in the martain atmosphere nor its rapid appearance and destruction in space, time or quantity.

An Atlas rocket similar to this vehicle I observed at Cape Canaveral Pad 41 is projected to launch the 2016 Mars orbiter. Credit: Ken Kremer
An Atlas rocket similar to this vehicle I observed at Cape Canaveral Pad 41 is projected to launch the 2016 Mars orbiter. Credit: Ken Kremer

Among the instruments planned are a trace gas detector and mapper, a thermal infrared imager and both a wide angle camera and a high resolution stereo color camera (1 – 2 meter resolution). “All the data will be jointly shared and will comply with NASA’s policies on fully open access and posting into the Planetary Data System”, said McCuiston.
Another key objective of the orbiter will be to establish a data relay capability for all surface missions up to 2022, starting with 2016 lander and two rovers slotted for 2018. This timeframe could potentially coincide with Mars Sample Return missions, a long sought goal of many scientists.

If the budget allows, ESA plans to piggyback a small companion lander (EDM) which would test critical technologies for future missions. McCuiston informed me that, “The objective of this ESA Technology Demonstrator is validating the ability to land moderate payloads, so the landing site selection will not be science-driven. So expect something like Meridiani or Gusev—large, flat and safe. NASA will assist ESA engineering as requested, and within ITAR constraints.” EDM will use parachutes, radar and clusters of pulsing liquid propulsion thrusters to land.

“ESA plans a competitive call for instruments on their 3-4 kg payload”, McCuiston explained. “The Announcement of Opportunity will be open to US proposers as well so there may be some US PI’s. ESA wants a camera to ‘prove’ they got to the ground. Otherwise there is no significant role planned for NASA in the EDM”.

The lander would likely function as a weather station and be relatively short lived, perhaps 8 Sols or martian days, depending on the capacity of the batteries. ESA is not including a long term power source, such as from solar arrays, so the surface science will thus be limited in duration.

The orbiter and lander would separate upon arrival at Mars. The orbiter will use a series of aerobraking maneuvers to eventually settle into a 400 km high circular science orbit inclined at about 74 degrees.

The joint Mars architecture was formally agreed upon last summer at a bilateral meeting between Ed Weiler (NASA) and David Southwood (ESA) in Plymouth, UK. Weiler is NASA’s Associate Administrator for the Science Mission Directorate and Southwood is ESA’s Director of Science and Robotic Exploration. They signed an agreement creating the Mars Exploration Joint Initiative (MEJI) which essentially weds the Mars programs of NASA and ESA and delineates their respective program responsibilities and goals.

“The key to moving forward on Mars exploration is international collaboration with Europe”, Weiler said to me in an interview. “We don’t have enough money to do these missions separately. The easy things have been done and the new ones are more complex and expensive. Cost overruns on Mars Science Lab (MSL) have created budgetary problems for future mars missions”. To pay for the MSL overrun, funds have to be taken from future mars budget allocations from fiscal years 2010 to 2014.

“2016 is a logical starting point to work together. NASA can have a 2016 mission if we work with Europe but not if we work alone. We can do so much more by working together since we both have the same objectives scientifically and want to carry out the same types of mission”. Weiler and Southwood instructed their respective science teams to meet and lay out a realistic and scientifically justifiable approach. Weiler explained to me that his goal and hope was to reinstate an exciting Mars architecture with new spacecraft launching at every opportunity which occurs every 26 months and which advance the state of the art for science. “It’s very important to demonstrate a critical new technology on each succeeding mission”.

More on the 2018 mission plan and beyond in a follow up report.

Mars from orbit.  Valles Marineris and Volcanic region
Mars from orbit. Valles Marineris and Volcanic region

Old Gimpy Wheel on Spirit Rover Shows Signs of Life

Could it be true that the old gimpy wheel on the Spirit rover is making a comeback? The right-front wheel, which stopped operating way back on Sol 779 (March 13, 2006), surprised engineers by indicating normal resistance and turning slightly during a resistance test for that wheel. Spirit, which has been stuck in soft soil for several months, recently got bad news that the right rear wheel also stopped working (Nov. 21), leaving her with just four of six wheels operational. Engineers conducted tests on Dec. 12 and the right rear wheel continued to show no motion and exhibited very high resistance in the motor winding. Just for fun (I’m assuming) engineers also test the right front wheel – the wheel that Spirit has limped with in coming down from the top of Husband Hill and making the trek across Gusev Crater to the Home Plate region where she currently sits. In surprises of all surprises, the old gimpy wheel showed signs of life.

