Martian Mineral Points Toward Past Habitability

Curiosity picture showing color variations on Mount Sharp, Mars. Credit: NASA/JPL

For over a year, the Curiosity rover has been making its way up the slopes of Mount Sharp, the central peak within the Gale Crater. As the rover moves higher along this formation, it has been taking drill samples so that it might look into Mars’ ancient past. Combined with existing evidence that water existed within the crater, this would have provided favorable conditions for microbial life.

And according to the most recent findings announced by the Curiosity science team, the upper levels of the mountain are rich in minerals that are not found at the lower levels. These findings reveal much about how the Martian environment has changed over the past few billion years, and are further evidence that Mars may have once been habitable.

The findings were presented at the Fall meeting of the American Geophysical Union (AGU), which began on Monday, Dec. 12th, in San Fransisco. During the meeting, John Grotzinger – the Fletcher Jones Professor of Geology at Caltech and the former Project Scientist for the Curiosity mission – and other members of Curiosity’s science team shared what the rover discovered while digging into mineral veins located in the higher, younger layers of Mount Sharp.

This pair of drawings depicts the same location at Gale Crater on at two points in time: now and billions of years ago. Water moving beneath the ground, as well as water above the surface in ancient rivers and lakes, provided favorable conditions for microbial life, if Mars has ever hosted life. Credit: NASA/JPL-Caltech
Artist’s illustration showing the Gale Crater as it appears today, with the Curiosity rover climbing Mount Sharp. Credit: NASA/JPL-Caltech

To put it simply, mineral veins are a great way to study the movements of water in an area. This is due to the fact that veins are the result of cracks in layered rock being filled with chemicals that are dissolved in water – a process which alters the chemistry and composition of rock formations. What the rover found was that at higher layers hematite, clay minerals and boron are more abundant than what has been observed at lower, older layers.

These latest findings paint a complex picture of the region, where groundwater interactions led to clay-bearing sediments and diverse minerals being deposited over time. As Grotzinger explained, this kind of situation is favorable as far as habitability is concerned:

“There is so much variability in the composition at different elevations, we’ve hit a jackpot. A sedimentary basin such as this is a chemical reactor. Elements get rearranged. New minerals form and old ones dissolve. Electrons get redistributed. On Earth, these reactions support life.”

At present, no evidence has been found that microbial life actually existed on Mars in the past. However, since it first landed back in 2012, the Curiosity mission has uncovered ample evidence that conditions favorable to life existed billions of years ago. This is possible thanks to the fact that Mount Sharp consists of layered sedimentary deposits, where each one is younger than the one beneath it.

The Gale Crater, billions of years ago, showing how the circulation of groundwater led to chemical changes and deposits. Credit: NASA/JPL-Caltech
The Gale Crater, billions of years ago, showing how the circulation of groundwater led to chemical changes and deposits. Credit: NASA/JPL-Caltech

These sedimentary layers act as a sort of geological and environmental record for Mars; and by digging into them, scientists are able to get an idea of what Mars’ early history looked like. In the past, Curiosity spent many years digging around in the lower layers, where it found evidence of liquid water and all the key chemical ingredients and energy needed for life.

Since that time, Curiosity has climbed higher along Mount Sharp and examined younger layers, the purpose of which has been to reconstruct how the Martian environment changed over time. As noted, the samples Curiosity recently obtained showed greater amounts of hematite, clay minerals and boron. All of these provide very interesting clues as to what kinds of changes took place.

For instance, compared to previous samples, hematite was the most dominant iron oxide mineral detected, compared to magnetite (which is a less-oxidized form of iron oxide). The presence of hematite, which increases with distance up the slope of Mount Sharp, suggests both warmer conditions and more interaction with the atmosphere at higher levels.

The increasing concentration of this minerals – relative to magnetite at lower levels – also indicates that environmental changes have occurred where the oxidation of iron increased over time. This process, in which more electrons are lost via chemical exchanges, can provide the energy necessary for life.

Credit: NASA/JPL
Hi-resolution pictures showing the Curiosity rover’s various drilling sites, up until Nov. 2016. Credit: NASA/JPL

In addition, Curiosity’s Chemistry and Camera (ChemCam) instrument has also noted increased (but still minute)) levels of borons within veins composed primarily of calcium sufate. On Earth, boron is associated with arid sites where water has evaporated, and its presence on Mars was certainly unexpected. No previous missions have ever detected it, and the environmental implications of it being present in such tiny amounts are unclear.

On the one hand, it is possible that evaporation within the lake bed created a boron-deposit deeper inside Mount Sharp. The movement of groundwater within could have then dissolved some of this, redepositing trace amounts at shallower levels where Curiosity was able to reach it. On the other hand, it could be that changes in the chemistry of clay-bearing deposits affected how boron was absorbed by groundwater and then redeposited.

Either way, the differences in terms of the composition of upper and lower levels in the Gale Crater creates a very interesting picture of how the local environment changed over time:

“Variations in these minerals and elements indicate a dynamic system. They interact with groundwater as well as surface water. The water influences the chemistry of the clays, but the composition of the water also changes. We are seeing chemical complexity indicating a long, interactive history with the water. The more complicated the chemistry is, the better it is for habitability. The boron, hematite and clay minerals underline the mobility of elements and electrons, and that is good for life.”

It seems that with every discovery, the long history of “Earth’s Twin” is becoming more accessible, yet more mysterious. The more we learn about it past and how it came to be the cold, desiccated place we know today, the more we want to know!

