What are Volcanoes?

Image taken by a crew member of Expedition 13 from the ISS, showing the eruption of Cleveland Volcano, Aleutian Islands, Alaska. Credit: NASA

A volcano is an impressive sight. When they are dormant, they loom large over everything on the landscape. When they are active, they are a destructive force of nature that is without equal, raining fire and ash down on everything in site. And during the long periods when they are not erupting, they can also be rather beneficial to the surrounding environment.

But just what causes volcanoes? When it comes to our planet, they are the result of active geological forces that have shaped the surface of the Earth over the course of billions of years. And interestingly enough, there are plenty of examples of volcanoes on other bodies within our Solar System as well, some of which put those on Earth to shame!

Definition:

By definition, a volcano is a rupture in the Earth’s (or another celestial body’s) crust that allows hot lava, volcanic ash, and gases to escape from a magma chamber located beneath the surface. The term is derived from Vulcano, a volcanically-active island located of the coast of Italy who’s name in turn comes from the Roman god of fire (Vulcan).

The Earth's Tectonic Plates. Credit: msnucleus.org
Artist’s illustration of the Earth’s Tectonic Plates. Credit: msnucleus.org

On Earth, volcanoes are the result of the action between the major tectonic plates. These sections of the Earth’s crust are rigid, but sit atop the relatively viscous upper mantle. The hot molten rock, known as magma, is forced up to the surface – where it becomes lava. In short, volcanoes are found where tectonic plates are diverging or converging – such as the Mid-Atlantic Ridge or the Pacific Ring of Fire – which causes magma to be forced to the surface.

Volcanoes can also form where there is stretching and thinning of the crust’s interior plates, such as in the the East African Rift and the Rio Grande Rift in North America. Volcanism can also occur away from plate boundaries, where upwelling magma is forced up into brittle sections of the crust, forming volcanic islands – such as the Hawaiian islands.

Erupting volcanoes pose many hazards, and not just to the surrounding countryside. In their immediate vicinity, hot, flowing lava can cause extensive damage to the environment, property, and endanger lives. However, volcanic ash can cause far-reaching damage, raining sulfuric acid, disrupting air travel, and even causing “volcanic winters” by obscuring the Sun (thus triggering local crop failures and famines).

Types of Volcanoes:

There are four major types of volcanoes – cinder cone, composite and shield volcanoes, and lava domes. Cinder cones are the simplest kind of volcano, which occur when magma is ejected from a volcanic vent. The ejected lava rains down around the fissure, forming an oval-shaped cone with a bowl-shaped crater on top. They are typically small, with few ever growing larger than about 300 meters (1,000 feet) above their surroundings.

Cinder cone Paricutin. Image credit: USGS
Paricutin, an example of a cinder cone volcano. Credit: USGS

Composite volcanoes (aka. stratovolcanoes) are formed when a volcano conduit connects a subsurface magma reservoir to the Earth’s surface. These volcanoes typically have several vents that cause magma to break through the walls and spew from fissures on the sides of the mountain as well as the summit.

These volcanoes are known for causing violent eruptions. And thanks to all this ejected material, these volcanoes can grow up to thousands of meters tall. Examples include Mount Rainier (4,392 m; 14,411 ft), Mount Fuji (3,776 m; 12,389 ft), Mount Cotopaxi (5,897 m; 19,347 ft) and Mount Saint Helens (2,549 mm; 8,363 ft).

Shield volcanoes are so-named because of their large, broad surfaces. With these types of volcanoes, the lava that pours forth is thin, allowing it to travel great distances down the shallow slopes. This lava cools and builds up slowly over time, with hundreds of eruptions creating many layers. They are therefore not likely to be catastrophic. Some of the best known examples are those that make up the Hawaiian Islands, especially Mauna Loa and Mauna Kea.

Volcanic or lava domes are created by small masses of lava which are too viscous to flow very far. Unlike shield volcanoes, which have low-viscosity lava, the slow-moving lava simply piles up over the vent. The dome grows by expansion over time, and the mountain forms from material spilling off the sides of the growing dome. Lava domes can explode violently, releasing a huge amount of hot rock and ash.

Artist's impression of a what lies beneath the Yellowstone volcano. Credit: Hernán Cañellas/National Geographic
Artist’s impression of a what lies beneath the Yellowstone volcano. Credit: Hernán Cañellas/National Geographic

Volcanoes can also be found on the ocean floor, known as submarine volcanoes. These are often revealed through the presence of blasting steam and rocky debris above the ocean’s surface, though the pressure of the ocean’s water can often prevent an explosive release.

In these cases, lava cools quickly on contact with ocean water, and forms pillow-shaped masses on the ocean floor (called pillow lava). Hydrothermal vents are also common around submarine volcano, which can support active and peculiar ecosystems because of the energy, gases and minerals they release. Over time, the formations created by submarine volcanoes may become so large that they become islands.

Volcanoes can also developed under icecaps, which are known as subglacial volcanoes. In these cases, flat lava flows on top of pillow lava, which results from lava quickly cooling upon contact with ice. When the icecap melts, the lava on top collapses, leaving a flat-topped mountain. Very good examples of this type of volcano can be seen in Iceland and British Columbia, Canada.

Examples on Other Planets:

Volcanoes can be found on many bodies within the Solar System. Examples include Jupiter’s moon Io, which periodically experiences volcanic eruptions that reach up to 500 km (300 mi) into space. This volcanic activity is caused by friction or tidal dissipation produced in Io’s interior, which is responsible for melting a significant amount of Io’s mantle and core.

Model of the possible interior composition of Io with various features labelled. Credit: Wikipedia Commons/Kelvinsong
Model of the possible interior composition of Io with various features labelled. Credit: Wikipedia Commons/Kelvinsong

It’s colorful surface (orange, yellow, green, white/grey, etc.) shows the presence of sulfuric and silicate compounds, which were clearly deposited by volcanic eruptions. The lack of impact craters on its surface, which is uncommon on a Jovian moon, is also indicative of surface renewal.

Mars has also experienced intense volcanic activity in its past, as evidenced by Olympus Mons – the largest volcano in the Solar System. While most of its volcanic mountains are extinct and collapsed, the Mars Express spacecraft observed evidence of more recent volcanic activity, suggesting that Mars may still be geologically active.

Much of Venus’ surface has been shaped by volcanic activity as well. While Venus has several times the number of Earth’s volcanoes, they were believed to all be extinct. However, there is a multitude of evidence that suggests that there may still be active volcanoes on Venus which contribute to its dense atmosphere and runaway Greenhouse Effect.

For instance, during the 1970s, multiple Soviet Venera missions conducted surveys of Venus. These missions obtained evidence of thunder and lightning within the atmosphere, which may have been the result of volcanic ash interacting with the atmosphere. Similar evidence was gathered by the ESA’s Venus Express probe in 2007.

3-D perspective of the Venusian volcano, Maat Mons generated from radar data from NASA’s Magellan mission.
3-D perspective of the Venusian volcano, Maat Mons generated from radar data from NASA’s Magellan mission. Credit: NASA/JPL

This same mission observed transient localized infrared hot spots on the surface of Venus in 2008 and 2009, specifically in the rift zone Ganis Chasma – near the shield volcano Maat Mons. The Magellan probe also noted evidence of volcanic activity from this mountain during its mission in the early 1990s, using radar-sounding to detect ash flows near the summit.

Cryovolcanism:

In addition to “hot volcanoes” that spew molten rock, there are also cryovolcanoes (aka. “cold volcanoes”). These types of volcanoes involve volatile compounds  – i.e. water, methane and ammonia – instead of lava breaking through the surface. They have been observed on icy bodies in the Solar System where liquid erupts from ocean’s hidden in the moon’s interior.

For instance, Jupiter’s moon Europa, which is known to have an interior ocean, is believed to experiences cryovolcanism. The earliest evidence for this had to do with its smooth and young surface, which points towards endogenic resurfacing and renewal. Much like hot magma, water and volatiles erupt onto the surface where they then freeze to cover up impact craters and other features.