Diagnostic tests were run on Spirit’s right-rear wheel and right-front wheel on Sol 2013 (Dec. 12, 2009). The recently stalled right-rear wheel continued to show no motion. Engineers expected nothing from the right front wheel. The last time it was checked was just after its apparent failure in 2006 and at that time indicated an open circuit. JPL says that although no clear theory for failure had been established, the failure was generally regarded as permanent.

JPL also says it is important to remember that the Sol 2013 test of the right-front wheel was only a rotor resistance test, and no conclusions can be drawn at this point without further testing.

The plan for Spirit on Sol 2116 (Dec. 15) is to command a drive, which will test the functionality of both the right-front and the right-rear wheels. The results are expected Wednesday.

Spirit continues to surprise….stay tuned!

Phobos and Deimos Together At Last!

ESA’s Mars Express orbiter took images last month of Mars two moons, Phobos and Deimos. This is the first time the moons have been imaged together in high resolution, but as Emily Lakdawalla points out on Planetary Blog, not the first time the two have been imaged together: the Spirit rover did it back in 2005! But these new image definitely provide a ‘wow’ factor, as well as helping to validate and refine existing orbit models of the two moons.

Phobos and Deimos together for the first time in high resolution.  Credits: ESA/DLR/FU Berlin (G. Neukum)
Phobos and Deimos together for the first time in high resolution. Credits: ESA/DLR/FU Berlin (G. Neukum)

“It doesn’t happen very often that both Martian moons are right in front of the camera, directly one behind the other,” said Harald Hoffmann from the German Aerospace Center (DLR).

“During the now more than six-year long project, we have had several opportunities to photograph the two moons together,” said Klaus-Dieter Matz, who worked with Hoffmann to plan the acquisition of these images. “The geometry of the constellation during Orbit 7492 on 5 November 2009 was especially favorable, so this time we wanted to try taking a sequence of photographs – and this first attempt has delivered the expected result!”

The geometrical relationships between Mars, its moons and the Mars Express probe at the time of the sequence.  Credit:  DLR
The geometrical relationships between Mars, its moons and the Mars Express probe at the time of the sequence. Credit: DLR

Phobos, the larger of the two moons, orbits closer to the Red Planet, circling it every 7 hours and 39 minutes. It travels faster relative to Mars than the Moon relative to Earth. It was 11,800 km from Mars Express when the images were taken. Deimos was 26,200 km away.

The images were acquired with the Super Resolution Channel (SRC) of the High Resolution Stereo Camera (HRSC). The camera took 130 images of the moons on 5 November at 9:14 CET over period of 1.5 minutes at intervals of 1s, speeding up to 0.5-s intervals toward the end. The image resolution is 110 m/pixel for Phobos and 240 m/pixel for Deimos — since Deimos was more than twice as far from the camera.

Sources: DLR, ESA

Mars Global Surveyor

Mars Global Surveyor

[/caption]

The Mars Global Surveyor was a spacecraft sent to Mars in 1996. It arrived at Mars and studied the planet for 10 years, until it broke down in 2006, and controllers on Earth lost contact with it. But while it was operating, the spacecraft took thousands of images, and made some major discoveries about Mars.

Mars Global Surveyor was launched on November 7, 1996, and made its orbital insertion on September 11, 1997. It used a technique called aerobraking to reduce its orbit and bring it into an orbit that brought it to an average distance of 378 km from the surface of Mars. It circled the planet in a polar orbit once every 117 minutes, which allowed it to photograph the entire Martian surface.

The spacecraft was equipped with 5 major scientific instruments: Mars Orbiter Camera, Mars Orbiter Laser Altimeter, Thermal Emission Spectrometer, Magnetometer and electron reflectometer and the Ultrastable Oscillator for Doppler measurements. These instruments allowed the spacecraft to study the atmosphere and surface composition of Mars. But it also sent back the highest resolution photographs ever seen of Mars. The newer Mars Reconnaissance Orbiter has returned better images with its larger telescope, but when the first MGS images first came back from Mars, they were stunning.

It made some incredible discoveries about Mars. Thanks to the observations from MGS, astronomers determined that Mars had a layered crust that was more than 10 km thick. It found ancient craters that had been buried and then later exposed by erosion, and it found evidence of ancient lava flows.