Further Reading: NASA

Astronomy Cast Ep. 431: The Search for Life on Mars

The Search for Life on Mars

Enceladus and Europa are all the rage these days, but classic Mars is still a great place to search for life. In fact, ESA’s ExoMars is scanning the planet’s atmosphere for methane, evidence that there might be life there right now. Let’s talk about the search for life on the Red Planet.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

‘Insufferable’ Moonwalker Buzz Aldrin Recovering From ‘Record Setting’ Antarctic Expedition Emergency Evacuation

Apollo 11 moonwalker Buzz Aldrin trekking across Antarctica as the oldest man to reach the South Pole, prior to emergency medical evacuation on Dec. 1, 2016. Credit: Team Buzz
Apollo 11 moonwalker Buzz Aldrin trekking across Antarctica as the oldest man to reach the South Pole. Credit: Team Buzz
Apollo 11 moonwalker Buzz Aldrin trekking across Antarctica as the oldest man to reach the South Pole, prior to emergency medical evacuation on Dec. 1, 2016. Credit: Team Buzz

Buzz Aldrin – the second man to walk on the Moon – is recovering nicely today in a New Zealand hospital after an emergency medical evacuation cut short his record setting Antarctic expedition as the oldest man to reach the South Pole – which Team Buzz lightheartly noted would make him “insufferable”!

“He’s recovering well in NZ [New Zealand],” Team Buzz said in an official statement about his evacuation from the South Pole.

Apollo 11 moonwalker Buzz Aldrin, who followed Neil Armstrong in descending to the lunar surface in 1969 on America’s first Moon landing mission, had to be suddenly flown out of the Admunsen-Scott Science Station late last week per doctors orders after suffering from shortness of breath and lung congestion during his all too brief foray to the bottom of the world.

He was flown to a hospital in Christchurch, New Zealand for emergency medical treatment on Dec. 1.

Upon learning from the National Science Foundation (NSF) that Aldrin “now holds the record as the oldest person to reach the South Pole at the age of 86,” his Mission Director Christina Korp jokingly said: ‘He’ll be insufferable now.”

“Buzz Aldrin is resting in hospital in Christchurch, New Zealand. He still has some congestion in his lungs so has been advised not to take the long flight home to the States and to rest in New Zealand until it clears up,” Team Buzz said in an official statement on Dec. 3.

Buzz had been at the South Pole for only a few hours when he took ill, apparently from low oxygen levels and symptoms of altitude sickness.

“I’m extremely grateful to the National Science Foundation (NSF) for their swift response and help in evacuating me from the Admunsen-Scott Science Station to McMurdo Station and on to New Zealand. I had been having a great time with the group at White Desert’s camp before we ventured further south. I really enjoyed the time I spent talking with the Science Station’s staff too,” said Aldrin from his hospital room in a statement.

Apollo 11 moonwalker Buzz Aldrin being evacuated from Antarctica for emergency medical treatment on Dec. 1, 2016. Credit: Team Buzz
Apollo 11 moonwalker Buzz Aldrin being evacuated from Antarctica for emergency medical treatment on Dec. 1, 2016. Credit: Team Buzz

Prior to the planned Antarctic journey, his doctors had cleared him to take the long trip – which he views as “the capstone of his personal exploration achievements”.

Apollo 11 moonwalker Buzz Aldrin is seen recovering well in New Zealand hospital on Dec. 2 after medical emergency evacuation from expedition to the South Pole on Dec. 1, 2016. Credit: Team Buzz
Apollo 11 moonwalker Buzz Aldrin is seen recovering well in New Zealand hospital on Dec. 2 after medical emergency evacuation from expedition to the South Pole on Dec. 1, 2016. Credit: Team Buzz

Buzz’s goal in visiting the South Pole was to see “what life could be like on Mars” – which he has been avidly advocating as the next goal for a daring human spaceflight journey to deep space.

“His primary interest in coming to Antarctica was to experience and study conditions akin to Mars that are more similar there than any other place on earth,” Team Buzz elaborated.

He had hoped to speak more to the resident scientists about their research but it was all cut short by his sudden illness.

“I started to feel a bit short of breath so the staff decided to check my vitals. After some examination they noticed congestion in my lungs and that my oxygen levels were low which indicated symptoms of altitude sickness. This prompted them to get me out on the next flight to McMurdo and once I was at sea level I began to feel much better. I didn’t get as much time to spend with the scientists as I would have liked to discuss the research they’re doing in relation to Mars. My visit was cut short and I had to leave after a couple of hours. I really enjoyed my short time in Antarctica and seeing what life could be like on Mars,” Aldrin explained.

Buzz also thanked everyone who sent him well wishes.

“Finally, thanks to everyone from around the world for their well wishes and support. I’m being very well looked after in Christchurch. I’m looking forward to getting home soon to spend Christmas with my family and to continue my quest for Cycling Pathways and a permanent settlement on Mars. You ain’t seen nothing yet!”, concluded Aldrin.

I recently met Buzz Aldrin at the Kennedy Space Center Visitor Complex in Florida, as part of the Grand Opening of the new ‘Destination Mars’ attraction.

Destination Mars is a holographic exhibit at the Kennedy Space Center visitor complex in Florida. Be sure to catch it soon because the limited time run end on New Year’s Day 2017.

Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

The new ‘Destination Mars’ limited engagement exhibit magically transports you to the surface of the Red Planet via Microsoft HoloLens technology.

It literally allows you to ‘Walk on Mars’ using real imagery taken by NASA’s Mars Curiosity rover and explore the alien terrain, just like real life scientists on a geology research expedition – with Buzz Aldrin as your guide.