In addition, plumes of water were observed in 2012 and again in 2016 using the Hubble Space Telescope. These intermittent plumes were observed on both occasions to be coming in the southern region of Europa, and were estimated to be reach up to 200 km (125 miles) before depositing water ice and material back onto the surface.

In 2005, the Cassini-Huygens mission detected evidence of cryovolcanism on Saturn’s moons Titan and Enceladus. In the former case, the probe used infrared imaging to penetrate Titan’s dense clouds and detect signs of a 30 km (18.64 mi) formation, which was believed to be caused by the upwelling of hydrocarbon ices beneath the surface.

On Enceladus, cryovolcanic activity has been confirmed by observing plumes of water and organic molecules being ejected from the moon’s south pole. These plumes are are thought to have originated from the moon’s interior ocean, and are composed mostly of water vapor, molecular nitrogen, and volatiles (such as methane, carbon dioxide and other hydrocarbons).

In 1989, the Voyager 2 spacecraft observed cryovolcanoes ejecting plumes of water ammonia and nitrogen gas on Neptune’s moon Triton. These nitrogen geysers were observed sending plumes of liquid nitrogen 8 km (5 mi) above the surface of the moon. The surface is also quite young, which was seen as indication of endogenic resurfacing. It is also theorized that cryovolcanism may also be present on the Kuiper Belt Object Quaoar.

Here on Earth, volcanism takes the form of hot magma being pushed up through the Earth’s silicate crust due to convention in the interior. However, this kind of activity is present on all planet that formed from silicate material and minerals, and where geological activity or tidal stresses are known to exist. But on other bodies, it consists of cold water and materials from the interior ocean being forced through to the icy surface.

Color Mosaic of Olympus Mons on Mars
Color Mosaic of Olympus Mons on Mars. Credit: NASA/JPL

Today, our knowledge of volcanism (and the different forms it can take) is the result of improvements in both the field of geology, as well as space exploration. The more we learn of about other planets, the more we are able to see startling similarities and contrasts with our own (and vice versa).

We have written many interesting articles about volcanoes here at Universe Today. Here’s 10 Interesting Facts About Volcanoes, What are the Different Types of Volcanoes?, How Do Volcanoes Erupt?, What Are The Benefits Of Volcanoes?, What is the Difference Between Active and Dormant Volcanoes?

For more information, be sure to check out What is a Volcano? at NASA Space Place.

Astronomy Cast has an episode on the subject – Episode 141: Volcanoes Hot and Cold.

Sources:

The Hidden Glaciers Of Mars

Colour-coded topographic view of the Colles Nili region, showing the relative heights and depths of terrain. Credit: ESA/DLR/FU Berlin

In the northern hemisphere of Mars, between the planet’s southern highlands and the northern lowlands, is a hilly region known as Colles Nilli. This boundary-marker is a very prominent feature on Mars, as it is several kilometers in height and surrounded by the remains of ancient glaciers.

And thanks to the Mars Express mission, it now looks like this region is also home to some buried glaciers. Such was the conclusion after the orbiting spacecraft took images that revealed a series of eroded blocks along this boundary, which scientists have deduced are chunks of ice that became buried over time.

The Mars Express images show a plethora of these features along the north-south boundary. They also reveal several features that hint at the presence of buried ice and erosion – such as layered deposits as well as ridges and troughs. Similar features are also found in nearby impact craters. All of these are believed to have been caused by an ancient glacier as it retreated several hundred million years ago.

Artist's impression of the Mars Express spacecraft in orbit. Image Credit: ESA/Medialab
Artist’s impression of the Mars Express spacecraft in orbit. Credit: ESA/Medialab

It is further reasoned that these remaining ice deposits were covered by debris that was deposited from the plateau as it eroded. Wind-borne dust was also deposited over time, which is believed to be the result of volcanic activity. This latter source is evidenced by steaks of dark material deposited around the blocks, as well as dark sand dunes spotted within the impact craters.

Similar features are believed to exist within many boundary regions on Mars, and are believed to represent periods of glaciation that took place over the course of eons. And this is not the first time buried glaciers have been spotted on Mars.

For instance, back in 2008, the Mars Reconnaissance Orbiter (MRO) used its ground-penetrating radar to locate water ice under blankets or rocky debris, and at latitudes far lower than any that had been previously identified. At the time, this information shed light on a long-standing mystery about Mars, which was the presence of what are called “aprons”.

These gently-sloping rocky deposit, which are found at the bases of taller features, were first noticed by NASA’s Viking orbiters during the 1970s. A prevailing theory has been that these aprons are the result of rocky debris lubricated by small amounts of ice.

Artist's impression visualising the separation of the ExoMars entry, descent and landing demonstrator module, Schiaparelli, from the Trace Gas Orbiter (TGO). Credit: ESA
Artist’s impression of the separation of the ExoMars entry, descent and landing demonstrator module (Schiaparelli) from the Trace Gas Orbiter (TGO). Credit: ESA/ATG medialab

Combined with this latest info taken from the northern hemisphere, it would appear that there is plenty of ice deposits all across the surface of Mars. The presence (and prevalence) of these icy remnants offer insight into Mars’ geological past, which – like Earth – involved some “ice ages”.

The Mars Express mission has been actively surveying the surface of Mars since 2003. On October 19th, it will be playing a vital role as the Exomars mission inserts itself into Martian orbit and the Schiaparelli lander makes its descent and landing on the Martian surface.

Alongside the MRO and the ExoMars Orbiter, it will be monitoring signals from the lander to confirm its safe arrival, and will relay information sent from the surface during the course of its mission.

The ESA will be broadcasting this event live. And given that this mission will be the ESA’s first robotic lander to reach Mars, it should prove to be an exciting event!

Further Reading: ESA

Weekly Space Hangout – October 14, 2016: Europe Crashes the Mars Party

Host: Fraser Cain (@fcain)

Special Guest:

Guests:
Tyler Finlay of the Sally Ride EarthKAM project

Guests:
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)

Their stories this week:
Two trillion galaxies?

Obama reaffirms NASA’s Mars plan

ExoMars arrives in the coming week

CosmoQuest Survey for Citizen Scientists – how can we make citizen science more available?

CosmoQuest Survey for Parents who have kids doing Science Fair Projects – how can we help you?

CosmoQuest Survey for Teachers assigning Science Fair Projects – how can we help you?

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page.

We Land on Mars in Just 2 days!

Artist's view of the Schiaparelli lander descending to Mars on October 19. Credit: ESA


Watch how Schiaparelli will land on Mars. Touchdown will occur at 10:48 a.m. EDT (14:48 GMT) Wednesday Oct. 19.

Cross your fingers for good weather on the Red Planet on October 19. That’s the day the European Space Agency’s Schiaparelli lander pops open its parachute, fires nine, liquid-fueled thrusters and descends to the surface of Mars. Assuming fair weather, the lander should settle down safely on the wide-open plains of Meridiani Planum near the Martian equator northwest of NASA’s Opportunity rover. The region is rich in hematite, an iron-rich mineral associated with hot springs here on Earth.

On 19 October 2016, the ExoMars 2016 entry, descent, and landing demonstrator module, known as Schiaparelli, will land on Mars in a region known as Meridiani Planum. The landing sites of the seven rovers and landers that have reached the surface of Mars and successfully operated there are indicated on this map. The background image is a shaded relief map of Mars, based on data from the Mars Orbiter Laser Altimeter (MOLA) instrument, on NASA’s Mars Global Surveyor spacecraft.
On Wednesday, October 19, the ExoMars 2016 entry, descent and landing demonstrator module, named Schiaparelli, will land on Mars in Meridiani Planum not far from the Opportunity rover. The map shows the seven rovers and landers that have reached the surface of Mars and successfully operated there. The background image is a shaded relief map of Mars created using data from NASA’s Mars Global Surveyor spacecraft.