But perhaps the biggest discovery was made in 2006, which researchers announced that they had uncovered evidence of recent water activity on Mars. Images from the Mars Global Surveyor showed gullies on Mars which looked like they’d been formed by water. It’s possible that water had erupted out of an underground aquifer and spilled down the slope of a hill before evaporating in the pressure of the Martian atmosphere.

After a decade of service, Mars Global Surveyor went silent on November 2, 2006. It went into safe mode after being issued commands to change the orientation of its solar panels, and it stopped communicating. NASA said that it was, “battery failure caused by a complex sequence of events involving the onboard computer memory and ground commands.” But we’ll never really know what happened to it.

We’ve written many articles about the Mars Global Surveyor for Universe Today. Here’s an article about how we lost contact with the Mars Global Surveyor, and here’s a picture of Earth taken by MGS.

If you’d like more info, check out the Mars Global Surveyor homepage.

Source: NASA

How Big is Mars?

Mars

[/caption]Planet Mars’ Olympus Mons holds the record for the tallest known peak in the entire Solar System. Having a height three times taller than Mount Everest’s and a base wide enough to prevent an observer at the base from seeing the top, you would have expected Mars to be on a relatively big planet. But did you know that Mars is much smaller than Earth? So how big is Mars?

The radius of Mars is only about half that of the Earth’s radius; roughly 3,396 km at the equator and 3,376 km at the poles. For comparison, the earth’s equatorial radius is 6,378 km, while its polar radius is 6,357 km.

These radii give Mars a surface area roughly only 28.4% of Earth’s or 144,798,500 km2. The Pacific Ocean is even larger, with an area of roughly 169,200,000 km2.

The dimensions of Mars also gives it a volume approximately equal to 1.6318×1011 km2 and a mass approximately equal to 6.4185×1023 kg. That’s only about 15.1% and 10.7% that of the Earth’s, respectively.

Despite its noticeably smaller size than the Earth, Mars has more majestic geographical features.

For instance, there’s Valles Marineris, a 4,000 km-long and 7 km-deep canyon that spans about one-fifth of the entire planet’s circumference. It is so long that it’s even longer than the length of Europe. If you compare the Grand Canyon to it, Colorado’s pride and joy won’t look so grand anymore.

Want to know how long the Grand Canyon is? 446 km. That’s very long, yes. But that’s only a little over 10% the length of Valles Marineris.

That’s not the only large geographical feature on Mars. Ma’adim Vallis, is another canyon on Mars that’s larger then the Grand Canyon, with a length of 700 km. Then there’s an impact crater that’s been found to be larger than the combined surface area of the continents of Asia, Europe, and Australia.

Now that you know about these extremely majestic geographical features on Mars, the next time someone asks you, “How big is Mars?” you can tell them how it is much smaller than the Earth … but you can also add the salient features that make the Red Planet much more interesting when it comes to a discussion on sizes.

We’ve got more articles about the Planet Mars here on Universe Today. Click on that link or read about interesting facts about the Planet Mars.

There’s more from NASA: “Unmasking the Face on Mars” and “Mars Shoreline Tests: Massifs in the Cydonia Region”

Here are two episodes at Astronomy Cast that you might want to check out as well:
Stellar Roche Limits, Seeing Black Holes, and Water on Mars
The Search for Extraterrestrial Intelligence

Reference:
NASA

Mars Odyssey Goes into Safe Mode

An artist's impression of the Odyssey orbiter around Mars. . Image Credit: NASA

The Mars Odyssey orbiter went into safe mode on Saturday, November 28th because of a glitch in the “memory error external bus” of the satellite. Odyssey will remain in safe mode at least until the end of the week, effectively slowing down communication with the two rovers, Spirit and Opportunity.

Odyssey is still operating at normal temperatures and communicating with the control team back on Earth. It stayed in safe mode over the weekend. After a full reboot today, the craft is on the mend and expected to be fully operational later this week.

“This event is a type we have seen before, so we have a known and tested path to resuming normal operations,” said Odyssey Project Manager Philip Varghese of NASA’s Jet Propulsion Laboratory in a press release.