Here’s my Q & A with moonwalker Buzz Aldrin speaking to Universe Today at Destination Mars:

Video Caption: Buzz Aldrin at ‘Destination Mars’ Grand Opening at KSCVC. Apollo 11 moonwalker Buzz Aldrin talks to Universe Today/Ken Kremer during Q&A at ‘Destination Mars’ Holographic Exhibit Grand Opening ceremony at Kennedy Space Center Visitor Complex (KSCVC) in Florida on 9/18/16. Credit: Ken Kremer/kenkremer.com

And Buzz seemed quite healthy for the very recent Grand Opening of the new ‘Heroes and Legends’ exhibit on Nov. 11 at the Kennedy Space Center Visitor Complex.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Delta 4 launch on Dec 7, GOES-R weather satellite, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6 & CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec 5-7: “ULA Delta 4 Dec 7 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Astronomy Cast Ep. 430: Coming Home from Mars, Part 2

Coming Home from Mars, Part 2

Landing on the surface of Mars is very difficult. In fact, it’s probably the toughest planet to land on in the whole Solar System. Today we’ll talk about what it’s going to take to get to and return from Mars!

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

‘Spectacular’ First Images and Data Released from ExoMars Orbiter

One of the first images from the Mars Camera, CaSSIS, on the ExoMars Trace Gas Orbiter. The image shows a 1.4 km sized crater (left center) on the rim of a much larger crater near the Mars equator. Credit: ESA/Roscosmos/ExoMars/CaSSIS/UniBE.

The first images taken by the newest mission to Mars have been released, and the teams behind the instruments on ESA’s ExoMars Trace Gas Orbiter are ecstatic.

“The first images we received are absolutely spectacular – and it was only meant to be a test,” said Nicolas Thomas, who leads the Colour and Stereo Surface Imaging System at the University of Bern.

The ExoMars TGO arrived in orbit at Mars over a month ago, on October 19, 2016 along with the Schiaparelli lander, which unfortunately crashed on the surface of Mars.

“A lot of public attention has been on the failed landing of Schiaparelli,” said Thomas, “but TGO has been working really well so we have been extremely busy in the past month.”

Scientists and engineers have been turning on and checking out the various instruments on TGO as it orbits in an initial elliptical orbit that takes it from just 250 km above the surface of Mars to nearly 100,000 km every 4.2 days.

During November 20-28 it spent two orbits testing its four science instruments for the first time and making important calibration measurements. A total of 11 images were returned during the first close fly-by during that period, which you can see in the video below.

The views show Hebes Chasma, an 8 km-deep trough in the northern most part of Valles Marineris, during the spacecraft’s closest approach.

“We saw Hebes Chasma at 2.8 metres per pixel” Thomas said. “That’s a bit like flying over Bern at 15,000 km per hour and simultaneously getting sharp pictures of cars in Zurich.”

The first stereo reconstruction of a small area in Noctis Labyrinthus. The image gives an altitude map of the region with a resolution of less than 20 meters. Credit: ESA/Roscosmos/ExoMars/CaSSIS/UniBE
The first stereo reconstruction of a small area in Noctis Labyrinthus. The image gives an altitude map of the region with a resolution of less than 20 meters. Credit: ESA/Roscosmos/ExoMars/CaSSIS/UniBE

The team tested the color and stereo capabilities of CaSSIS were also successfully tested. Below is a 3D reconstruction of a region called Noctis Labyrinthus that was produced from a stereo pair of images. This region is also part of Valles Marineris and has a system of deep, steep-walled valleys.

Thomas said these first images don’t show much color because the surfaces in this area are covered with dust so there are few color changes evident. “We will have to wait a little until something colourful passes under the spacecraft,” he said. Until then, the pictures will be black and white.

The ExoMars 2016 mission is a collaboration between the European Space Agency (ESA) and Roscosmos. ExoMars will continue the search for biological and geologic activity on Mars, which may have had a much warmer, wetter climate in the past. The TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists that will investigate the source and precisely measure the quantity of the methane and other trace gases.

Methane provides the most interest because it has been detected periodically on Mars. On Earth, methane is produced primarily by biological activity, and to a smaller extent by geological processes such as some hydrothermal reactions.

First detection of atmospheric carbon dioxide by the ExoMars Trace Gas Orbiter’s Atmospheric Chemistry Suite. Credit: ESA/Roscosmos/ExoMars/ACS/IKI.
First detection of atmospheric carbon dioxide by the ExoMars Trace Gas Orbiter’s Atmospheric Chemistry Suite. Credit: ESA/Roscosmos/ExoMars/ACS/IKI.

The two instruments that will be used to look for methane and other gases were also tested. During the test observations last week, the Atmospheric Chemistry Suite focused on carbon dioxide, which makes up a large volume of the planet’s atmosphere, while the Nadir and Occultation for Mars Discovery instrument looked for water.

The teams also coordinated observations with ESA’s Mars Express and NASA’s Mars Reconnaissance Orbiter, as they will do future corresponding observations during the mission.

Starting in March, 2017, TGO will use Mars atmosphere to perform aerobraking to gradually slow the spacecraft down to reach a roughly circular orbit 400 km above Mars. The aerobraking process will take between 9-12 months, with the primary science phase will beginning near the end of 2017.

The CaSSIS camera team said nominal operations will have the instrument acquiring 12-20 high resolution stereo and color images of selected targets per day.

Sources: ESA, University of Bern.

Schiaparelli’s One Second Of Terror

Artist's impression of the ExoMars Schiaparelli lander passing into Mars' atmosphere. Credit: ESA

The European Space Agency (ESA) and Roscomos (the Russian federal space agency) had high hopes for the Schiaparelli lander, which crashed on the surface of Mars on October 19th. As part of the ExoMars program, its purpose was to test the technologies that will be used to deploy a rover to the Red Planet in 2020.