The 8-foot-wide probe will be released three days earlier from the Trace Gas Orbiter (TGO) and coast toward Mars before entering its atmosphere at 13,000 mph (21,000 km/hr). During the 6-minute-long descent, Schiaparelli will decelerate gradually using the atmosphere to brake its speed, a technique called aerobraking. Not only is Meridiani Planum flat, it’s low, which means the atmosphere is thick enough to allow Schiaparelli’s heat shield to reduce its speed sufficiently so the chute can be safely deployed. The final firing of its thrusters will ensure a soft and controlled landing.

Artist's impression depicting the separation of the ExoMars 2016 entry, descent and landing demonstrator module, named Schiaparelli, from the Trace Gas Orbiter, and heading for Mars. Credit: ESA/ATG medialab
Artist’s impression showing Schiaparelli separating from the Trace Gas Orbiter and heading for Mars. The lander is named for late 19th century Italian astronomer Giovanni Schiaparelli, who created a detailed telescopic map of Mars. The orbiter will sniff out potentially biological gases such as methane in Mars’ atmosphere and track its sources and seasonal variations. Credit: ESA/ATG medialab

The lander is one-half of the ExoMars 2016 mission, a joint venture between the European Space Agency and Russia’s Roscosmos. The Trace Gas Orbiter (TGO) will fire its thrusters to place itself in orbit about the Red Planet the same day Schiparelli lands. Its job is to inventory the atmosphere in search of organic molecules, methane in particular. Plumes of methane, which may be biological or geological (or both) in origin, have recently been detected at several locations on Mars including Syrtis Major, the planet’s most prominent dark marking. The orbiter will hopefully pinpoint the source(s) as well as study seasonal changes in locations and concentrations.

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows what appears to be a dust-covered frozen sea near the Martian equator. It shows a flat plain, part of the Elysium Planitia, that is covered with irregular blocky shapes. They look just like the rafts of fragmented sea ice that lie off the coast of Antarctica on Earth. Raised levels of methane were detected here by ESA's Mars Express orbiter. Copyright: ESA/DLR/FU Berlin (G. Neukum)
This image, taken by ESA’s Express spacecraft, shows what appears to be a dust-covered frozen sea near the Martian equator. Located in Elysium Planitia, the flat plain is covered with irregular blocky shapes. They look just like the rafts of fragmented sea ice that lie off the coast of Antarctica on Earth. Raised levels of methane were detected here by ESA’s Mars Express orbiter. Copyright: ESA/DLR/FU Berlin (G. Neukum)

Methane (CH4) has long been associated with life here on Earth. More than 90% of the colorless, odorless gas is produced by living organisms, primarily bacteria. Sunlight breaks methane down into other gases over a span of about 300 years. Because the gas relatively short-lived, seeing it on Mars implies an active, current source. There may be several:

  • Long-extinct bacteria that released methane that became trapped in ice or minerals in the upper crust. Changing temperature and pressure could stress the ice and release that ancient gas into today’s atmosphere.
  • Bacteria that are actively producing methane to this day.
  • Abiological sources. Iron can combine with oxygen in terrestrial hot springs and volcanoes to create methane. This gas can also become trapped in solid forms of water or ‘cages’ called clathrate hydrates that can preserve it for a long time. Olivine, a common mineral on Earth and Mars, can react with water under the right conditions to form another mineral called serpentine. When altered by heat, water and pressure, such in environments such as hydrothermal springs, serpentine can produce methane.

Will it turn out to be burping bacteria or mineral processes? Let’s hope TGO can point the way.

This image illustrates possible ways methane might get into Mars’ atmosphere and also be removed from it: microbes (left) under the surface that release the gas into the atmosphere, weathering of rock (right) and stored methane ice called a clathrate. Ultraviolet light can work on surface materials to produce methane as well as break it apart into other molecules (formaldehyde and methanol) to produce carbon dioxide. Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan
This image illustrates possible ways methane might get into Mars’ atmosphere and also be removed from it: microbes (left) under the surface that release the gas into the atmosphere, weathering of rock (right) and stored methane ice called a clathrate. Ultraviolet light can work on surface materials to produce methane as well as break it apart into other molecules (formaldehyde and methanol) to produce carbon dioxide. Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan

The Trace Gas Orbiter will also use the Martian atmosphere to slow its speed and trim its orbital loop into a 248-mile-high (400 km) circle suitable for science observations. But don’t expect much in the way of scientific results right away; aerobraking maneuvers will take about a year, so TGO’s job of teasing out atmospheric ingredients won’t begin until December 2017. The study runs for 5 years.

The orbiter will also examine Martian water vapor, nitrogen oxides and other organics with far greater accuracy than any previous probe as well as monitor seasonal changes in the atmosphere’s composition and temperature. And get this — its instruments can map subsurface hydrogen, a key ingredient in both water and methane, down to a depth of a meter (39.4 inches) with greater resolution compared to previous studies. Who knows? We may discover hidden ice deposits or methane sinks that could influence where future rovers will land. Additional missions to Mars are already on the docket, including ExoMars 2020. More about that in a minute.

Schiaparelli, the
This artist’s view shows Schiaparelli, the entry, descent and landing demonstrator module, using its thrusters to make a soft landing on Mars on October 19 at 10:48 a.m. EDT (14:48 GMT). Credit: ESA/ATG medialab

While TGO’s mission will require years, the lander is expected to survive for only four Martian days (called ‘sols’) by using the excess energy capacity of its batteries. A set of scientific sensors will measure wind speed and direction, humidity, pressure and electric fields on the surface. A descent camera will take pictures of the landing site on the way down; we’ll should see those photos the very next day. Data and imagery from the lander will be transmitted to ESA’s Mars Express and a NASA Relay Orbiter, then relayed to Earth.


This animation shows the paths of the Trace Gas Orbiter and Schiaparelli lander on Oct. 19 when they arrive at Mars.

If you’re wondering why the lander’s mission is so brief, it’s because Schiaparelli is essentially a test vehicle. Its primary purpose is to test technologies for landing on Mars including the special materials used for protection against the heat of entry, a parachute system, a Doppler radar device for measuring altitude and liquid-fueled braking thrusters.

Martian dust storms can be cause for concern during any landing attempt. Since it’s now autumn in the planet’s northern hemisphere, a time when storms are common, there’s been some finger-nail biting of late. The good news is that storms of recent weeks have calmed and Mars has entered a welcome quiet spell.

To watch events unfold in real time, check out ESA’s live stream channel, Facebook page and Twitter updates. The announcement of the separation of the lander from the orbiter will be made around 11 a.m. Eastern Time (15:00 GMT) Sunday October 16.  Live coverage of the Trace Gas Orbiter arrival and Schiaparelli landing on Mars runs from 9-11:15 a.m. Eastern (13:00-15:15 GMT) on Wednesday October 19. Photos taken by Schiaparelli’s descent camera will be available starting at 4 a.m. Eastern (8:00 GMT) on October 20. More details here. We’ll also keep you updated on Universe Today.

The ExoMars 2016 mission will pave the way for a rover mission to the Red Planet in 2020. Credit: ESA
The ExoMars 2016 mission will pave the way for a rover mission to the Red Planet in 2020. Credit: ESA

Everything we learn during the current mission will be applied to planning and executing the next —  ExoMars 2020, slated to launch in 2020. That venture will send a rover to the surface to search and chemically test for signs of life, present or past.  It will collect samples with a drill at various depths and analyze the fines for bio-molecules. Getting down deep is important because the planet’s thin atmosphere lets through harsh UV light from the sun, sterilizing the surface.

Are you ready for adventure? See you on Mars (vicariously)!

Opportunity Blazes Through 4500 Sunsets on Mars and Gullies are Yet to Come!