Odyssey has been orbiting Mars since January 2002, mapping the surface and taking global measurements of the planet. Odyssey has also been the link to the Earth for the two rovers since 2004, acting as a communications relay that speeds up the transference of signals between the robots and the control team. Though Spirit and Oppy have their own antennae for communication, Odyssey can communicate with the Earth at 10 times the speed and with a fraction of the energy usage.

This glitch is really nothing new for the satellite – it’s much like having to reboot your laptop when it freezes up. The Mars Reconnaisance Orbiter would be the obvious backup for Odyssey, but the MRO has been in safe mode since August 26th. The MRO rebooted itself four times in 2009, and after the last reboot the spacecraft has stayed in safe mode to prevent any catastrophic damage to its memory.

NASA had planned to uplink files to the MRO to restore it sometime this week, but the uplink and recalibration of the satellite would take over a week, meaning that if Odyssey isn’t back up by the end of the week Spirit and Opportunity are on their own for a little while longer.

Odyssey is a key player in the efforts to free the Spirit rover, which has been stuck in a sand trap since May 1st of this year but is making progress. Because of a wheel stall problem that the control team thinks may be internal, an extrication attempt made on November 28th wasn’t successful. The Spirit control team hadn’t planned on making any more maneuvers to free the rover this week, as they are still analyzing the recent attempts to plan for future efforts at freeing its wheel.

Hopefully, by the end of next week we’ll be seeing two fully-functioning orbiters and a freewheelin’ Spirit.

Source: NASA press release

Mars Video

Here’s a cool Mars video.

This is a Mars video that shows you how you can use Google Mars to explore the red planet.


This is a video of the Mars Exploration Rover program. It shows an animation of the rovers launching and landing on the surface of Mars.


Here’s a cool animation of the Mars Science Laboratory, renamed to the Curiosity Rover.


And this is an animation of the Phoenix Mars Lander which successfully touched down on the surface of Mars in 2008.

We’ve written many articles about Mars for Universe Today. Here’s an article about why Mars is red, and here’s an article about the gravity on Mars.

If you’d like more info on Mars, check out Hubblesite’s News Releases about Mars, and here’s a link to the NASA Mars Exploration home page.

We’ve also recorded several episodes of Astronomy Cast about Mars. Listen here, Episode 52: Mars.

Mars and Venus

Mars and Venus are the two terrestrial planets most similar to Earth. One orbits closer to the Sun, and one orbits more distant to the Sun. But both are visible with the unaided eye, and two of the brightest objects in the night sky.

Venus orbits at an average distance of only 108 million km from the Sun, while Mars is an average of 228 million km. Venus gets as close to Earth as 38 million km, and Mars gets as close as 55.7 million km.

In terms of size, Venus is almost a twin planet of Earth. Its diameter is 12,104 km, which is 95% the diameter of Earth. Mars is much smaller, with a diameter of only 6,792 km. And again, in terms of mass, Venus is almost Earth’s twin. It has 81% the mass of Earth, while Mars only has 10% the mass of Earth.

The climates of Mars and Venus are very different, and very different from Earth as well. Temperatures on the surface of Venus average 461 °C across the entire planet. That’s hot enough to melt lead. While the average temperature on Mars is a chilly -46 °C. This temperature difference comes from the fact that Venus is closer to the Sun, but also because it has a thick atmosphere of heat trapping carbon dioxide. The atmosphere on Venus is nearly 100 times thicker than Earth’s atmosphere at sea level, while the atmosphere on Mars is 1% the thickness of Earth.

Mars is the most studied planet in the Solar System (after the Earth). There have been dozens of missions sent to Mars, including orbiters and rovers. Although many missions have been lost, there have been several that have successfully orbited the planet and several that have landed on the surface. Missions have also been sent to Venus, and you might be surprised to know that the Soviets sent a series of landers called Venera that actually reached the surface of Venus and survived long enough to send back a few photographs.

Mars has two moons, Phobos and Deimos, while Venus has no moons. And neither planet has rings.

We’ve written many articles about Mars and Venus for Universe Today. Here’s an article about how the atmospheres of Mars and Venus leak into space, and a look at Venus wet past.

If you’d like more information on those two planets, here’s a link to NASA’s Solar System Exploration Guide on Venus, and Hubblesite’s News Releases about Mars.

We’ve also recorded several episodes of Astronomy Cast about the planets. Listen here, Episode 50: Venus and Episode 52: Mars.