However, investigators are making progress towards determining what went wrong during the lander’s descent. Based on their most recent findings, they concluded that an anomaly took place with an on-board instrument that led to the lander detaching from its parachute and backshell prematurely. This ultimately caused it to land hard and be destroyed.

According to investigators, the data retrieved from the lander indicates that for the most part, Schiaparelli was functioning normally before it crashed. This included the parachute deploying once it had reached an altitude of 12 km and achieved a speed of 1730 km/h. When it reached an altitude of 7.8 km, the lander’s heatshield was released, and it radar altimeter provided accurate data to the lander’s on-board guidance, navigation and control system.

Schiaparelli lander descent sequence. Image: ESA/ATG medialab
Schiaparelli lander descent sequence. According to their investigation, the ESA has determined that an error led the parachute and backshell to be jettisoned prematurely, causing the lander to crash. Credit: ESA/ATG medialab

All of this happened according to plan and did not contribute to the fatal crash. However, an anomaly then took place with the Inertial Measurement Unit (IMU), which is there to measure the rotation rates of the vehicle. Apparently, the IMU experienced saturation shortly after the parachute was deployed, causing it to persist for one second longer than required.

This error was then fed to the navigation system, which caused it to generate an estimate altitude that was below Mars’ actual ground level. In essence, the lander thought it was closer to the ground than it actually was. As such, the the parachute and backshell of the Entry and Descent Module (EDM) were jettisoned and the braking thrusters fired prematurely – at an altitude of 3.7 km instead of 1.2 km, as planned.

This briefest of errors caused the lander to free-fall for one second longer than it was supposed to, causing it to land hard and be destroyed. The investigators have confirmed this assessment using multiple computer simulations, all of which indicate that the IMU error was responsible. However, this is still a tentative conclusion that awaits final confirmation from the agency.

Schiaparelli on Mars. Credit: ESA/ATG medialab
Artist’s impression of the Schiaparelli lander on Mars. Credit: ESA/ATG medialab

As David Parker, the ESA’s Director of Human Spaceflight and Robotic Exploration, said on on Wednesday, Nov. 23rd in a ESA press release:

“This is still a very preliminary conclusion of our technical investigations. The full picture will be provided in early 2017 by the future report of an external independent inquiry board, which is now being set up, as requested by ESA’s Director General, under the chairmanship of ESA’s Inspector General. But we will have learned much from Schiaparelli that will directly contribute to the second ExoMars mission being developed with our international partners for launch in 2020.”

In other words, this accident has not deterred the ESA and Roscosmos from pursuing the next stage in the ExoMars program – which is the deployment of the ExoMars rover in 2020. When it reaches Mars in 2021, the rover will be capable of navigating autonomously across the surface, using a on-board laboratory suite to search for signs of biological life, both past and present.

In the meantime, data retrieved from Schiaparelli’s other instruments is still being analyzed, as well as information from orbiters that observed the lander’s descent. It is hoped that this will shed further light on the accident, as well as salvage something from the mission. The Trace Gas Orbiter is also starting its first series of observations since it made its arrival in orbit on Oct. 19th, and will reach its operational orbit towards the end of 2017.

Further Reading: ESA

Is There Life on Mars?

Is There Life on Mars?
Is There Life on Mars?


Perhaps the most important question we can possible ask is, “are we alone in the Universe?”.

And so far, the answer has been, “I don’t know”. I mean, it’s a huge Universe, with hundreds of billions of stars in the Milky Way, and now we learn there are trillions of galaxies in the Universe.

Is there life closer to home? What about in the Solar System? There are a few existing places we could look for life close to home. Really any place in the Solar System where there’s liquid water. Wherever we find water on Earth, we find life, so it make sense to search for places with liquid water in the Solar System.

I know, I know, life could take all kinds of wonderful forms. Enlightened beings of pure energy, living among us right now. Or maybe space whales on Titan that swim through lakes of ammonia. Beep boop silicon robot lifeforms that calculate the wasted potential of our lives.

Sure, we could search for those things, and we will. Later. We haven’t even got this basic problem done yet. Earth water life? Check! Other water life? No idea.

It turns out, water’s everywhere in the Solar System. In comets and asteroids, on the icy moons of Jupiter and Saturn, especially Europa or Enceladus. Or you could look for life on Mars.

Sloping buttes and layered outcrops within the "Murray formation" layer of lower Mount Sharp. Credit: NASA
Sloping buttes and layered outcrops within the “Murray formation” layer of lower Mount Sharp. Credit: NASA

Mars is similar to Earth in many ways, however, it’s smaller, has less gravity, a thinner atmosphere. And unfortunately, it’s bone dry. There are vast polar caps of water ice, but they’re frozen solid. There appears to be briny liquid water underneath the surface, and it occasionally spurts out onto the surface. Because it’s close and relatively easy to explore, it’s been the place scientists have gone looking for past or current life.

Researchers tried to answer the question with NASA’s twin Viking Landers, which touched down in 1976. The landers were both equipped with three biology experiments. The researchers weren’t kidding around, they were going to nail this question: is there life on Mars?

In the first experiment, they took soil samples from Mars, mixed in a liquid solution with organic and inorganic compounds, and then measured what chemicals were released. In a second experiment, they put Earth organic compounds into Martian soil, and saw carbon dioxide released. In the third experiment, they heated Martian soil and saw organic material come out of the soil.

The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL
The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL

Three experiments, and stuff happened in all three. Stuff! Pretty exciting, right? Unfortunately, there were equally plausible non-biological explanations for each of the results. The astrobiology community wasn’t convinced, and they still fight in brutal cage matches to this day. It was ambitious, but inconclusive. The worst kind of conclusive.