NASA’s Opportunity explores Spirit Mound after descending down Marathon Valley and looks out across the floor of vast Endeavour crater. This navcam camera photo mosaic was assembled from raw images taken on Sol 4505 (25 Sept 2016) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo
NASA’s Opportunity explores Spirit Mound after descending down Marathon Valley and looks out across the floor of vast Endeavour crater.  This navcam camera photo mosaic was assembled from raw images taken on Sol 4505 (25 Sept 2016) and colorized.  Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo
NASA’s Opportunity explores Spirit Mound after descending down Marathon Valley and looks out across the floor of vast Endeavour crater. This navcam camera photo mosaic was assembled from raw images taken on Sol 4505 (25 Sept 2016) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

The longest living Martian rover ever – Opportunity – has just surpassed another unfathomable milestone – 4500 Sols (or days) exploring the Red Planet !! That’s 50 times beyond her “warrantied” life expectancy of merely 90 Sols.

And as we are fond of reporting – the best is yet to come. After experiencing 4500 Martian sunsets, Opportunity has been granted another mission extension and she is being targeted to drive to an ancient gully where life giving liquid water almost certainly once flowed on our solar systems most Earth-like planet.

See Opportunity’s current location around ‘Spirit Mound” – illustrated in our new photo mosaic panoramas above and below.

NASA’s Opportunity rover scans ahead to Spirit Mound and vast Endeavour crater as she celebrates 4500 sols on the Red Planet after descending down Marathon Valley. This navcam camera photo mosaic was assembled from raw images taken on Sol 4500 (20 Sept 2016) and colorized.  Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo
NASA’s Opportunity rover scans ahead to Spirit Mound and vast Endeavour crater as she celebrates 4500 sols on the Red Planet after descending down Marathon Valley. This navcam camera photo mosaic was assembled from raw images taken on Sol 4500 (20 Sept 2016) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

After a scorching ‘6 minutes of Terror’ plummet through the thin Martian atmosphere, Opportunity bounced to an airbag cushioned landing on the plains of Meridiani Planum on January 24, 2004 – nearly 13 years ago!

Opportunity was launched on a Delta II rocket from Cape Canaveral Air Force Station in Florida on July 7, 2003.

“We have now exceeded the prime-mission duration by a factor of 50,” noted Opportunity Project Manager John Callas of NASA’s Jet Propulsion Laboratory, Pasadena, California.

“Milestones like this are reminders of the historic achievements made possible by the dedicated people entrusted to build and operate this national asset for exploring Mars.”

The newest 2 year extended mission phase just began on Oct. 1 as the rover was stationed at the western rim of Endeavour crater at the bottom of Marathon Valley at a spot called “Bitterroot Valley.”

And at this moment, as Opportunity reached and surpassed the 4500 Sol milestone, she is investing an majestic spot dubbed “Spirit Mound” – and named after her twin sister “Spirit” – who landed 3 weeks earlier!

This scene from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity shows "Spirit Mound" overlooking the floor of Endeavour Crater. The mound stands near the eastern end of "Bitterroot Valley" on the western rim of the crater, and this view faces eastward. The component images for this mosaic were taken on Sept. 21, 2016, during the 4,501st Martian day, or sol, of Opportunity's work on Mars. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ.
This scene from the panoramic camera (Pancam) on NASA’s Mars Exploration Rover Opportunity shows “Spirit Mound” overlooking the floor of Endeavour Crater. The mound stands near the eastern end of “Bitterroot Valley” on the western rim of the crater, and this view faces eastward. The component images for this mosaic were taken on Sept. 21, 2016, during the 4,501st Martian day, or sol, of Opportunity’s work on Mars. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ.

Endeavour crater spans some 22 kilometers (14 miles) in diameter. Opportunity has been exploring Endeavour since arriving at the humongous crater in 2011.

Endeavour crater was formed when it was carved out of the Red Planet by a huge meteor impact billions of years ago.

But now for the first time she will explore the craters interior, after spending 5 years investigating the exterior and climbing to a summit on the rim and spending several year exploring the top before finally descending down the Marathon Valley feature to investigate clay minerals formed in water.

“The longest-active rover on Mars also will, for the first time, visit the interior of the crater it has worked beside for the last five years,” said NASA officials.

Marathon Valley measures about 300 yards or meters long. It cuts downhill through the west rim of Endeavour crater from west to east – the same direction in which Opportunity drove downhill from a mountain summit area atop the crater rim. See our route map below showing the context of the rovers over dozen year long traverse spanning more than the 26 mile distance of a Marathon runners race.

Opportunity is now being targeted to explore a gully carved out by water.

“We are confident this is a fluid-carved gully, and that water was involved,” said Opportunity Principal Investigator Steve Squyres of Cornell University, Ithaca, New York.

“Fluid-carved gullies on Mars have been seen from orbit since the 1970s, but none had been examined up close on the surface before. One of the three main objectives of our new mission extension is to investigate this gully. We hope to learn whether the fluid was a debris flow, with lots of rubble lubricated by water, or a flow with mostly water and less other material.”

Furthermore, in what’s a very exciting announcement the team “intends to drive Opportunity down the full length of the gully, onto the crater floor” – if the rover continues to function well during the two year extended mission which will have to include enduring her 8th frigid Martian winter in 2017.

And as is always the case, scientists will compare these interior crater rocks to those on the exterior for clues into the evolution, environmental and climatic history of Mars over billions of years.

“We may find that the sulfate-rich rocks we’ve seen outside the crater are not the same inside,” Squyres said. “We believe these sulfate-rich rocks formed from a water-related process, and water flows downhill. The watery environment deep inside the crater may have been different from outside on the plain — maybe different timing, maybe different chemistry.”

NASA’s Opportunity rover discovers a beautiful Martian dust devil moving across the floor of Endeavour crater as wheel tracks show robots path today exploring the steepest ever slopes of the 13 year long mission, in search of water altered minerals at Knudsen Ridge inside Marathon Valley on 1 April 2016. This navcam camera photo mosaic was assembled from raw images taken on Sol 4332 (1 April 2016) and colorized.  Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo
NASA’s Opportunity rover discovers a beautiful Martian dust devil moving across the floor of Endeavour crater as wheel tracks show robots path today exploring the steepest ever slopes of the 13 year long mission, in search of water altered minerals at Knudsen Ridge inside Marathon Valley on 1 April 2016. This navcam camera photo mosaic was assembled from raw images taken on Sol 4332 (1 April 2016) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

As of today, Sol 4522, Oct 12, 2016, Opportunity has taken over 214,400 images and traversed over 26.99 miles (43.44 kilometers) – more than a marathon.

The power output from solar array energy production is currently 472 watt-hours, before heading into another southern hemisphere Martian winter in 2017.

Meanwhile Opportunity’s younger sister rover Curiosity traverses and drills into the basal layers at the base of Mount Sharp.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

12 Year Traverse Map for NASA’s Opportunity rover from 2004 to 2016. This map shows the entire path the rover has driven on the Red Planet during more than 12 years and more than a marathon runners distance for over 4514 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 - to current location at the western rim of Endeavour Crater after descending down Marathon Valley. Rover surpassed Marathon distance on Sol 3968 and marked 11th Martian anniversary on Sol 3911. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone - and searched for more at Marathon Valley and is now at Spirit Mound on the way to a Martian gully.  Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer/kenkremer.com
12 Year Traverse Map for NASA’s Opportunity rover from 2004 to 2016. This map shows the entire path the rover has driven on the Red Planet during more than 12 years and more than a marathon runners distance for over 4515 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 – to current location at the western rim of Endeavour Crater after descending down Marathon Valley. Rover surpassed Marathon distance on Sol 3968 and marked 11th Martian anniversary on Sol 3911. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone – and searched for more at Marathon Valley and is now at Spirit Mound on the way to a Martian gully. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer/kenkremer.com

President Obama Puts US All In For Mars

President Barack Obama, the 44th President of the United States. Image: Official White House Photo by Pete Souza Public Domain

In the waning days of his presidency, Barack Obama has made a bold statement in favor of the US getting to Mars. Obama didn’t mince any words in his opinion piece written for CNN. He said that America’s next goal in space is “…sending humans to Mars by the 2030s and returning them safely to Earth, with the ultimate ambition to one day remain there for an extended time.”