Reference:
NASA

Mars Pathfinder

Mars pathfinder

[/caption]
Mars Pathfinder was NASA mission to Mars, which launched on December 4th, 1996 and landed on the surface of Mars on July 4, 1997. Unlike the missions that went before it, the Pathfinder lander was also equipped with a tiny rover called Sojourner, which could venture away from the lander, crawl around the surface of Mars and study rocks up close. It was a relatively inexpensive mission that tested out many of the technologies build into later missions, like the Mars Exploration rovers Spirit and Opportunity.

The purpose of Pathfinder was to prove that the concept of “faster, better and cheaper” missions would work. Pathfinder only cost $150 million and was developed in under 3 years. It was also sent to study the surface of Mars, including the geochemistry of the rocks, the magnetic properties of the surface and the structure of the planet’s atmosphere.

When the Pathfinder mission arrived at Mars, it entered the atmosphere and deployed a parachute. Instead of using retrorockets to land gently on the surface, however, Pathfinder used an airbag system. This allowed it to save fuel; instead of landing gently, it was dropped from an altitude of about 100 meters onto the Martian surface. It bounced several times and came to a rest before opening up like the petals of a flower. Once everything checked out, the tiny Sojourner Rover was deployed onto the surface of Mars.

The area around the Pathfinder site had many rocks, large and small, and the NASA scientists gave them unique names like “Barnacle Bill” and “Yogi”. Sojourner was able to crawl around and study these rocks up close. It was able to study the chemical makeup of the rocks, and confirmed that they formed from past volcanic activity. Over the course of the entire mission, Pathfinder and Sojourner returned 16,500 images and made millions of measurements of the Martian atmosphere.

Pathfinder stopped communicating with Earth after 83 days on the surface of Mars. Its battery was only designed to be recharged 40 times, and once its battery stopped working, the spacecraft was unable to keep its electronics heated in the cold Martian night. After it stopped communicating, NASA decided to name the lander after Carl Sagan. It became The Carl Sagan Memorial Station.

We have written many articles abut the Mars Pathfinder mission for Universe Today. Here’s an article about photos of Mars Pathfinder taken from orbit, and research about a cold and wet early Mars.

Here’s a link to the original mission homepage for the Mars Pathfinder.

We’ve recorded several episodes of Astronomy Cast about missions to Mars. Start here, Episode 92: Missions to Mars, Part 1.

Source: NASA

Who Discovered Mars?

Mars is one of the 5 planets visible with the unaided eye. On any dark night, when Mars is in the sky, it’s easy to see with your own eyes. Ancient people knew about Mars, and long ago discovered that it moves from night to night compared to the stars. So it’s impossible to know who discovered Mars. That would have been one of the first humans.

Perhaps a better question to ask is: who realized that Mars is a planet? And that discovery happened with the idea that the Earth is a planet.

In ancient times, astronomers thought that the Earth was the center of the Universe, and the Sun, Moon, planets and stars orbited around us in a set of crystalline spheres. But the motions of the planets were hard to explain; they would sometimes speed up, stop, and even reverse their direction in the sky.

But the astronomer Nicolaus Copernicus developed the view that it was the Sun that was at the center of the Solar System, and the planets orbited around it. This view neatly explained the strange motions of the planets, since the Earth was also moving around the Sun, and these quirks were really just changes in perception.

Galileo was the first person to view Mars in a telescope, and he saw not much more than a bright disk. He did take many observations over the course of the year and realized that Mars gets closer and more distant, and so larger and smaller in his telescope. As telescopes got bigger and better, astronomers were able to make out the polar ice caps on Mars, and some astronomers incorrectly thought they saw a system of canals crisscrossing the surface of the planet.

But the best views of Mars came with the first robotic exploration of Mars. The first spacecraft to arrive at Mars was NASA’s Mariner 4, launched in 1964. The first spacecraft to go into orbit around Mars was Mariner 9, in 1971. These spacecraft helped take high resolution images that revealed craters, mountains and chasms; the red landscape of Mars that we’re so familiar with today.

We’ve written many articles about the discovery of planets for Universe Today. Here’s an article about the discovery of Uranus, and another about the discovery of Neptune.

If you’d like more information on Mars, check out Hubblesite’s News Releases about Mars, and here’s a link to the NASA Mars Exploration home page.

We’ve also recorded several episodes of Astronomy Cast about Mars. Start here, Episode 52: Mars.

References:
NASA Mars Exploration
NASA: The Mariner Missions