Researchers found more inconclusive evidence in 1994. Ugh, there’s that word again. They were studying a meteorite that fell in Antarctica, but came from Mars, based on gas samples taken from inside the rock.

They thought they found evidence of fossilized bacterial life inside the meteorite. But again, there were too many explanations for how the life could have gotten in there from here on Earth. Life found a way… to burrow into a rock from Mars.

NASA learned a powerful lesson from this experience. If they were going to prove life on Mars, they had to go about it carefully and conclusively, building up evidence that had no controversy.

Greetings from Mars! I’m Spirit and I was the first of two twin robots to land on Mars. Unlike my twin, Opportunity, I’m known as the hill-climbing robot. Artist Concept, Mars Exploration Rovers. NASA/JPL-Caltech
Artist Concept, Mars Exploration Rovers. NASA/JPL-Caltech

The Spirit and Opportunity Rovers were an example of building up this case cautiously. They were sent to Mars in 2004 to find evidence of water. Not water today, but water in the ancient past. Old water Over the course of several years of exploration, both rovers turned up multiple lines of evidence there was water on the surface of Mars in the ancient past.

They found concretions, tiny pebbles containing iron-rich hematite that forms on Earth in water. They found the mineral gypsum; again, something that’s deposited by water on Earth.

Opportunity's Approach to 'Homestake'. This view from the front hazard-avoidance camera on NASA's Mars Exploration Rover Opportunity shows the rover's arm's shadow falling near a bright mineral vein informally named Homestake. The vein is about the width of a thumb and about 18 inches (45 centimeters) long. Opportunity examined it in November 2011 and found it to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum. Opportunity took this image on Sol 2763 on Mars (Nov. 7, 2011). Credit: NASA/JPL-Caltech
A bright mineral vein informally named Homestake. The vein is about the width of a thumb and about 18 inches (45 centimeters) long. Opportunity examined it in November 2011 (Sol 2763) and found it to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum. Credit: NASA/JPL-Caltech

NASA’s Curiosity Rover took this analysis to the next level, arriving in 2012 and searching for evidence that water was on Mars for vast periods of time; long enough for Martian life to evolve.

Once again, Curiosity found multiple lines of evidence that water acted on the surface of Mars. It found an ancient streambed near its landing site, and drilled into rock that showed the region was habitable for long periods of time.

In 2014, NASA turned the focus of its rovers from looking for evidence of water to searching for past evidence of life.

Curiosity found one of the most interesting targets: a strange strange rock formations while it was passing through an ancient riverbed on Mars. While it was examining the Gillespie Lake outcrop in Yellowknife Bay, it photographed sedimentary rock that looks very similar to deposits we see here on Earth. They’re caused by the fossilized mats of bacteria colonies that lived billions of years ago.

A bright and interestingly shaped tiny pebble shows up among the soil on a rock, called "Gillespie Lake," which was imaged by Curiosity's Mars Hand Lens Imager on Dec. 19, 2012, the 132nd sol, or Martian day of Curiosity's mission on Mars. Credit: NASA / JPL-Caltech / MSSS.
A bright and interestingly shaped tiny pebble shows up among the soil on a rock, called “Gillespie Lake,” which was imaged by Curiosity’s Mars Hand Lens Imager on Dec. 19, 2012, the 132nd sol, or Martian day of Curiosity’s mission on Mars. Credit: NASA / JPL-Caltech / MSSS.

Not life today, but life when Mars was warmer and wetter. Still, fossilized life on Mars is better than no life at all. But there might still be life on Mars, right now, today. The best evidence is not on its surface, but in its atmosphere. Several spacecraft have detected trace amounts of methane in the Martian atmosphere.

Methane is a chemical that breaks down quickly in sunlight. If you farted on Mars, the methane from your farts would dissipate in a few hundred years. If spacecraft have detected this methane in the atmosphere, that means there’s some source replenishing those sneaky squeakers. It could be volcanic activity, but it might also be life. There could be microbes hanging on, in the last few places with liquid water, producing methane as a byproduct.

The European ExoMars orbiter just arrived at Mars, and its main job is sniff the Martian atmosphere and get to the bottom of this question.

Are there trace elements mixed in with the methane that means its volcanic in origin? Or did life create it? And if there’s life, where is it located? ExoMars should help us target a location for future study.

The European/Russian ExoMars Trace Gas Orbiter (TGO) will launch in 2016 and sniff the Martian atmosphere for signs of methane which could originate for either biological or geological mechanisms. Credit: ESA
The European/Russian ExoMars Trace Gas Orbiter (TGO) will sniff the Martian atmosphere for signs of methane which could originate for either biological or geological mechanisms. Credit: ESA

NASA is following up Curiosity with a twin rover designed to search for life. The Mars 2020 Rover will be a mobile astrobiology laboratory, capable of scooping up material from the surface of Mars and digesting it, scientifically speaking. It’ll search for the chemicals and structures produced by past life on Mars. It’ll also collect samples for a future sample return mission.

Even if we do discover if there’s life on Mars, it’s entirely possible that we and Martian life are actually related by a common ancestor, that split off billions of years ago. In fact, some astrobiologists think that Mars is a better place for life to have gotten started.

Not the dry husk of a Red Planet that we know today, but a much wetter, warmer version that we now know existed billions of years ago. When the surface of Mars was warm enough for liquid water to form oceans, lakes and rivers. And we now know it was like this for millions of years.

A conception of an ancient and/or future Mars, flush with oceans, clouds and life. Credit: Kevin Gill.
A conception of an ancient Mars, flush with oceans, clouds and life. Credit: Kevin Gill.