President Obama has long been a proponent of a strong presence in space for the US, and of the science and technology that supports those efforts. He has argued for healthy NASA budgets in his time, and under his administration, NASA has reached some major milestones.

“Last year alone, NASA discovered flowing water on Mars and evidence of ice on one of Jupiter’s moons, and we mapped Pluto — more than 3 billion miles away — in high-resolution,” Obama said. He also mentioned the ongoing successful hunt for exoplanets, and the efforts to understand asteroids.

Some of his work in support of space and science in general has been more symbolic. His annual White House Science Fairs in particular. He was the first president to hold these fairs, and he hosted 6 of them during his 8 years in office.

Presidents go different directions once they leave office. Some keep a low profile (Bush Jr.), some get targeted for assassination (Bush Sr.), and some become advocates for humanitarian efforts and global peace (Jimmy Carter.) But Obama made it clear that his efforts to promote America’s efforts in space won’t end when his presidency ends. “This week, we’ll convene some of America’s leading scientists, engineers, innovators and students in Pittsburgh to dream up ways to build on our progress and find the next frontiers,” Obama said.

In his piece, Obama gave a laundry list of the USA’s achievements in space. He also pointed out that “Just five years ago, US companies were shut out of the global commercial launch market.” Now they own a third of that market. And, according to Obama, they won’t stop there.

In 2010 he set a goal for American space efforts: to reach Mars by the 2030s. “The next step is to reach beyond the bounds of Earth’s orbit. I’m excited to announce that we are working with our commercial partners to build new habitats that can sustain and transport astronauts on long-duration missions in deep space.” He didn’t elaborate on this in his opinion piece, but it will be interesting to hear more.

Other presidents have come out strongly in favor of efforts in space. The first one was Eisenhower, and Obama mentioned him in his piece. Eisenhower is the one who created NASA in 1958, though it was called NACA (National Advisory Committee for Aeronautics) at the time. This put America’s space efforts in civilian control rather than military.

President Kennedy got the Apollo program off the ground in 1961. Image: White House Press Office (WHPO)
President Kennedy got the Apollo program off the ground in 1961. Image: White House Press Office (WHPO)

President Kennedy asked Congress in 1961 to commit to the Apollo program, an effort to get a man on the Moon before the 60s ended. Apollo achieved that, of course, but with only a few months to spare. Kennedy’s successor, President Lyndon Johnson, was a staunch supporter of NASA’s Apollo Program, especially in the wake of disaster.

In 1967 the entire Apollo 1 crew was killed in a fire while testing the craft on its launch pad. The press erupted after that, and Congress began to question the Apollo Program, but Johnson stood firmly in NASA’s corner.

Like some other Presidents before him, Obama has always been a good orator. That was in full view when he ended his piece with these words: “Someday, I hope to hoist my own grandchildren onto my shoulders. We’ll still look to the stars in wonder, as humans have since the beginning of time.”

The focus has really been on Mars lately, and with Obama’s continued support, maybe humans will make it to Mars in the next decade or two. Then, from the surface of that planet, we can do what we’ve always done: continue to look to the stars with a sense of wonder.

JPL Predicts Mars’ Global Dust Storm To Arrive Within Weeks

These two images from the camera on NASA's Mars Global Surveyor show the effect that a global dust storm has on Mars. On the left is a normal view of Mars, on the right is Mars obscured by the haze from a dust storm. Image: NASA/JPL/MSSS

Our ability to forecast the weather here on Earth has saved countless lives from the onslaught of hurricanes and typhoons. We’ve gotten better at predicting space weather, too, and that has allowed us to protect sensitive satellites and terrestrial facilities from bursts of radiation and solar wind. Now, it looks as though we’re getting closer to predicting bad weather on Mars.

NASA’s Jet Propulsion Laboratory is forecasting the arrival of a global dust storm on Mars within weeks. The storm is expected to envelop the red planet, and reduce the amount of solar energy available to NASA’s rovers, Opportunity and Curiosity. The storm will also make it harder for orbiters to do their work.

Dust storms are really the only type of weather that Mars experiences. They’re very common. Usually, they’re only local phenomena, but sometimes they can grow to effect an entire region. In rarer cases, they can envelop the entire globe.

It’s these global storms that concern James Shirley, a planetary scientist at NASA’s Jet Propulsion Laboratory, in Pasadena, California. Shirley published a study showing that there is a pattern to these global storms. If his forecasted storm appears on time, it means that he has correctly determined that pattern.

“Mars will reach the midpoint of its current dust storm season on October 29th of this year. Based on the historical pattern we found, we believe it is very likely that a global dust storm will begin within a few weeks or months of this date,” Shirley said.

Predicting these huge dust storms will be of prime importance when humans gain a foothold on Mars. The dust could wreak havoc on sensitive systems, and can limit the effectiveness of solar power for weeks at a time.

But it’s not just future endeavours that are impacted by Martian dust storms. Spirit and Opportunity had to batten down the hatches when a global dust storm interrupted their exploration of Mars in 2007.

“We had to take special measures to enable their survival for several weeks with little sunlight to keep them powered.

John Callas is JPL’s project manager for Spirit and Opportunity. He describes the precautions that his team took during the 2007 dust storm: “We had to take special measures to enable their survival for several weeks with little sunlight to keep them powered. Each rover powered up only a few minutes each day, enough to warm them up, then shut down to the next day without even communicating with Earth. For many days during the worst of the storm, the rovers were completely on their own.”

This 30-day time-lapse of the Martian atmosphere was capture by Opportunity during the 2007 dust storm. That storm blocked out 99% of the Sun's energy, limiting the effectiveness of the rover's solar panels, and putting the mission in jeopardy. Image: Public Domain, https://commons.wikimedia.org/w/index.php?curid=2475872
This 30-day time-lapse of the Martian atmosphere was capture by Opportunity during the 2007 dust storm. That storm blocked out 99% of the Sun's energy, limiting the effectiveness of the rover's solar panels, and putting the mission in jeopardy. Image: Public Domain, https://commons.wikimedia.org/w/index.php?curid=2475872

We have observed 9 global dust storms on Mars since the first time in 1924, with the most recent one being the 2007 storm that threatened Spirit and Opportunity. Other storms were observed in 1977, 1982, 1994, and 2001. There’ve been many more of them, but we weren’t able to see them without orbiters and current telescope technology. And Earth hasn’t always been in a good position to view them.

These two images show dust build-up on NASA's Opportunity rover in 2014. In January, a dust storm left a layer of dust on Opportunity's solar panels (left.) By late March, the wind had blown most of it away. (right) Image: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
These two images show dust build-up on NASA’s Opportunity rover in 2014. In January, a dust storm left a layer of dust on Opportunity’s solar panels (left.) By late March, the wind had blown most of it away. (right) Image: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Global dust storms have left their imprint on the early exploration of Mars. In 1971, NASA’s Mariner 9 orbiter reached Mars, and was greeted by a global dust storm that made it impossible to image the planet. Only two weeks later, the Soviet Mars 2 and Mars 3 missions arrived at Mars, and sent their landers to the surface.

Mars 2 crashed into the planet and was destroyed, but Mars 3 made it to the surface and landed softly. That made Mars 3 the first craft to land on Mars. However, it failed after only 14.5 seconds, likely because of the global dust storm. So not only was Mars 3 the first craft to land on Mars, it was also the first craft to be destroyed by a global dust storm.

If we had been able to forecast the global dust storm of 1971, Mars 3 may have been a successful mission. Who knows how that may have changed the history of Martian exploration?