While Earth was still reeling from an early impact by the massive planet that crashed into it, forming the Moon, life on Mars could have gotten started early.

But how could we actually be related? The idea of Panspermia says that life could travel naturally from world to world in the Solar System, purely through the asteroid strikes that were regularly pounding everything in the early days.

Imagine an asteroid smashing into a world like Mars. In the lower gravity of Mars, debris from the impact could be launched into an escape trajectory, free to travel through the Solar System.

We know that bacteria can survive almost indefinitely, freeze dried, and protected from radiation within chunks of space rock. So it’s possible they could make the journey from Mars to Earth, crossing the orbit of our planet.

Even more amazingly, the meteorites that enter the Earth’s atmosphere would protect some of the bacterial inhabitants inside. As the Earth’s atmosphere is thick enough to slow down the descent of the space rocks, the tiny bacterialnauts could survive the entire journey from Mars, through space, to Earth.

In February 2013, asteroid DA 2014 safely passed by the Earth. There are several proposals abounding about bringing asteroids closer to our planet to better examine their structure. Credit: NASA/JPL-Caltech
Credit: NASA/JPL-Caltech

If we do find life on Mars, how will we know it’s actually related to us? If Martian life has the similar DNA structure to Earth life, it’s probably related. In fact, we could probably trace the life back to determine the common ancestor, and even figure out when the tiny lifeforms make the journey.

If we do find life on Mars, which is related to us, that just means that life got around the Solar System. It doesn’t help us answer the bigger question about whether there’s life in the larger Universe. In fact, until we actually get a probe out to nearby stars, or receive signals from them, we might never know.

An even more amazing possibility is that it’s not related. That life on Mars arose completely independently. One clue that scientists will be looking for is the way the Martian life’s instructions are encoded. Here on Earth, all life follows “left-handed chirality” for the amino acid building blocks that make up DNA and RNA. But if right-handed amino acids are being used by Martian life, that would mean a completely independent origin of life.

Of course, if the life doesn’t use amino acids or DNA at all, then all bets are off. It’ll be truly alien, using a chemistry that we don’t understand at all.

There are many who believe that Mars isn’t the best place in the Solar System to search for life, that there are other places, like Europa or Enceladus, where there’s a vast amount of liquid water to be explored.

But Mars is close, it’s got a surface you can land on. We know there’s liquid water beneath the surface, and there was water there for a long time in the past. We’ve got the rovers, orbiters and landers on the planet and in the works to get to the bottom of this question. It’s an exciting time to be part of this search.

Astronomy Cast Ep. 429: Living on Mars

Living on Mars


When Elon Musk announced plans to send humans to Mars, he conveniently left out one important aspect. How are we supposed to survive on a place this hostile to life? Seriously, Mars sucks, and it’s going to take some impressive techniques and technologies to make it on the Red Planet.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

Stephen Hawking Issues A Wake Up Call

Stephen Hawking recently issued some more dire warnings for humanity, saying that we have 1000 years to find a new planet. Credit: Public Domain/photo by Alexandar Vujadinovic

It has been argued that the greatest reason our species should explore space and colonize other planets is so that a cataclysmic fate won’t be able to claim all of humanity. That is the driving force behind Elon Musk’s plan to colonize Mars. And it has certainly been the driving point behind Stephen Hawking’s belief that humanity should become an interplanetary-species.

And according to Hawking, becoming interplanetary is something of a time-sensitive issue. During a recent speech presented at the Oxford Union Society (Oxford University’s prestigious debating society) Hawking laid it out plainly for the audience. Humanity has 1000 years to locate and colonize new planets, he claimed, or we will likely go extinct.

For almost 200 years, the Oxford Union Society has been a forum for intellectual debate. In the past, it has also hosted such speakers as the Dalai Lama, Stephen Fry, Morgan Freeman, Richard Dawkins, and Buzz Aldrin. On this occasion, Hawking addressed a crowd of students and professors about space exploration and humanity’s future – two subjects he’s well versed in!

Stephen Hawking is a major proponent for colonizing other worlds, mainly to ensure humanity does not go extinct. Credit: educatinghumanity.com
Stephen Hawking is a major proponent for colonizing other worlds, mainly to ensure humanity does not go extinct. Credit: educatinghumanity.com

As Hawking made clear, humanity faces a number of existential threats, many of which are going to become a serious problem during the 21 century century. These include, but are not limited to, the threat of Climate Change, nuclear holocaust, terrorism, and the rise of artificial intelligence. The solution, Hawking argued, is to get into space and establish colonies as soon as possible.

As he was quoted as saying by the Christian Science Monitor, this will need to take place within the next 1000 years:

“Although the chance of a disaster to planet Earth in a given year may be quite low, it adds up over time, and becomes a near certainty in the next 1,000 or 10,000 years. By that time we should have spread out into space, and to other stars, so a disaster on Earth would not mean the end of the human race.”

This was not the first time Hawking has expressed concerns about the future. In January of 2015, Hawking joined Elon Musk and many other AI experts to pen the “Research Priorities for Robust and Beneficial Artificial Intelligence” – aka. the “Open Letter on Artificial Intelligence”. In this letter, he and the other signatories raised concerns about the short-term and long-term implications of AI, and urged that steps be taken to address them.

President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom, August 12, 2009. The Medal of Freedom is the nation's highest civilian honor. (Official White House photo by Pete Souza)
President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom on August 12th, 2009. Credit: whitehouse.gov/Pete Souza

In addition, back in January of 2016, Hawking warned that humanity’s technological progress has the power to outstrip us. This occurred during his speech at the 2016 Leith Lectures, where Hawking spoke about black holes and why they are fascinating. During the Q&A period that followed, Hawking turned to the much more dour subject of whether or not humanity has a future. As he said at the time:

“We face a number of threats to our survival, from nuclear war, catastrophic global warming, and genetically engineered viruses. The number is likely to increase in the future, with the development of new technologies, and new ways things can go wrong. However, we will not establish self-sustaining colonies in space for at least the next hundred years, so we have to be very careful in this period. Most of the threats we face come from the progress we have made in science and technology. We are not going to stop making progress, or reverse it, so we have to recognize the dangers and control them. I am an optimist, and I believe we can.”

Similarly, Hawking indicated back in 2010 that humanity’s survival beyond the next century would require that we become a space-faring race. In an interview with Big Think, Hawking claimed the odds of humanity making it to the 22nd century was bad enough for a single-planet species, let alone the 31st:

“I believe that the long-term future of the human race must be in space. It will be difficult enough to avoid disaster on planet Earth in the next hundred years, let alone the next thousand, or million. The human race shouldn’t have all its eggs in one basket, or on one planet. Let’s hope we can avoid dropping the basket until we have spread the load.”

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC
Hawking has repeatedly advocated space exploration and colonization as a way of ensuring humanity’s survival. Credit: NASA/MSFC

But before anyone gets all gloomy, it should be noted that between our plans to colonize Mars, and the success of the Kepler mission, we have found hundreds of planets that could serve as potential homes for humanity. But as Hawking has stated in the past, we will need at least 100 years to develop all the necessary technologies to build colonies on even the closest of these planets (Mars).

Beyond our survival as a species, Professor Hawking also advocates space travel as a way of improving humanity’s understanding of itself. This was made evident in a direct quote that the Union live-tweeted during the speech, in which he said: “We must continue exploring space in order to improve our knowledge of humanity. We must go beyond our humble planet.”

And as he has done so often before, Hawking ended his speech on an optimistic note. According to the Independent, he wrapped up his Oxford lecture with the following words of advice:

“Remember to look up at the stars and not down at your feet. Try to make sense of what you see, wonder about what makes the universe exist. Be curious. However difficult life may seem, there is always something you can do and succeed at. It matters that you don’t just give up.”

It seems we have our work cut out for us. Extra-terrestrial and/or extra-solar colonies by 3016… or bust!

Further Reading: Oxford Mail, CS Monitor, Independent

How Bad is the Radiation on Mars?

Image taken by the Viking 1 orbiter in June 1976, showing Mars thin atmosphere and dusty, red surface. Credits: NASA/Viking 1

Human exploration of Mars has been ramping up in the past few decades. In addition to the eight active missions on or around the Red Planet, seven more robotic landers, rovers and orbiters are scheduled to be deployed there by the end of the decade. And by the 2030s and after, several space agencies are planning to mount crewed missions to the surface as well.

On top of that, there are even plenty of volunteers who are prepared to make a one-way journey to Mars, and people advocating that we turn it into a second home. All of these proposals have focused attention on the peculiar hazards that come with sending human beings to Mars. Aside from its cold, dry environment, lack of air, and huge sandstorms, there’s also the matter of its radiation.

Causes:

Mars has no protective magnetosphere, as Earth does. Scientists believe that at one time, Mars also experienced convection currents in its core, creating a dynamo effect that powered a planetary magnetic field. However, roughly 4.2 billions year ago – either due to a massive impact from a large object, or rapid cooling in its core – this dynamo effect ceased.

Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet's upper atmosphere. Credits: NASA/GSFC
Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet’s upper atmosphere. Credits: NASA/GSFC

As a result, over the course of the next 500 million years, Mars atmosphere was slowly stripped away by solar wind. Between the loss of its magnetic field and its atmosphere, the surface of Mars is exposed to much higher levels of radiation than Earth. And in addition to regular exposure to cosmic rays and solar wind, it receives occasional lethal blasts that occur with strong solar flares.

Investigations:

NASA’s 2001 Mars Odyssey spacecraft was equipped with a special instrument called the Martian Radiation Experiment (or MARIE), which was designed to measure the radiation environment around Mars. Since Mars has such a thin atmosphere, radiation detected by Mars Odyssey would be roughly the same as on the surface.

Over the course of about 18 months, the Mars Odyssey probe detected ongoing radiation levels which are 2.5 times higher than what astronauts experience on the International Space Station – 22 millirads per day, which works out to 8000 millirads (8 rads) per year. The spacecraft also detected 2 solar proton events, where radiation levels peaked at about 2,000 millirads in a day, and a few other events that got up to about 100 millirads.

For comparison, human beings in developed nations are exposed to (on average) 0.62 rads per year. And while studies have shown that the human body can withstand a dose of up to 200 rads without permanent damage, prolonged exposure to the kinds of levels detected on Mars could lead to all kinds of health problems – like acute radiation sickness, increased risk of cancer, genetic damage, and even death.

Diagram showing the amount of cosmic radiation the surface of Mars is exposed to. Credit: NASA
Diagram showing the amount of cosmic radiation the surface of Mars is exposed to. Credit: NASA

And given that exposure to any amount of radiation carries with it some degree of risk, NASA and other space agencies maintain a strict policy of ALARA (As-Low-As-Reasonable-Achievable) when planning missions.

Possible Solutions:

Human explorers to Mars will definitely need to deal with the increased radiation levels on the surface. What’s more, any attempts to colonize the Red Planet will also require measures to ensure that exposure to radiation is minimized. Already, several solutions – both short term and long- have been proposed to address this problem.