James Shirley’s paper shows a pattern in global dust storms on Mars based on the orbit of Mars, and on the changing momentum of Mars as the gravity of other planets acts on it.

Mars takes about 1.8 years to orbit the Sun, but its momentum change caused by other planets’ gravity is in a 2.2 year cycle. The relationship between these two cycles is always changing.

This graphic indicates a similarity between 2016 (dark blue line) and five past years in which Mars has experienced a global dust storm (orange lines and band), compared to years with no global dust storm (blue-green lines and band). The arrow nearly midway across in the dark blue line indicates the Mars time of year in late September 2016. Image: NASA/JPL-Caltech
This graphic indicates a similarity between 2016 (dark blue line) and five past years in which Mars has experienced a global dust storm (orange lines and band), compared to years with no global dust storm (blue-green lines and band). The arrow nearly midway across in the dark blue line indicates the Mars time of year in late September 2016. Image: NASA/JPL-Caltech

What Shirley found is that global dust storms occur while Mars’ momentum is increasing during the first part of the dust storm season. When looking back at our historical record of Martian global dust storms, he found that none of them occurred in years when the momentum was decreasing during the first part of the dust storm season.

Shirley’s paper found that current conditions on Mars are also very similar to other times when global dust storms occurred. Since we are much more capable of watching Mars than at any time in the past, we should be able to quickly confirm if Shirley’s understanding of Martian weather is correct.

Schiaparelli & The Problematic History Of Martian Landings

NASA's MSL Curiosity. NASA is the only agency to successfully place a lander on Mars. This self portrait shows Curiosity doing its thing on Mars. Image: NASA/JPL-Caltech/MSSS
NASA's MSL Curiosity. NASA is the only agency to successfully place a lander on Mars. This self portrait shows Curiosity doing its thing on Mars. Image: NASA/JPL-Caltech/MSSS

We may be living in the Golden Age of Mars Exploration. With multiple orbiters around Mars and two functioning rovers on the surface of the red planet, our knowledge of Mars is growing at an unprecedented rate. But it hasn’t always been this way. Getting a lander to Mars and safely onto the surface is a difficult challenge, and many landers sent to Mars have failed.

The joint ESA/Roscosmos Mars Express mission, and its Chiaparelli lander, is due at Mars in only 15 days. Now’s a good time to look at the challenges in getting a lander to Mars, and also to look back at the many failed attempts.

A model of the Schiaparelli lander. The lander is part of the ExoMars mission. By Pline - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=26837226
A model of the Schiaparelli lander. The lander is part of the ExoMars mission. By Pline – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=26837226

For now, NASA has the bragging rights as the only organization to successfully land probes on Mars. And they’ve done it several times. But they weren’t the first ones to try. The Soviet Union tried first.

The USSR sent several probes to Mars starting back in the 1960s. They made their first attempt in 1962, but that mission failed to launch. That failure illustrates the first challenge in getting a craft to land on Mars: rocketry. We’re a lot better at rocketry than we were back in the 1960’s, but mishaps still happen.

Then in 1971, the Soviets sent a pair of probes to Mars called Mars 2 and Mars 3. They were both orbiters with detachable landers destined for the Martian surface. The fate of Mars 2 and Mars 3 provides other illustrative examples of the challenges in getting to Mars.

Mars 2 separated from its orbiter successfully, but crashed into the surface and was destroyed. The crash was likely caused by its angle of descent, which was too steep. This interrupted the descent sequence, which meant the parachute failed to deploy. So Mars 2 has the dubious distinction of being the first man-made object to reach Mars.

Mars 3 was exactly the same as Mars 2. The Soviets liked to do missions in pairs back then, for redundancy. Mars 3 separated from its orbiter and headed for the Martian surface, and through a combination of aerodynamic breaking, rockets, and parachutes, it became the first craft to make a soft landing on Mars. So it was a success, sort of.

A model of the Mars 3 lander with its petals open after landing. By NASA - http://nssdc.gsfc.nasa.gov/image/spacecraft/mars3_lander_vsm.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=14634254
A model of the Mars 3 lander with its petals open after landing. By NASA – http://nssdc.gsfc.nasa.gov/image/spacecraft/mars3_lander_vsm.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=14634254

But after only 14.5 seconds of data transmission, it went quiet and was never heard from again. The cause was likely an intense dust storm. In an odd turn of events, NASA’s Mariner 9 orbiter reached Mars only days before Mars 2 and 3, becoming the first spacecraft to orbit another planet. It captured images of the planet-concealing dust storms, above which only the volcanic Olympus Mons could be seen. These images provided an explanation for the failure of Mars 3.

This image from the Mariner 9 orbiter shows Olympus Mons above the dust storms that concealed much of the planet when it arrived at Mars in 1971. Image: NASA
This image from the Mariner 9 orbiter shows Olympus Mons above the dust storms that concealed much of the planet when it arrived at Mars in 1971. Image: NASA

In 1973, the Soviets tried again. They sent four craft to Mars, two of which were landers, named Mars 6 and Mars 7. Mars 6 failed on impact, but Mars 7’s fate was perhaps a little more tragic. It missed Mars completely, by about 1300 km, and is in a helicentric orbit to this day. In our day and age, we just assume that our spacecraft will go where we want them to, but Mars 7 shows us that it can all go wrong. After all, Mars is a moving target.

In the 1970s, NASA was fresh off the success of their Apollo Program, and were setting their sites on Mars. They developed the Viking program which saw 2 landers, Viking 1 and Viking 2, sent to Mars. Both of them were probe/lander configurations, and both landers landed successfully on the surface of Mars. The Vikings sent back beautiful pictures of Mars that caused excitement around the world.

The Viking 2 lander captured this image of itself on the Martian surface. By NASA - NASA website; description,[1] high resolution image.[2], Public Domain, https://commons.wikimedia.org/w/index.php?curid=17624
The Viking 2 lander captured this image of itself on the Martian surface. By NASA – NASA website; description,[1] high resolution image.[2], Public Domain, https://commons.wikimedia.org/w/index.php?curid=17624

In 1997, NASA’s Martian Pathfinder made it to Mars and landed successfully. Pathfinder itself was stationary, but it brought a little rover called Sojourner with it. Sojourner explored the immediate landing area around Pathfinder. Sojourner became the first rover to operate on another planet.

Pathfinder was able to send back over 16,000 images of Mars, along with its scientific data. It was also a proof of concept mission for technologies such as automated obstacle avoidance and airbag mediated touchdown. Pathfinder helped lay the groundwork for the Mars Exploration Rover Mission. That means Spirit and Opportunity.

An artist's conception of Spirit/Opportunity working on Mars. By NASA/JPL/Cornell University, Maas Digital LLC - http://photojournal.jpl.nasa.gov/catalog/PIA04413 (image link), Public Domain, https://commons.wikimedia.org/w/index.php?curid=565283
An artist’s conception of Spirit/Opportunity working on Mars. By NASA/JPL/Cornell University, Maas Digital LLC – http://photojournal.jpl.nasa.gov/catalog/PIA04413 (image link), Public Domain, https://commons.wikimedia.org/w/index.php?curid=565283

But after Pathfinder, and before Spirit and Opportunity, came a time of failure for Martian landing attempts. Everybody took part in the failure, it seems, with Russia, Japan, the USA, and the European Space Agency all experiencing bitter failure. Rocket failures, engineering errors, and other terminal errors all contributed to the failure.

Japan’s Nozomi orbiter ran out of fuel before ever reaching Mars. NASA’s Mars Polar Lander failed its landing attempt. NASA’s Deep Space 2, part of the Polar Lander mission, failed its parachute-less landing and was never heard from. The ESA’s Beagle 2 lander made it to the surface, but two of its solar panels failed to deploy, ending its mission. Russian joined in the failure again, with its Phobos-Grunt mission, which was actually headed for the Martian moon Phobos, to retrieve a sample and send it back to Earth.

In one infamous failure, engineers mixed up the use of English units with Metric units, causing NASA’s Mars Climate Orbiter to burn up on entry. These failures show us that failure is not rare. It’s difficult and challenging to get to the surface of Mars.

After this period of failure, NASA’s Spirit and Opportunity rovers were both unprecedented successes. They landed on the Martian surface in January 2004. Both exceeded their planned mission length of three months, and Opportunity is still going strong now.

So where does that leave us now? NASA is the only one to have successfully landed a rover on Mars and have the rover complete its mission. But the ESA and Russia are determined to get there.

The Schiaparelli lander, as part of the ExoMars mission, is primarily a proof of technology mission. In fact, its full name is the Schiaparelli EDM lander, meaning Entry, Descent, and Landing Demonstrator Module.

It will have some small science capacity, but is really designed to demonstrate the ability to enter the Martian atmosphere, descend safely, and finally, to land on the surface. In fact, it has no solar panels or other power source, and will only carry enough battery power to survive for 2-8 days.

Schiaparelli faces the same challenges as other craft destined for Mars. Once launched successfully, which it was, it had to navigate its way to Mars. That took about 6 months, and since ExoMars is only 15 days away from arrival at Mars, it looks like it has successfully made its way their. But perhaps the trickiest part comes next: atmospheric entry.

Schiaparelli is like most Martian craft. It will make a ballistic entry into the Martian atmosphere, and this has to be done right. There is no room for error. The angle of entry is the key here. If the angle is too steep, Schiaparelli may overheat and burn up on entry. On the other hand, if the angle is too shallow, it could hit the atmosphere and bounce right back into space. There’ll be no second chance.

The entry and descent sequence is all pre-programmed. It will either work or it won’t. It would take way too long to send any commands to Schiaparelli when it is entering and descending to Mars.

If the entry is successful, the landing comes next. The exact landing location is imprecise, because of wind speed, turbulence, and other factors. Like other craft sent to Mars, Schiaparelli’s landing site is defined as an ellipse.

Schiaparelli will land somewhere in this defined ellipse on the surface of Mars. Image: IRSPS/TAS-I
Schiaparelli will land somewhere in this defined ellipse on the surface of Mars. Image: IRSPS/TAS-I

The lander will be travelling at over 21,000 km/h when it reaches Mars, and will have only 6 or 7 minutes to descend. At that speed, Schiaparelli will have to withstand extreme heating for 2 or 3 minutes. It’s heat shield will protect it, and will reach temperatures of several thousand degrees Celsius.

It will decelerate rapidly, and at about 10km altitude, it will have slowed to approximately 1700 km/h. At that point, a parachute will deploy, which will further slow the craft. After the parachute slows its descent, the heat shield will be jettisoned.

Schiaparelli's Descent and Landing Sequence. Image: ESA/ATG medialab
Schiaparelli’s Descent and Landing Sequence. Image: ESA/ATG medialab. Click here for larger image.

On Earth, a parachute would be enough to slow a descending craft. But with Mars’ less dense atmosphere, rockets are needed for the final descent. An onboard radar will monitor Schiaparelli’s altitude as it approaches the surface, and rockets will fire to slow it to a few meters per second in preparation for landing.

In the final moments, the rockets will stop firing, and a short free-fall will signal Schiaparelli’s arrival on Mars. If all goes according to plan, of course.

We won’t have much longer to wait. Soon we’ll know if the ESA and Russia will join NASA as the only agencies to successfully land a craft on Mars. Or, if they’ll add to the long list of failed attempts.

When Will We Send Astronauts to Mars?

NASA astronauts exploring Mars on future missions starting perhaps in the 2030’s will require protection from long term exposure to the cancer causing space radiation environment. Credit: NASA.

History was made on July 20th, 1969, when Apollo 11 astronauts Neil Armstrong and Buzz Aldrin set foot on the surface of the Moon. The moment was the culmination of decades of hard work, research, development and sacrifice. And since that time, human beings have been waiting and wondering when we might achieve the next great astronomical milestone.

So really, when will we see a man or woman set foot on Mars? The prospect has been talked about for decades, back when NASA and the Soviets were still planning on setting foot on the Moon. It is the next logical step, after all. And at present, several plans are in development that could be coming to fruition in just a few decades time.

Original Proposals:

Werner Von Braun, the (in)famous former Nazi rocket scientist – and the man who helped spearhead NASA’s Project Mercury – was actually the first to develop a concept for a crewed mission to Mars. Titled The Mars Project (1952), his proposal called for ten spacecraft (7 passenger, 3 cargo) that would transport a crew of 70 astronauts to Mars.

In between launching V-2s in New Mexico and developing rockets at Redstone Arsenal, Von Braun had time to write Mars Projekt (1952) in which he outlined a mission to Mars delivering 70 explorers. Much has changed since that early vision but some of his concepts may still become a reality and solve the problem of sending SpaceX colonists to Mars. (Credit: Mars Project, Von Braun)
In between launching V-2s in New Mexico and developing rockets at Redstone Arsenal, Von Braun had time to write Mars Projekt (1952). Credit: Mars Project, Von Braun

His proposal was based in part on the large Antarctic expedition known as Operation Highjump (1946–1947), a US Navy program which took place a few years before he started penning his treatise. The plan called for the construction of the interplanetary spacecraft in around the Earth using a series of reusable space shuttles.

He also believed that, given the current pace of space exploration, such a mission could be mounted by 1965 (later revised to 1980) and would spend the next three years making the round trip mission. Once in Mars orbit, the crew would use telescopes to find a suitable site for their base camp near the equator.

A landing crew would then descend using a series of detachable winged aircraft (with ski landing struts) and glide down to land on the polar ice caps. A skeleton crew would remain with the ships in orbit as the surface crew would then travel 6,500 km overland using crawlers to the identified base camp site.

They would then build a landing strip which would allow the rest of the crew to descend from orbit in wheeled gliders. After spending a total of 443 days on Mars conducting surveys and research, the crew would use these same gliders as ascent craft to return to the mother ships.

Astronaut Eugene pollo 17 mission, 11 December 1972. Astronaut Eugene A. Cernan, commander, makes a short checkout of the Lunar Roving Vehicle (LRV)
Astronaut Eugene A. Cernan during the Apollo 17 mission, December 11th, 1972, shown conducting a checkout of the Lunar Roving Vehicle (LRV). Credit: NASA

Von Braun not only calculated the size and weight of each ship, but also how much fuel each would require for the round trip. He also computed the rocket burns necessary to perform the required maneuvers. Because of the detailed nature, calculations and planning in his proposal, The Mars Project remains one of the most influential books on human missions to the Red Planet.

Obviously, such a mission didn’t happen by 1965 (or 1980 for that matter). In fact, humans didn’t even return to the Moon after Eugene Cernan climbed out of the Apollo 17 capsule in 1972. With the winding down of the Space Race and the costs of sending astronauts to the Moon, plans to explore Mars were placed on the backburner until the last decade of the 20th century.

In 1990, a proposal called Mars Direct was developed by Robert Zubrin, founder of the Mars Society and fellow aerospace engineer David Baker. This plan envisioned a series of cost-effective mission to Mars using current technology, with the ultimate goal of colonization.

The initial missions would involve crews landing on the surface and leaving behind hab-structures, thus making subsequent missions easier to undertake. In time, the surface habs would give way to subsurface pressurized habitats built from locally-produced Martian brick. This would represent a first step in the development of in-situ resource utilization, and eventual human settlement.

Artist's rendering of Mars Semi-Direct/DRA 1.0: The Manned Habitat Unit is "docked" alongside a pre placed habitat that was sent ahead of the Earth Return Vehicle. Credit: NASA
Artist’s rendering Manned Habitat Units and Mars vehicles, part of the Mars Design Reference Mission 3.0. Credit: NASA

During and after this initial phase of habitat construction, hard-plastic radiation- and abrasion-resistant geodesic domes would be deployed to the surface for eventual habitation and crop growth. Local industries would begin to grow using indigenous resources, which would center around the manufacture of plastics, ceramics and glass out of Martian soil, sand and hydrocarbons.

While Zubrin acknowledged that Martian colonists would be partially Earth-dependent for centuries, he also stated that a Mars colony would also be able to create a viable economy. For one, Mars has large concentrations of precious metals that have not been subjected to millennia of human extracting. Second, the concentration of deuterium – a possible source for rocket fuel and nuclear fusion – is five times greater on Mars.

In 1993, NASA adopted a version of this plan for their “Mars Design Reference” mission, which went through five iterations between 1993 and 2009. And while it involved a great deal of thinking and planning, it failed to come up with any specific hardware or projects.

Current Proposals:

Things changed in the 21st century after two presidential administrations made fateful decisions regarding NASA. The first came in 2004 when President George W. Bush announced the “Vision for Space Exploration“. This involved retiring the Space Shuttle and developing a new class of launchers that could take humans back to the Moon by 2020 – known as the Constellation Program.

Then, in February of 2010, the Obama administration announced that it was cancelling the Constellation Program and passed the Authorization Act of 2010. Intrinsic to this plan was a Mars Direct mission concept, which called for the development of the necessary equipment and systems to mount a crewed mission to Mars by the 2030s.

In 2015, NASA’s Human Exploration and Operations Mission Directorate (HEOMD) presented the “Evolvable Mars Campaign”, which outlined their plans for their “Journey to Mars’ by the 2030s. Intrinsic to this plan was the use of the new Orion Multi-Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS).

The proposed journey would involve Three Phases, which would involve a total of 32 SLS launches between 2018 and the 2030s. These missions would send all the necessary components to cis-lunar space and then onto near-Mars space before making crewed landings onto the surface.

Phase One (the “Earth Reliant Phase”) calls for long-term studies aboard the ISS until 2024, as well as testing the SLS and Orion Crew capsule. Currently, this involves the planned launch of Exploration Mission 1 (EM-1) in Sept. of 2018, which will be the first flight of the SLS and the second uncrewed test flight of the Orion spacecraft.

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL
NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

NASA also plans to capture a near=Earth asteroid and bring it into lunar orbit, as a means of testing the capabilities and equipment for a Mars mission. Known as the Asteroid Redirect Mission, this mission is scheduled to take place in the 2020s and would primarily involve a robotic mission towing the asteroid and returning samples.

Exploration Mission 2 (EM-2), the first crewed flight using the Orion capsule, would conduct a flyby around the Moon and this asteroid between 2021 and 2023. At this point, NASA would be moving into Phase Two (“Proving Ground”) of the Journey to Mars, where the focus would move away from Earth and into cis-lunar space.

Multiple SLS launches would deliver the mission components during this time – including a habitat that would eventually be transported to Martian orbit, landing craft, and exploration vehicles for the surface of Mars. This phase also calls for the testing of key technologies, like Solar Electric Propulsion (aka. the ion engine).

By the early 2030s, Phase Three (“Earth Independent”) would begin. This calls for testing the entry, descent and landing techniques needed to get to the Martian surface, and the development of in-situ resource utilization. It also calls for the transferring of all mission components (and an exploration crew) to Martian orbit, from which the crews would eventually mount missions to designated “Exploration Zones” on the surface.

On Sept. 15th, 2016, the Senate Committee on Commerce, Science, and Transportation passed the NASA Transition Authorization Act of 2016, a measure designed to ensure short-term stability for the agency in the coming year.

The European Space Agency (ESA) has long-term plans to send humans to Mars, though they have yet to build a manned spacecraft. As part of the Aurora Program, this would involve a crewed mission to Mars in the 2030s using an Ariane M rocket. Other key points along that timeline include the ExoMars rover (2016-2020), a crewed mission to the Moon in 2024, and an automated mission to Mars in 2026.

Roscosmos, the Russian Federal Space Agency, is also planning a crewed mission to Mars, but doesn’t envision it happening until between 2040 and 2060. In the meantime, they have conducted simulations (called Mars-500), which wrapped up in Russia back in 2011. The Chinese space agency similarly has plans to mount a crewed mission to Mars between 2040 and 2060, but only after crewed missions to Mars take place.

In 2012, a group of Dutch entrepreneurs revealed plans for a crowdfunded campaign to establish a human Mars base, beginning in 2023. Known as MarsOne, the plan calls for a series of one-way missions to establish a permanent and expanding colony on Mars, which would be financed with the help of media participation.

Other details of the MarsOne plan include sending a telecom orbiter by 2018, a rover in 2020, and the base components and its settlers by 2023. The base would be powered by 3,000 square meters of solar panels and the SpaceX Falcon 9 Heavy rocket would be used to launch the hardware. The first crew of 4 astronauts would land on Mars in 2025; then, every two years, a new crew of 4 astronauts would arrive.

SpaceX and Tesla CEO Elon Musk has also announced plans to establish a colony on Mars in the coming decades. Intrinsic to this plan is the development of the Mars Colonial Transporter (MCT), a spaceflight system that would rely of reusable rocket engines, launch vehicles and space capsules to transport humans to Mars and return to Earth.

As of 2014, SpaceX has begun development of the large Raptor rocket engine for the Mars Colonial Transporter, and a successful test was announced in September of 2016. In January 2015, Musk said that he hoped to release details of the “completely new architecture” for the Mars transport system in late 2015.

In June 2016, Musk stated in the first unmanned flight of the MCT spacecraft would take place in 2022, followed by the first manned MCT Mars flight departing in 2024. In September 2016, during the 2016 International Astronautical Congress, Musk revealed further details of his plan, which included the design for an Interplanetary Transport System (ITS) – an upgraded version of the MCT.

According to Musk’s estimates, the ITS would cost $10 billion to develop and would be ready to ferry the first passengers to Mars as early as 2024. Each of the SpaceX vehicles would accommodate 100 passengers, with trips being made every 26 months (when Earth and Mars are closest). Musk also estimated that tickets would cost $500,000 per person, but would later drop to a third of that.

And while some people might have a hard time thinking of MarsOne’s volunteers or SpaceX’s passengers as astronauts, they would nevertheless be human beings setting foot on the Red Planet. And if they should make it there before any crewed missions by a federal space agency, are we really going to split hairs?

So the question remains, when will see people sent to Mars? The answer is, assuming all goes well, sometime in the next two decades. And while there are plenty who doubt the legitimacy of recent proposals, or the timetables they include, the fact that we are speaking about going to Mars a very real possibility shows just how far we’ve come since the Apollo era.

And does anyone need to be reminded that there were plenty of doubts during the “Race to the Moon” as well? At the time, there were plenty of people claiming the resources could be better spent elsewhere and those who doubted it could even be done. Once again, it seems that the late and great John F. Kennedy should have the last word on that:

“We choose to go to the Moon! … We choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard; because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win.”

We’ve written many articles about humans traveling to Mars. Here’s how new technology might slash the time to travel to Mars down to 39 days, and here’s an article about a team that did a simulated Mars mission.

If you’d like more information about humans traveling to Mars, check out the Mars Society’s homepage. And here’s a link to MarsDrive, and another group looking to send people to Mars.

We’ve also recorded several episodes of Astronomy Cast about missions to Mars. Listen here, Episode 94: Humans to Mars, Part 1

Sources:

Weekly Space Hangout – Sept 30, 2016: Please Don’t Break Our Hearts Elon Musk

Host: Fraser Cain (@fcain)

Guests:

Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Dave Dickinson (www.astroguyz.com / @astroguyz)
Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )
Yoav Landsman (@MasaCritit)

Their stories this week:

Elon’s Mars fantasy

Hidden spiral arms in planet-forming disk

First extragalactic gamma-ray binary

China’s new 500 metre radio scope

Rosetta’s last plunge

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page.