For example, NASA maintains multiple satellites that study the Sun, the space environment throughout the Solar System, and monitor for galactic cosmic rays (GCRs), in the hopes of gaining a better understanding of solar and cosmic radiation. They’ve also been looking for ways to develop better shielding for astronauts and electronics.

In 2014, NASA launched the Reducing Galactic Cosmic Rays Challenge, an incentive-based competition that awarded a total of $12,000 to ideas on how to reduce astronauts’ exposure to galactic cosmic rays. After the initial challenge in April of 2014, a follow-up challenge took place in July that awarded a prize of $30,000 for ideas involving active and passive protection.

When it comes to long-term stays and colonization, several more ideas have been floated in the past. For instance, as Robert Zubrin and David Baker explained in their proposal for a low-cast “Mars Direct” mission, habitats built directly into the ground would be naturally shielded against radiation. Zubrin expanded on this in his 1996 book The Case for Mars: The Plan to Settle the Red Planet and Why We Must.

Proposals have also been made to build  habitats above-ground using inflatable modules encased in ceramics created using Martian soil. Similar to what has been proposed by both NASA and the ESA for a settlement on the Moon, this plan would rely heavily on robots using 3D printing technique known as “sintering“, where sand is turned into a molten material using x-rays.

MarsOne, the non-profit organization dedicated to colonizing Mars in the coming decades, also has proposals for how to shield Martian settlers. Addressing the issue of radiation, the organization has proposed building shielding into the mission’s spacecraft, transit vehicle, and habitation module. In the event of a solar flare, where this protection is insufficient, they advocate creating a dedicated radiation shelter (located in a hollow water tank) inside their Mars Transit Habitat.

But perhaps the most radical proposal for reducing Mars’ exposure to harmful radiation involves jump-starting the planet’s core to restore its magnetosphere. To do this, we would need to liquefy the planet’s outer core so that it can convect around the inner core once again. The planet’s own rotation would begin to create a dynamo effect, and a magnetic field would be generated.

Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center
Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center

According to Sam Factor, a graduate student with the Department of Astronomy at the University of Texas, there are two ways to do this. The first would be to detonate a series of thermonuclear warheads near the planet’s core, while the second involves running an electric current through the planet, producing resistance at the core which would heat it up.

In addition, a 2008 study conducted by researchers from the National Institute for Fusion Science (NIFS) in Japan addressed the possibility of creating an artificial magnetic field around Earth. After considering continuous measurements that indicated a 10% drop in intensity in the past 150 years, they went on to advocate how a series of planet-encircling superconducting rings could compensate for future losses.

With some adjustments, such a system could be adapted for Mars, creating an artificial magnetic field that could help shield the surface from some of the harmful radiation it regularly receives. In the event that terraformers attempt to create an atmosphere for Mars, this system could also ensure that it is protected from solar wind.

Lastly, a study in 2007 by researchers from the Institute for Mineralogy and Petrology in Switzerland and the Faculty of Earth and Life Sciences at Vrije University in Amsterdam managed to replicate what Mars’ core looks like. Using a diamond chamber, the team was able to replicate pressure conditions on iron-sulfur and iron-nickel-sulfur systems that correspond to the center of Mars.

What they found was that at the temperatures expected in the Martian core (~1500 K, or 1227 °C; 2240 °F), the inner core would be liquid, but some solidification would occur in the outer core. This is quite different from Earth’s core, where the solidification of the inner core releases heat that keeps the outer core molten, thus creating the dynamo effect that powers our magnetic field.

The absence of a solid inner core on Mars would mean that the once-liquid outer core must have had a different energy source. Naturally, that heat source has since failed, causing the outer core to solidify, thus arresting any dynamo effect. However, their research also showed that planetary cooling could lead to core solidification in the future, either due to iron-rich solids sinking towards the center or iron-sulfides crystallizing in the core.

In other words, Mars’ core might become solid someday, which would heat the outer core and turn it molten. Combined with the planet’s own rotation, this would generate the dynamo effect that would once again fire up the planet’s magnetic field. If this is true, then colonizing Mars and living there safely could be a simple matter of waiting for the core to crystallize.

There’s no way around it. At present, the radiation on the surface of Mars is pretty hazardous! Therefore, any crewed missions to the planet in the future will need to take into account radiation shielding and counter-measures. And any long-term stays there – at least for the foreseeable future – are going to have to be built into the ground, or hardened against solar and cosmic rays.

Approximate true-color rendering of the central part of the "Columbia Hills", taken by NASA's Mars Exploration Rover Spirit panoramic camera. Credit: NASA/JPL
Approximate true-color rendering of the central part of the “Columbia Hills”, taken by NASA’s Mars Exploration Rover Spirit panoramic camera. Credit: NASA/JPL

But you know what they say about necessity being the mother of invention, right? And with such luminaries as Stephen Hawking saying that we need to start colonizing other worlds in order to survive as a species, and people like Elon Musk and Bas Lansdrop looking to make it happen, we’re sure to see some very inventive solutions in the coming generations!

We have written many interesting articles about Mars and the dangers of radiation here at Universe Today. Here’s How Much Radiation Would You Get During A Mars Mission?, How Can We Live on Mars?, Human Voyages to Mars Pose Higher Cancer Risks, and Radiation Sickness, Cellular Damage and Increased Cancer Risk for Long-term Missions to Mars.

If you want, learn more about the MARIE instrument on board NASA’s Mars Odyssey spacecraft, and the radiation risks humans will face trying to go to Mars.

Finally, if you’d like to learn more about Mars in general, we have done several podcast episodes about the Red Planet at Astronomy Cast. Episode 52: Mars, and Episode 91: The Search for Water on Mars.

Sources: